Problems tagged with "convexity"

Problem #010

Tags: convexity

Let \(\{\nvec{x}{i}\}\) be a set of \(n\) vectors in \(\mathbb R^d\). Consider the function \(f(\vec w) = \sum_{i=1}^n \vec w \cdot\nvec{x}{i}\), where \(\vec w \in\mathbb R^d\).

True or False: \(f\) is convex as a function of \(\vec w\).

Solution

True.

Problem #026

Tags: convexity

Consider the function \(f(x) = x^4 - x^2\) True or False: \(f\) is convex as a function of \(x\).

True False
Solution

False.

Problem #069

Tags: convexity

Let \(\mathcal X = \{(\nvec{x}{1}, y_1), \ldots, (\nvec{x}{n}, y_n)\}\) be a data set for regression, with each \(\nvec{x}{i}\in\mathbb R^d\) and each \(y_i \in\mathbb R\). Consider the following function:

\[ R(\vec w) = \sum_{i=1}^n |y_i - \vec w \cdot\nvec{x}{i}| + \|\vec w\|^2. \]

True or False: \(R(\vec w)\) is a convex function of \(\vec w\).

True False
Solution

True.

Problem #081

Tags: convexity

Suppose \(f(x_1, x_2)\) is a convex function. Define the new function \(g(x) = f(x, 0)\). True or False: \(g(x)\) must be convex.

True False
Solution

True.

Problem #082

Tags: convexity

Let \(f_1(x)\) be a convex function and let \(f_2(x)\) be a non-convex function. Define the new function \(f(x) = f_1(x) + f_2(x)\). True or False: \(f(x)\) must be non-convex.

True False
Solution

For a simple counterexample, let \(f_1(x) = 4x^2\) and \(f_2(x) = -x^2\). Then \(f(x) = 4x^2 - x^2 = 3x^2\) is convex.

If that example seems too contrived, consider \(f_1(x) = x^4 + 3 x^2\) and \(f_2(x) = x^3\). Then \(f(x) = x^4 + x^3 + 3x^2\), and the second derivative test gives us \(f''(x) = 12x^2 + 6x + 6\), which is positive for all \(x\).