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Decision Trees



The Problem▶ UCSD Medical Center (1970s): identify patients at
risk of dying within 30 days after heart attack.



A Decision Tree
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Decision Trees▶ A decision tree is a rooted tree.▶ Internal nodes ask yes/no questions.▶ Categorical: Is patient a male?▶ Numerical: Is patient’s age > 62.5 years?▶ Leaf nodes are decisions (class labels).▶ Path from root is a sequence of “and”s:▶ Is patient over 62.5 and male and BP > 100?
Then high risk.



Prediction▶ To make prediction, traverse tree.▶ Example: (0.75, 0.6)
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Learning Decision Trees▶ How do we learn a tree from data?▶ Find right sequence of questions so that each
training point is correctly classified.
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Learning Decision Trees▶ Start with single node containing all data points▶ Repeat greedy procedure:▶ Look at all possible questions (splits)▶ Pick the one that most reduces uncertainty.▶ Stop when each leaf node is pure.



Aside: Generating Possible
Questions▶ Categorical: One question per value seen.▶ E.g., county of residence.▶ Patient is from San Diego County?▶ Patient is from Riverside County?▶ Patient is from Orange County?



Aside: Generating Possible
Questions▶ Numerical: one question between each pair of

consecutive values.▶ E.g., ages in data = {42, 43, 55, 57, 61, 75}▶ Patient is < 42.5?▶ Patient is < 49?▶ …▶ Patient is < 68?
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Measuring Uncertainty▶ A good question splits the data by class.
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Measuring Uncertainty▶ Suppose our node contains proportions:▶ 𝑝 from class +▶ (1 − 𝑝) from class -▶ Common uncertainty scores:▶ Misclassification rate: min{𝑝, 1 − 𝑝}▶ Gini index: 2𝑝(1 − 𝑝)▶ Entropy: 𝑝 log 1𝑝 + (1 − 𝑝) log 11−𝑝





Benefit of a Question▶ Let 𝑢(𝑆) be the uncertainty score for a set of
labeled points, 𝑆.▶ Consider a particular question (split):
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Benefit of a Question
Uncertainty u(S)

u(SL) u(SR)

pL pR

▶ Resulting uncertainty:𝑝𝐿 𝑢(𝑆𝐿) + 𝑝𝑅 𝑢(𝑆𝑅)



Example
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Example
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Example▶ Because the second split (is 𝑥1 < 0.5?) has lower
uncertainty, it is “better” than the first.▶ To pick the best question, we need to consider
all possible splits, choose the one that
minimizes uncertainty.▶ 𝑥1 < 0.25?▶ 𝑥1 < 0.5?▶ ⋮▶ 𝑥2 < 0.8?▶ 𝑥2 < 0.9?



Summary
To learn a decision tree:▶ Pick a measure of uncertainty (Gini, Entropy, etc.)▶ Recursively ask question minimizing uncertainty.
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Overfitting
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Overfitting▶ The training error is zero.▶ We might be overfitting.▶ (One) solution: rewind a few steps.
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Overfitting

Number of nodes in tree
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Two Strategies▶ Pruning: simplify already-constructed tree.▶ Early-stopping: stop early.



Pruning▶ Given a full decision tree.▶ Starting with predecessors of leaf nodes, replace
node by most common class.▶ If the change reduces validation error, keep it.
Otherwise reverse it.



Early-Stopping▶ Stop recursion when:▶ node is “pure enough” (uncertainty is low).▶ tree is too deep.



Decision Tree Properties
Very expressive:▶ Can accommodate any type of data▶ numerical, Boolean, etc.▶ Can accommodate any number of classes▶ Can perfectly fit any data set▶ If data has no duplicates from different classes.▶ Danger! Overfitting!


