DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 18 | Part 1

Boosting

Today

Can we combine very simple models and get good results?

► Yes: boosting.

Weak Learners

- A weak classifier is one which performs only a little better than chance.
- A learning algorithm capable of consistently producing weak classifiers is called a **weak learner**.
- Usually very simple, fast.

A decision stump is a weak classifier.

► **Weak learner**: the strategy discussed last time for picking question.

► The full decision tree learning algorithm is a **strong learner**.

The Question

Can we "boost" the quality of a weak learner?

The Question

Boosting: The Idea

- ▶ Train a weak classifier, $H_1: \mathcal{X} \rightarrow [-1, 1]$.
- Increase weight (importance) of misclassified points, train another classifier H_2 .
- Repeat, creating more classifiers, updating weights.
- Final classifier: a linear combination of $H_1, ..., H_k$.

```
+ + + -
+ - -
+ - -
```


The Details

- ▶ **Q1**: How do we measure the performance of a classifier on a weighted data set?
- Q2: How do we update the point weights?
- **Q3**: How do we combine the classifiers?

AdaBoost

- Yoav Freund (UCSD) and Robert Schapire.
- ► A theoretically-sound answer to these questions.

Q1: Measuring Performance

- Suppose weights at step t are in $\vec{\omega}^{(t)}$.
 - Assume normalized s.t. weights add to one.

- We use weights to learn a classifier $H_t: \mathcal{X} \to [-1, 1]$.
- ► The "margin":

$$r_t = \sum_{i=1}^n \omega_i^{(t)} y_i H_t(\vec{x}^{(i)}) \in [-1, 1]$$

The Margin

$$r_t = \sum_{i=1}^n \omega_i^{(t)} y_i H_t(\vec{x}^{(i)}) \in [-1, 1]$$

The Margin

$$r_t = \sum_{i=1}^n \omega_i^{(t)} y_i H_t(\vec{x}^{(i)}) \in [-1, 1]$$

The larger r_t , the better H_t is doing on the "important" points.

Q1: Measuring Performance

▶ The **performance** of H_t :

$$\alpha_t = \frac{1}{2} \ln \frac{1 + r_t}{1 - r_t}$$

Q2: Updating Weights

- We use weights to learn a classifier $H_t: \mathcal{X} \to [-1, 1]$.
- Weigh misclassified points more heavily.
- Point is misclassified if $y_i H_t(\vec{x}^{(i)}) < 0$

Q2: Updating Weights

► This will do the trick:

$$\omega_i^{(t+1)} \propto \omega_i^{(t)} \cdot \exp\left(-\alpha_t y_i H_t(\vec{x}^{(i)})\right)$$

Q3: Combining Classifiers

► The final classifier:

$$H_t(\vec{x}) = \sum_{t=1}^{T} \alpha_t H_t(\vec{x})$$

AdaBoost

Given data $(\vec{x}^{(1)}, y_1), ..., (\vec{x}^{(n)}, y_n)$, labels in $\{-1, 1\}$.

- Initialize weight vector, $\vec{\omega}^{(1)} = (\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n})^T$
- Repeat:
 - ► Give data and weights $\vec{\omega}^{(t)}$ to weak learner. Receive a classifier. $H_t: \mathcal{X} \to \{-1, 1\}$ back.
 - ► Calculate "performance", $\alpha_t = \frac{1}{2} \ln \frac{1+r_t}{1-r_t}$
 - ► Update $\vec{\omega}^{(t+1)} \propto \omega_i^{(t)} \cdot \exp(-\alpha_t y_i H_t(\vec{x}^{(i)}))$
- Final classifier: $H_t(\vec{x}) = \sum_{t=1}^T \alpha_t H_t(\vec{x})$

Example: Decision Stumps

- ightharpoonup To learn decision stump, given data and $\vec{\omega}^{(t)}$.
- Try all features, thresholds.
- Choose that which maximizes the margin:

$$r_t = \sum_{i=1}^n \omega_i^{(t)} y_i H_t(\vec{x}^{(i)}) \in [-1, 1]$$

Example: Decision Stumps

- ightharpoonup To learn decision stump, given data and $\vec{\omega}^{(t)}$.
- Try all features, thresholds.
- Equivalently, choose that which maximizes the performance:

$$\alpha_t = \frac{1}{2} \ln \frac{1 + r_t}{1 - r_t}$$

```
+ + + -
+ -
+ -
```


Theory

Suppose that on each round t, the weak learner returns a rule H_t whose error on the step t weighted data is $\leq \frac{1}{2} - \gamma$. Then after T rounds, the training error of the combined rule H is at most $e^{-\gamma^2 T/2}$.

Generalization

Boosted decision stumps are really resistant to overfitting.

Generalization

Boosted decision stumps are really resistant to overfitting.

Why not?

Why use weak learners?

What if we replace decision stumps with SVMs or logistic regression?

Why not?

- Why use weak learners?
- What if we replace decision stumps with SVMs or logistic regression?
- You can, but weak learners are fast to learn.
- The point of boosting is that weak learners are "just as good" as strong learners.

DSC 140A Probabilistic Modeling & Machine Knarning

Lecture 18 | Part 2

Random Forests

Let's Try

- Decision trees are susceptible to overfitting.
- Let's try using boosted decision trees.

Example: Forest Cover Type

- Goal: predict forest type.
 - Spruce-fir
 - Lodgepole pine
 - etc. 7 classes in total.
- 54 cartographic/geological features.
 - Elevation, slope, amount of shade, distance to water, etc.

Decision Tree

Depth 20. Training error: 1%. Test error: 12.6%.

Boosted Decision Trees

Boosted Decision Trees

Depth 20: Test error: 8.7%. Slow!

Another Idea

- Prevent decision trees from overfitting by "hiding data" randomly.
- Train a bunch of trees, quickly.
- Average them to make a final prediction.

Random Forests

- \triangleright For t = 1 to T
 - Choose n' training points randomly, with replacement.
 - Fit a decision tree, H_t .
 - At each node, restrict to one of *k* features, chosen randomly.
- Final classifier: majority vote of $H_1, ..., H_T$.
- Common settings: n' = n (bootstrap), $k = \sqrt{d}$.

Forest Cover Type

- ▶ Decision trees: 12.6% error.
- Boosted decision trees: 8.7% error (but slow!)
- Random forests: 8.8% error.
 - 50% of features dropped.
 - Each individual tree $H_1, ..., H_t$ has test error around 15%.