
Lecture 18 | Part 1

Boosting

Today▶ Can we combine very simple models and get
good results?▶ Yes: boosting.

Weak Learners▶ A weak classifier is one which performs only a little
better than chance.▶ A learning algorithm capable of consistently
producing weak classifiers is called a weak learner.▶ Usually very simple, fast.

Example▶ A decision stump is a weak classifier.

▶ Weak learner: the strategy discussed last time
for picking question.

Example▶ The full decision tree learning algorithm is a
strong learner.

The Question▶ Can we “boost” the quality of a weak learner?

Boosting: The Idea▶ Train a weak classifier, 𝐻1 ∶ X → [−1, 1].▶ Increase weight (importance) of misclassified
points, train another classifier 𝐻2.▶ Repeat, creating more classifiers, updating
weights.▶ Final classifier: a linear combination of 𝐻1, … , 𝐻𝑘.

Example

Example

Example

The Details▶ Q1: How do we measure the performance of a
classifier on a weighted data set?▶ Q2: How do we update the point weights?▶ Q3: How do we combine the classifiers?

AdaBoost▶ Yoav Freund (UCSD) and Robert Schapire.▶ A theoretically-sound answer to these questions.

Q1: Measuring Performance▶ Suppose weights at step 𝑡 are in 𝜔⃗(𝑡).▶ Assume normalized s.t. weights add to one.▶ We use weights to learn a classifier𝐻𝑡 ∶ X → [−1, 1].▶ The “margin”:𝑟𝑡 = 𝑛∑𝑖=1 𝜔(𝑡)𝑖 𝑦𝑖𝐻𝑡(⃗𝑥(𝑖)) ∈ [−1, 1]

The Margin

𝑟𝑡 = 𝑛∑𝑖=1 𝜔(𝑡)𝑖 𝑦𝑖𝐻𝑡(⃗𝑥(𝑖)) ∈ [−1, 1]

The Margin

𝑟𝑡 = 𝑛∑𝑖=1 𝜔(𝑡)𝑖 𝑦𝑖𝐻𝑡(⃗𝑥(𝑖)) ∈ [−1, 1]▶ The larger 𝑟𝑡, the better 𝐻𝑡 is doing on the
“important” points.

Q1: Measuring Performance▶ The performance of 𝐻𝑡:𝛼𝑡 = 12 ln 1 + 𝑟𝑡1 − 𝑟𝑡

Q2: Updating Weights▶ We use weights to learn a classifier𝐻𝑡 ∶ X → [−1, 1].▶ Weigh misclassified points more heavily.▶ Point is misclassified if 𝑦𝑖𝐻𝑡(⃗𝑥(𝑖)) < 0

Q2: Updating Weights▶ This will do the trick:𝜔(𝑡+1)𝑖 ∝ 𝜔(𝑡)𝑖 ⋅ exp (−𝛼𝑡𝑦𝑖𝐻𝑡(⃗𝑥(𝑖)))▶ ∝ because we normalize.

Q3: Combining Classifiers▶ The final classifier:𝐻𝑡(⃗𝑥) = 𝑇∑𝑡=1 𝛼𝑡𝐻𝑡(⃗𝑥)

AdaBoost
Given data (⃗𝑥(1), 𝑦1), … , (⃗𝑥(𝑛), 𝑦𝑛), labels in {−1, 1}.▶ Initialize weight vector, 𝜔⃗(1) = (1𝑛 , 1𝑛 , … , 1𝑛)𝑇▶ Repeat:▶ Give data and weights 𝜔⃗(𝑡) to weak learner. Receive a

classifier, 𝐻𝑡 ∶ X → {−1, 1} back.▶ Calculate “performance”, 𝛼𝑡 = 12 ln 1+𝑟𝑡1−𝑟𝑡▶ Update 𝜔⃗(𝑡+1) ∝ 𝜔(𝑡)𝑖 ⋅ exp (−𝛼𝑡𝑦𝑖𝐻𝑡(⃗𝑥(𝑖)))▶ Final classifier: 𝐻𝑡(⃗𝑥) = ∑𝑇𝑡=1 𝛼𝑡𝐻𝑡(⃗𝑥)

Example: Decision Stumps▶ To learn decision stump, given data and 𝜔⃗(𝑡).▶ Try all features, thresholds.▶ Choose that which maximizes the margin:𝑟𝑡 = 𝑛∑𝑖=1 𝜔(𝑡)𝑖 𝑦𝑖𝐻𝑡(⃗𝑥(𝑖)) ∈ [−1, 1]

Example: Decision Stumps▶ To learn decision stump, given data and 𝜔⃗(𝑡).▶ Try all features, thresholds.▶ Equivalently, choose that which maximizes the
performance: 𝛼𝑡 = 12 ln 1 + 𝑟𝑡1 − 𝑟𝑡

Example

Example

Example

Theory
Suppose that on each round 𝑡, the weak learner
returns a rule 𝐻𝑡 whose error on the step 𝑡 weighted
data is ≤ 12 − 𝛾. Then after 𝑇 rounds, the training error
of the combined rule 𝐻 is at most 𝑒−𝛾2𝑇/2.

Generalization▶ Boosted decision stumps are really resistant to
overfitting.

Number of nodes in tree

Error

training error

true error

Generalization▶ Boosted decision stumps are really resistant to
overfitting.

Why not?▶ Why use weak learners?▶ What if we replace decision stumps with SVMs or
logistic regression?

▶ You can, but weak learners are fast to learn.▶ The point of boosting is that weak learners are
“just as good” as strong learners.

Why not?▶ Why use weak learners?▶ What if we replace decision stumps with SVMs or
logistic regression?▶ You can, but weak learners are fast to learn.▶ The point of boosting is that weak learners are
“just as good” as strong learners.

Lecture 18 | Part 2

Random Forests

Let’s Try▶ Decision trees are susceptible to overfitting.▶ Let’s try using boosted decision trees.

Example: Forest Cover Type▶ Goal: predict forest type.▶ Spruce-fir▶ Lodgepole pine▶ etc. 7 classes in total.▶ 54 cartographic/geological features.▶ Elevation, slope, amount of shade, distance to water,
etc.

Decision Tree

Depth 20. Training error: 1%. Test error: 12.6%.

Boosted Decision Trees

Boosted Decision Trees

Depth 20: Test error: 8.7%. Slow!

Another Idea▶ Prevent decision trees from overfitting by “hiding
data” randomly.▶ Train a bunch of trees, quickly.▶ Average them to make a final prediction.

Random Forests▶ For 𝑡 = 1 to 𝑇▶ Choose 𝑛′ training points randomly, with
replacement.▶ Fit a decision tree, 𝐻𝑡.▶ At each node, restrict to one of 𝑘

features, chosen randomly.▶ Final classifier: majority vote of 𝐻1, … , 𝐻𝑇.▶ Common settings: 𝑛′ = 𝑛 (bootstrap), 𝑘 = √𝑑.

Forest Cover Type▶ Decision trees: 12.6% error.▶ Boosted decision trees: 8.7% error (but slow!)▶ Random forests: 8.8% error.▶ 50% of features dropped.▶ Each individual tree 𝐻1, … , 𝐻𝑡 has test error
around 15%.

