

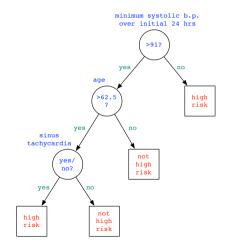
Lecture 17 | Part 1

Decision Trees

The Problem

UCSD Medical Center (1970s): identify patients at risk of dying within 30 days after heart attack.

A Decision Tree

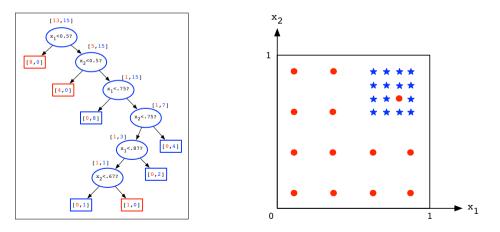


Decision Trees

- A decision tree is a rooted tree.
- Internal nodes ask yes/no questions.
 Categorical: Is patient a male?
 Numerical: Is patient's age > 62.5 years?
- Leaf nodes are decisions (class labels).
- Path from root is a sequence of "and"s:
 Is patient over 62.5 and male and BP > 100? Then high risk.

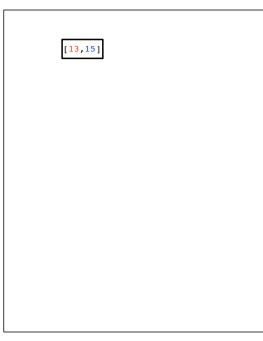
Prediction

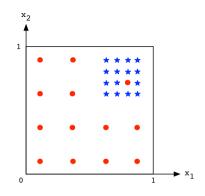
To make prediction, traverse tree. Example: (0.75, 0.6)

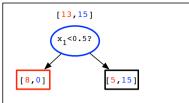


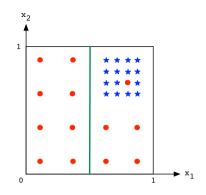
Learning Decision Trees

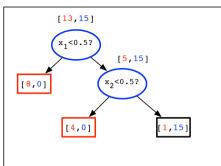
How do we learn a tree from data?
 Find right sequence of questions so that each training point is correctly classified.

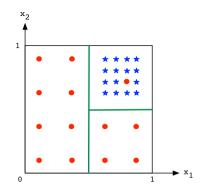


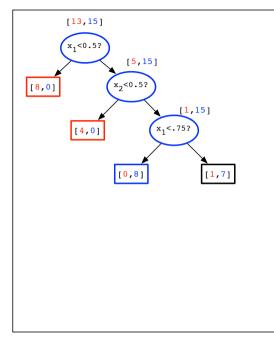


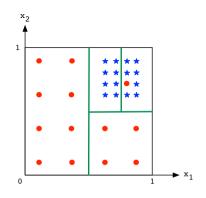


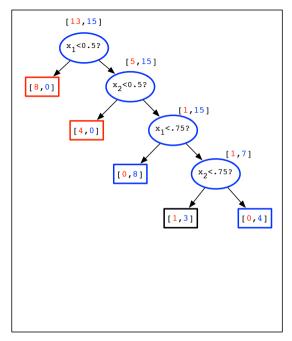


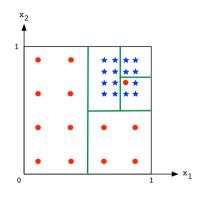


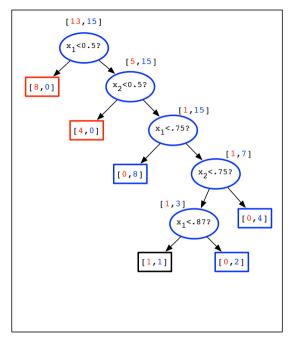


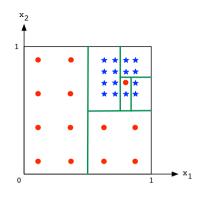


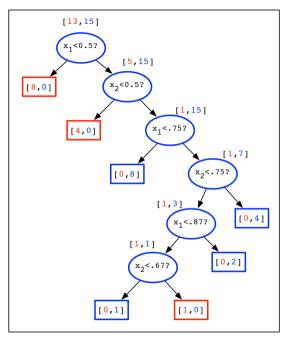


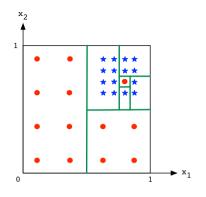












Learning Decision Trees

Start with single node containing all data points

Repeat greedy procedure:
 Look at all possible questions (splits)
 Pick the one that most reduces uncertainty.

Stop when each leaf node is **pure**.

Aside: Generating Possible Questions

Categorical: One question per value seen.

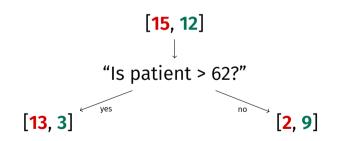
- E.g., county of residence.
 - Patient is from San Diego County?
 - Patient is from Riverside County?
 - Patient is from Orange County?

Aside: Generating Possible Questions

- Numerical: one question between each pair of consecutive values.
- E.g., ages in data = {42, 43, 55, 57, 61, 75}
 Patient is < 42.5?
 Patient is < 49?
 ...
 Patient is < 68?

Measuring Uncertainty

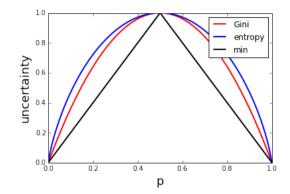
A good question splits the data by class.



Measuring Uncertainty

Suppose our node contains proportions: p from class + (1 - p) from class -

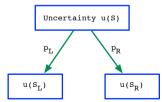
- Common uncertainty scores:
 - Misclassification rate: min{p, 1 p}
 - ▶ **Gini index**: 2*p*(1 *p*)
 - **Entropy**: $p \log \frac{1}{p} + (1 p) \log \frac{1}{1 p}$



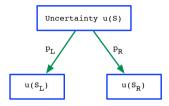
Benefit of a Question

Let u(S) be the uncertainty score for a set of labeled points, S.

Consider a particular question (split):



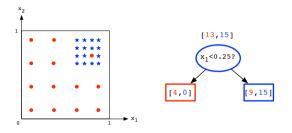
Benefit of a Question



Resulting uncertainty:

$$p_L u(S_L) + p_R u(S_R)$$

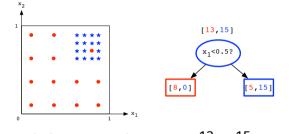
Example



▶ Initial Gini uncertainty: $2 \times \frac{13}{28} \times \frac{15}{28}$.

$$p_L u(S_L) + p_R u(S_R) = \frac{4}{28} \cdot 0 + \frac{24}{28} \cdot 2 \cdot \frac{9}{24} \cdot \frac{15}{24} = \frac{45}{112}$$

Example



► Initial Gini uncertainty: $2 \times \frac{13}{28} \times \frac{15}{28}$.

$$p_L u(S_L) + p_R u(S_R) = \frac{8}{28} \cdot 0 + \frac{20}{28} \cdot 2 \cdot \frac{5}{20} \cdot \frac{15}{20} = \frac{30}{112}$$

Example

- Because the second split (is x₁ < 0.5?) has lower uncertainty, it is "better" than the first.
- To pick the best question, we need to consider all possible splits, choose the one that minimizes uncertainty.
 - x₁ < 0.25?
 x₁ < 0.5?
 :
 x₂ < 0.8?
 x₂ < 0.9?

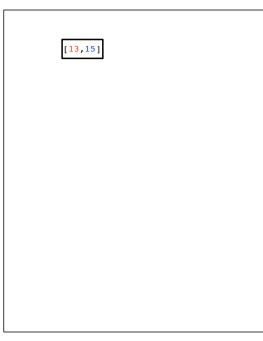
Summary

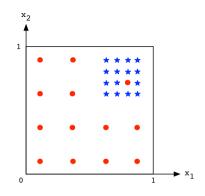
To learn a decision tree:

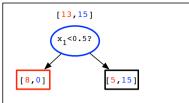
Pick a measure of uncertainty (Gini, Entropy, etc.)

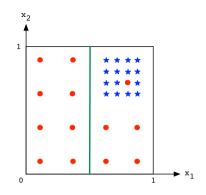
Recursively ask question minimizing uncertainty.

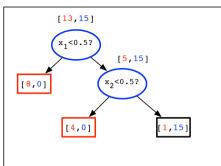
Lecture 17 | Part 2

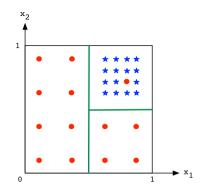


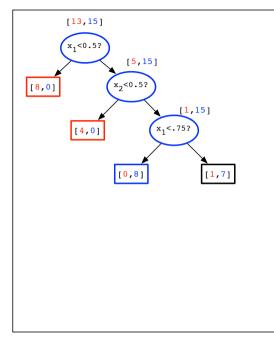


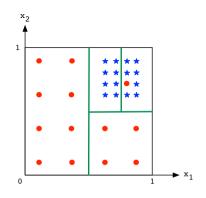


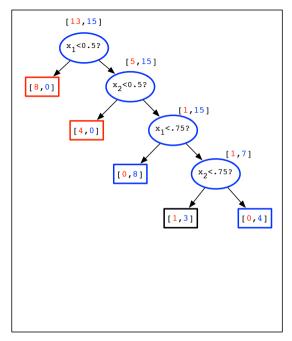


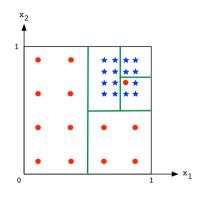


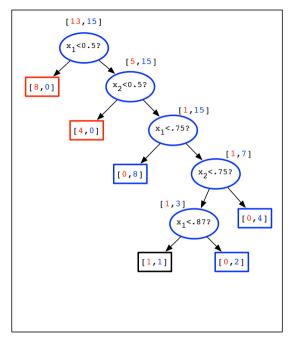


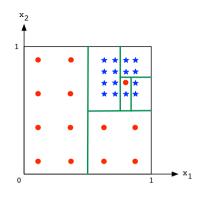


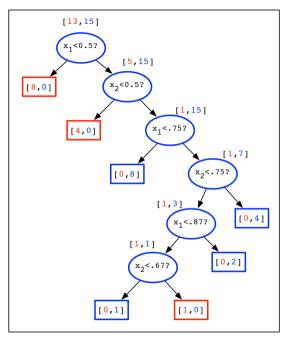


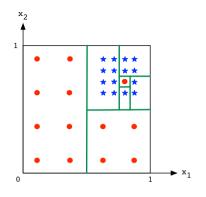




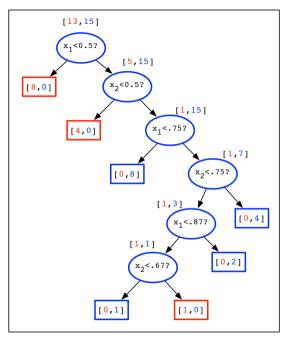


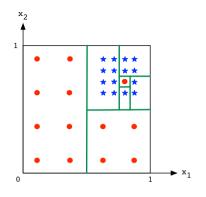


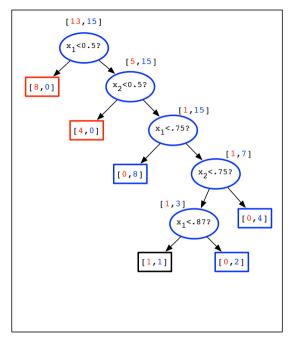


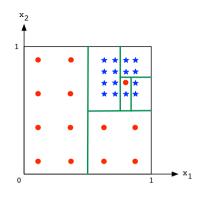


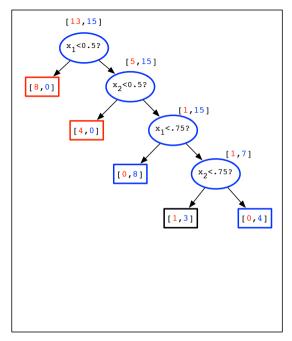
- The training error is zero.
 We might be overfitting.
- (One) solution: rewind a few steps.

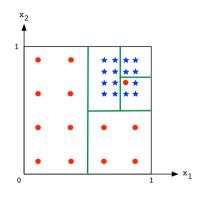


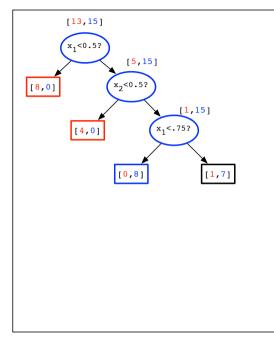


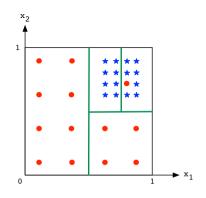


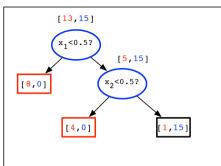


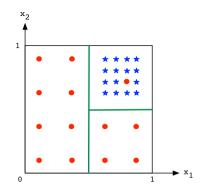


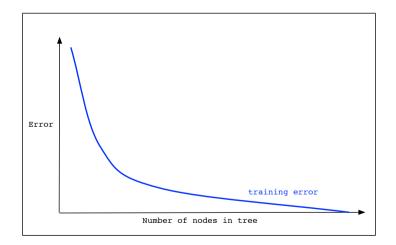


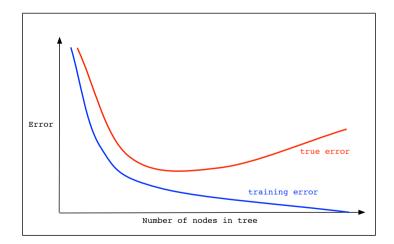












Two Strategies

Pruning: simplify already-constructed tree.

Early-stopping: stop early.

Pruning

Given a full decision tree.

- Starting with predecessors of leaf nodes, replace node by most common class.
- If the change reduces validation error, keep it. Otherwise reverse it.

Early-Stopping

Stop recursion when:

- node is "pure enough" (uncertainty is low).
- tree is too deep.

Decision Tree Properties

Very expressive:

- Can accommodate any type of data
 - numerical, Boolean, etc.
- Can accommodate any number of classes
- Can perfectly fit any data set
 - If data has no duplicates from different classes.
 - Danger! Overfitting!