

Lecture 18 | Part 1

Boosting

Today

- Can we combine very simple models and get good results?
- ► Yes: boosting.

Weak Learners

- A weak classifier is one which performs only a little better than chance.
- A learning algorithm capable of consistently producing weak classifiers is called a weak learner.
- Usually very simple, fast.

A decision stump is a weak classifier.

Weak learner: the strategy discussed last time for picking question.

The full decision tree learning algorithm is a strong learner.

The Question

Can we "boost" the quality of a weak learner?

Boosting: The Idea

▶ Train a weak classifier, $H_1 : \mathcal{X} \rightarrow [-1, 1]$.

- Increase weight (importance) of misclassified points, train another classifier H₂.
- Repeat, creating more classifiers, updating weights.
- Final classifier: a linear combination of H_1, \dots, H_k .

 $r_1 = 0.40, \alpha_1 = 0.42$ $r_2 = 0.58, \alpha_2 = 0.65$ $r_3 = 0.72, \alpha_3 = 0.92$

Final classifier:

 $sign (0.42h_1(x) + 0.65h_2(x) + 0.92h_3(x))$

The Details

- Q1: How do we measure the performance of a classifier on a weighted data set?
- **Q2**: How do we update the point weights?
- **Q3**: How do we combine the classifiers?

AdaBoost

- Yoav Freund (UCSD) and Robert Schapire.
- A theoretically-sound answer to these questions.

Q1: Measuring Performance

Suppose weights at step t are in w^(t).
▶ Assume normalized s.t. weights add to one.

- ▶ We use weights to learn a classifier $H_t : \mathcal{X} \rightarrow [-1, 1].$
- ► The "margin":

$$r_t = \sum_{i=1}^n \omega_i^{(t)} y_i H_t(\vec{x}^{(i)}) \in [-1, 1]$$

The Margin

$$r_t = \sum_{i=1}^n \omega_i^{(t)} y_i H_t(\vec{x}^{(i)}) \in [-1, 1]$$

The Margin

$$r_t = \sum_{i=1}^n \omega_i^{(t)} y_i H_t(\vec{x}^{(i)}) \in [-1, 1]$$

The larger r_t, the better H_t is doing on the "important" points.

Q1: Measuring Performance

• The **performance** of H_t :

$$\alpha_t = \frac{1}{2} \ln \frac{1+r_t}{1-r_t}$$

Q2: Updating Weights

- ▶ We use weights to learn a classifier $H_t : \mathcal{X} \rightarrow [-1, 1].$
- Weigh misclassified points more heavily.
- Point is misclassified if $y_i H_t(\vec{x}^{(i)}) < 0$

Q2: Updating Weights

This will do the trick:

$$\omega_i^{(t+1)} \propto \omega_i^{(t)} \cdot \exp\left(-\alpha_t y_i H_t(\vec{x}^{(i)})\right)$$

 \triangleright \propto because we normalize.

Q3: Combining Classifiers

► The final classifier:

$$H_t(\vec{x}) = \sum_{t=1}^T \alpha_t H_t(\vec{x})$$

AdaBoost

Given data $(\vec{x}^{(1)}, y_1), ..., (\vec{x}^{(n)}, y_n)$, labels in $\{-1, 1\}$.

- ► Initialize weight vector, $\vec{\omega}^{(1)} = (\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n})^T$
- Repeat:
 - ► Give data and weights $\vec{\omega}^{(t)}$ to weak learner. Receive a classifier, $H_t : \mathcal{X} \rightarrow \{-1, 1\}$ back.
 - Calculate "performance", $\alpha_t = \frac{1}{2} \ln \frac{1+r_t}{1-r_t}$
 - ► Update $\vec{\omega}^{(t+1)} \propto \omega_i^{(t)} \cdot \exp\left(-\alpha_t y_i H_t(\vec{x}^{(i)})\right)$
- Final classifier: $H_t(\vec{x}) = \sum_{t=1}^T \alpha_t H_t(\vec{x})$

Example: Decision Stumps

- To learn decision stump, given data and $\vec{\omega}^{(t)}$.
- Try all features, thresholds.
- Choose that which maximizes the margin:

$$r_t = \sum_{i=1}^n \omega_i^{(t)} y_i H_t(\vec{x}^{(i)}) \in [-1, 1]$$

Example: Decision Stumps

- To learn decision stump, given data and $\vec{\omega}^{(t)}$.
- Try all features, thresholds.
- Equivalently, choose that which maximizes the performance:

$$\alpha_t = \frac{1}{2} \ln \frac{1+r_t}{1-r_t}$$

 $r_1 = 0.40, \alpha_1 = 0.42$ $r_2 = 0.58, \alpha_2 = 0.65$ $r_3 = 0.72, \alpha_3 = 0.92$

Final classifier:

 $sign (0.42h_1(x) + 0.65h_2(x) + 0.92h_3(x))$

Theory

Suppose that on each round *t*, the weak learner returns a rule H_t whose error on the step *t* weighted data is $\leq \frac{1}{2} - \gamma$. Then after *T* rounds, the training error of the combined rule *H* is at most $e^{-\gamma^2 T/2}$.

Generalization

Boosted decision stumps are really resistant to overfitting.

Generalization

Boosted decision stumps are really resistant to overfitting.

Why not?

- Why use weak learners?
- What if we replace decision stumps with SVMs or logistic regression?

Why not?

- Why use weak learners?
- What if we replace decision stumps with SVMs or logistic regression?
- You can, but weak learners are fast to learn.
- The point of boosting is that weak learners are "just as good" as strong learners.

Lecture 18 | Part 2

Random Forests

Let's Try

- Decision trees are susceptible to overfitting.
- Let's try using boosted decision trees.

Example: Forest Cover Type

- **Goal**: predict forest type.
 - Spruce-fir
 - Lodgepole pine
 - etc. 7 classes in total.
- ► 54 cartographic/geological features.
 - Elevation, slope, amount of shade, distance to water, etc.

Decision Tree

Depth 20. Training error: 1%. Test error: 12.6%.

Boosted Decision Trees

Boosted Decision Trees

Depth 20: Test error: 8.7%. Slow!

Another Idea

- Prevent decision trees from overfitting by "hiding data" randomly.
- Train a bunch of trees, quickly.
- Average them to make a final prediction.

Random Forests

- ▶ For *t* = 1 to *T*
 - Choose n' training points randomly, with replacement.
 - Fit a decision tree, H_t .
 - At each node, restrict to one of k features, chosen randomly.
- Final classifier: majority vote of H_1, \dots, H_T .
- Common settings: n' = n (bootstrap), $k = \sqrt{d}$.

Forest Cover Type

- Decision trees: 12.6% error.
- Boosted decision trees: 8.7% error (but slow!)
- Random forests: 8.8% error.
 - ▶ 50% of features dropped.
 - Each individual tree H₁,..., H_t has test error around 15%.