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Lecture 16 = Part 1

Recall: Regression



Recall

We have seen the problem of regression.
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Recall
Introduced empirical risk minimization (ERM):

Step 1: choose a hypothesis class
Let's assume we've chosen linear predictors

Step 2: choose a loss function
Used square loss

Step 3: minimize expected loss (empirical risk)
MSE (Mean Squared Error)



Recall: Least Squares
Goal: fit a function of the form H(X; W) = Aug(X)-w

In (ordinary) least squares regression, we
minimized the mean squared error:
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Solution: w* = (X"X) "Xy



Observation

This the “curve fitting” approach to regression.

l.e., find a “line of best fit".

There was no consideration of the (random)
process that generated the data.



Today

Take a probabilistic approach to regression.
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Lecture 16  Part 2

Probabilistic View of Regression



Probabilistic View of Regression

Note: There is uncertainty in the salary.
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Modeling Uncertainty

We can model this uncertainty using probability.

Salary = w, + w, x (Experience) + €
Here, € is the (random) error.

What is a reasonable choice of distribution for £?
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Error Distribution

It is reasonable to assume that the error

distribution is:
Symmetric: equally as likely to predict high as to
predict low
Centered at zero: mean error is zero

The Gaussian distribution (with mean 0) satisfies
this.



Modeling Uncertainty

Assuming a Gaussian (Normal) distribution:

Salary = w, + w, x (Experience) + N'(0, 0?)
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Modeling Uncertainty

Equivalently:

Salary ~ N(w, + w, x Experience, a2)
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In General

In general:

Y ~ N(Aug(X) - W, 0?)

That is: for any feature vector X, the target Y is
drawn from a Gaussian centered at Aug(X) - w.



Estimating Parameters

We assume the model:

Salary ~ N(w, + w, x Experience, a2)

Given some data, what parameters generated it?
What were w,, w,, 0?

Estimate them with maximum likelihood?
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Likelihood

Let p(y; u, 0) be the Gaussian pdf:

e~ (y-1)’1(20°)

1
p(y; y,0) =
J2no
We observe a data set {(X(, y;)}.

What is the likelihood of a choice of parameters
W, g, with respect to the data?



Likelihood wrt a Point
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Likelihood wrt a Point

ex]nn‘e,nct

p(y:; wy + w,x", 0) measures likelihood with

respect to (x1), y.).



Likelihood

In general, _

p(y;; Aug(X?) - W, 0)
measures likelihood with respect to single data
point (X, y.).

Likelihood with respect to data set:

L(,0) = | | p(y;; Aug(Z®) - W, 0)

i=1



Log-Likelihood

\
. Plypu,e) = —¢
Compute the log-likelihood from ‘ a4
M Py AU - W,0).  plys0,6)- iy e P2

265, [T e 105575
Z(w ¢)= }ATTW (‘o - xm);
:Zﬂ"‘ ‘5‘% (‘o ke ;]



Log-Likelihood

Compute the log-likelihood from
My p(y,-;Aug(i(") -, 0).
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Log-Likelihood

The log-likelihood is:

~ _ 1 < 2 . 7 2 h 1 1 n l
L(W,O)-—TazZ(Aug(x )-w—y,-) t3 n;—i n(2m)
i=1

We want to maximize this quantity.
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That is, minimize the mean squared error.



Main Idea

Mazimizing the likelihood of W with respect to the
data (assuming Gaussian error term) is equivalent
to minimizing mean squared error.




Solution

The maximum likelihood estimate for w is
therefore:
VT/* - (XTX)_1XT)7

That is, the exact same as we obtained by
empirical risk minimization with the square loss.
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A Probabilistic View of Regularization



Recall: Ridge Regression

In ridge regression, we added a regularization
term: ||w]|?.

D 1<
W* = argmin E-Z H(XD; ) - y:)? + Al |2

W
Solution: W* = (X"X + nAl) X"y

Helps control overfitting.



Probabilistic View

Regularization term ||W||? was motivated by
observing that ||w|| tends to be large when
overfitting.

Now: motivate same term, probabilistically.

Will adopt a Bayesian perspective.



A Prior on Weights

Imagine we have yet to see the data.

There is no reason to believe that a given weight
w; is positive or negative.

We believe it is more likely to be small (close to
zero) than large.



A Prior on Weights

This prior belief is captured by assuming:

Wi ~ N(O, 52)
Note that in truth, w; is not random.

We are adopting a Bayesian view of probability;
it expresses level of belief.



A Prior on Weights

If each weight has distribution A(0, s?), then:

W~ N(O,s2-1)

That is, the distribution of w has density:

1 1 lw-0))?
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pi(W) = Qusyirt -



Distribution of w

Using Bayes’ Rule:
P | X, y) & p(y | W, X)p (W)

What is the most probable value of W?



arg max[pg (i  %,y)] = arg max [p,(y | , 2py ()]
- argﬁr/nax In[p,(y | W, X)pg ()]
= argmax[Inp,(y | %) + In py(i)]
= argmin[-n p,(y | , %) - 1n p ()]

= arg min [MSE(#) - n p()]
W



Deriving the Regularizer

Since

. 1 _%nv‘v-g)n2
pa(W) = We °
we have:
- 1 -
-lnp;(w)=c+ EHW"z
So
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Placing a A(0, s?) prior on each weight and maxi-
mizing p,(W | X,y) is equivalent to minimizing the
|W||?-regularized mean squared error (ridge re-
gression).




