Lecture 15 | Part 1
Recap

Applying the Bayes Classifier

- Predict the class y which maximizes:

$$
p_{X}(\vec{X}=\vec{x} \mid Y=y) \mathbb{P}(Y=y)
$$

- We must estimate the density, p_{x}.
- Two approaches:

1. Non-parametric (e.g., histograms)
2. Parametric (e.g., fit Gaussian with MLE)

Curse of Dimensionality

- In practice, we have many features.
- This means $p_{X}(\vec{X}=\vec{x} \mid Y=y)$ is high dimensional.
- Non-parametric estimators do not do well in high dimensions due to the curse of dimensionality:
- Data required grows exponentially with number of features.

Responses

- Parametric density estimation can fare better.
- However, it too can suffer from the curse.
- Today, a different approach: assume conditional independence.

$$
\text { DSC } 140 \mathrm{~A}
$$

Remember: Independence

\Rightarrow Events A and B are independent if

$$
\mathbb{P}(A, B)=\mathbb{P}(A) \cdot \mathbb{P}(B) .
$$

\Rightarrow Equivalently, A and B are independent if ${ }^{1}$

$$
\mathbb{P}(A \mid B)=\mathbb{P}(A)
$$

```
1'or }\mathbb{P}(B)=
```


Informally

$\Rightarrow A$ and B are independent if learning B does not influence your belief that A happens.

Example

You draw one card from a deck of 52 cards. A is the event that the card is a heart, B is the event that the card is a face card (J,Q,K,A). Are these independent?

$$
\begin{aligned}
& \text { v: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A } \\
& \text { - } 2,3,4,5,6,7,8,9,10, J, Q, K, A \\
& \text { ะ: } 2,3,4,5,6,7,8,9,10, J, Q, K, A \\
& \text { ^: } 2,3,4,5,6,7,8,9,10, J, Q, K, A
\end{aligned}
$$

Example

We've lost the King of Clubs! You draw one card from this deck of 51 cards. A is the event that the card is a heart, B is the event that the card is a face card (J,Q,K,A). Are these independent?

\[

\]

Exercise

Suppose a dart throw is uniformly distributed on the dartboard below. Are X_{1} and X_{2} independent?

In the Real World...

...true independence is rare.

- Example, survivors of the titanic:

| | Survived | Pclass | Sex | Age | Fare | Embarked | FavColor |
| :--- | ---: | ---: | :--- | :--- | ---: | :--- | :--- | :--- |
| PassengerID | | | | | | | |
| 0 | 0 | 3 | female | 23.0 | 7.9250 | S | yellow |
| 1 | 0 | 1 | male | 47.0 | 52.0000 | S | purple |
| 2 | 0 | 3 | male | 36.0 | 7.4958 | S | green |
| 3 | 0 | 3 | male | 31.0 | 7.7500 | Q | purple |
| 4 | 0 | 3 | male | 19.0 | 7.8958 | S | purple |
| \ldots | \ldots | \ldots | \ldots | \cdots | \cdots | \cdots | \cdots |

In the Real World...

- $\mathbb{P}($ Survived $=1)=.408$
- $\mathbb{P}($ Survived $=1 \mid$ FavColor $=$ purple $)=.4$
- Not independent...

In the Real World...

$\triangleright \mathbb{P}($ Survived $=1)=.408$

- $\mathbb{P}($ Survived $=1 \mid$ FavColor $=$ purple $)=.4$
- Not independent... ...but "close"!

In the Real World...

$\mathbb{P}($ Survived $=1)=.408$
$\mathbb{P}($ Survived $=1 \mid$ Pclass $=1)=$

In the Real World...

$\mathbb{P}($ Survived $=1)=.408$
$\mathbb{P}($ Survived $=1 \mid$ Pclass $=1)=.657$

In the Real World...

- $\mathbb{P}($ Survived $=1)=.408$
- $\mathbb{P}($ Survived $=1 \mid$ Pclass $=1)=.657$
- Strong dependence.

Remember: Conditional Independence

\Rightarrow Events A and B are conditionally independent given C if

$$
\mathbb{P}(A, B \mid C)=\mathbb{P}(A \mid C) \cdot \mathbb{P}(B \mid C)
$$

- Equivalently ${ }^{2}$:

$$
\mathbb{P}(A \mid B, C)=\mathbb{P}(A \mid C)
$$

Informally

- Suppose you know that C has happened.
- You have some belief that A happens, given C.
- A and B are conditionally independent given C if learning that B happens in addition to C does not influence your belief that A happens given C.

Very informally

- A and B are conditionally independent given C if learning that B happens in addition to C gives you no more information about A.

Example

We've lost the King of Clubs! You draw one card from this deck of 51 cards. A is the event that the card is a heart, B is the event that the card is a face card (J,Q,K,A). Now suppose you know that the card is red. Are A and B independent given this information?

$$
\begin{aligned}
& \text { v: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A } \\
& \text { - 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A } \\
& \text { ㄴ: } 2,3,4,5,6,7,8,9,10, J, Q, \quad A \\
& \text { ゅ: } 2,3,4,5,6,7,8,9,10, J, Q, K, A
\end{aligned}
$$

Titanic Example

- Survival and class are not independent.
$\Rightarrow \mathbb{P}($ Survived $=1)=.408$
$\Rightarrow \mathbb{P}($ Survived $=1 \mid$ Pclass $=1)=.657$
- But they're (close) to conditionally independent given ticket price:
$\rightarrow \mathbb{P}($ Survived $=1 \mid$ PClass $=1$, Fare $>50)=.708$
$\Rightarrow \mathbb{P}($ Survived $=1 \mid$ Fare $>50)=.696$

More Variables

- $X_{1}, X_{2}, \ldots, X_{d}$ are mutually conditionally independent given Y if

$$
\mathbb{P}\left(X_{1}, X_{2}, \ldots, X_{d} \mid Y\right)=\mathbb{P}\left(X_{1} \mid Y\right) \cdot \mathbb{P}\left(X_{2} \mid Y\right) \cdots \mathbb{P}\left(X_{d} \mid Y\right)
$$

Densities

- If A and B are continuous random variables, their joint density can be factored:

$$
p(a, b)=p_{A}(a) \cdot p_{B}(b)
$$

- If A and B are conditionally independent given C, then:

$$
p(a, b \mid C=c)=p_{A}(a \mid C=c) \cdot p_{B}(b \mid C=c)
$$

Densities

- Suppose X_{1}, \ldots, X_{d} are d features, Y is class label.
- If the features are not independent given Y, then:

$$
p(\vec{x} \mid Y=y)=p\left(x_{1}, x_{2}, \ldots, x_{d} \mid Y=y\right)
$$

- Curse of dimensionality!

Densities

- Suppose X_{1}, \ldots, X_{d} are d features, Y is class label.
- However, if the features are mutually conditionally independent given Y, then:

$$
\begin{aligned}
p(\vec{x} \mid Y=y) & =p\left(x_{1}, x_{2}, \ldots, x_{d} \mid Y=y\right) \\
& =p_{1}\left(x_{1} \mid Y=y\right) \cdot p_{2}\left(x_{2} \mid Y=y\right) \cdots p_{d}\left(x_{d} \mid Y=y\right)
\end{aligned}
$$

Exercise

Are X_{1} and X_{2} (close to) conditionally independent given Y ?

Exercise

Are height and weight (close to) conditionally independent given the player's position?

Probatilistic Modeling $\&$ Machine Learning
Lecture 15 | Part 3
How Conditional Independence Helps

Recall: The Bayes Classifier

- To use the Bayes classifier, we must estimate

$$
p\left(\vec{x} \mid Y=y_{i}\right)
$$

for each class y_{i}, where $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$.

- Written differently, we need to estimate:

$$
p\left(x_{1}, \ldots, x_{d} \mid Y=y_{i}\right)
$$

Recall: Histogram Estimators

- When X_{1}, \ldots, X_{d} are continuous, we can use histogram estimators.
- Curse of Dimensionality: if we discretize each dimension into 10 bins, there are 10^{d} bins.

Conditional Independence to the Rescue

- Now suppose X_{1}, \ldots, X_{d} are mutually conditionally independent given Y. Then:

$$
p\left(x_{1}, \ldots, x_{d} \mid Y=y_{i}\right)=p_{1}\left(x_{1} \mid Y=y_{i}\right) p_{2}\left(x_{2} \mid Y=y_{i}\right) \cdots p_{d}\left(x_{d} \mid Y=y_{i}\right)
$$

\Rightarrow Instead of estimating $p\left(x_{1}, \ldots, x_{d} \mid Y\right)$, estimate $p_{1}\left(x_{1} \mid Y\right), \ldots, p_{d}\left(x_{d} \mid Y\right)$ separately.

Breaking the Curse

- Suppose we use histogram estimators.
- If we discretize each dimension into 10 bins, we need:
-10 bins to estimate $p_{1}\left(x_{1} \mid Y\right)$
- 10 bins to estimate $p_{2}\left(x_{2} \mid Y\right)$
- 10 bins to estimate $p_{d}\left(x_{d} \mid Y\right)$
- We therefore need $10 d$ bins in total.

Breaking the Curse

- Conditional independence drastically reduced the number of bins needed to cover the input space.
- From $\Theta\left(10^{d}\right)$ to $\Theta(d)$.

Idea

- Bayes Classifier needs a lot of data when d is big.
- But if the features are conditionally independent given the label, we don't need so much data.
- So let's just assume conditional independence.
- The result: the Naïve Bayes Classifier.

Naïve Bayes: The Algorithm

- Assume that X_{1}, \ldots, X_{d} are mutually independent given the class label.
- Estimate one-dimensional densities
$p_{1}\left(x_{1} \mid Y=y_{i}\right), \ldots, p_{d}\left(x_{d} \mid Y=y_{i}\right)$ however you'd like.
> histograms, fitting univariate Gaussians, etc.
- Pick the y_{i} which maximizes

$$
p_{1}\left(x_{1} \mid Y=y_{i}\right) \cdots p_{2}\left(x_{d} \mid Y=y_{i}\right) \mathbb{P}\left(Y=y_{i}\right)
$$

But wait...

- ...are we allowed to just assume conditional independence?
- Sure!
> The independence assumption is usually wrong, but it can work surprisingly well in practice.

Estimating Probabilites

- You can estimate $p\left(X_{i} \mid Y\right)$ however makes sense.
- Popular: Gaussian Naïve Bayes.

Example: NBA

- Given: player with height $=75$ in, weight $=210 \mathrm{lbs}$.
- Predict: whether they are a forward or a guard.
- Let's use Gaussian Naïve Bayes.

Example: NBA

- Compute:

$$
\begin{gathered}
p(75 \mathrm{in}, 210 \mathrm{lbs} \mid Y=\text { forward }) \mathbb{P}(Y=\text { forward }) \\
p(75 \mathrm{in}, 210 \mathrm{lbs} \mid Y=\text { guard }) \mathbb{P}(Y=\text { guard })
\end{gathered}
$$

- Using conditional independence assumption:

$$
\begin{gathered}
p_{1}(75 \text { in } \mid Y=\text { forward }) \cdot p_{2}(210 \mathrm{lbs} \mid Y=\text { forward }) \mathbb{P}(Y=\text { forward }) \\
p_{1}(75 \mathrm{in} \mid Y=\text { guard }) \cdot p_{2}(210 \mathrm{lbs} \mid Y=\text { guard }) \mathbb{P}(Y=\text { guard })
\end{gathered}
$$

Example: NBA

- We need to estimate:
$p_{1}(75$ in $\mid Y=$ forward $)$
$p_{1}(75$ in $\mid Y=$ guard $)$
$p_{2}(210 \mathrm{lbs} \mid Y=$ forward $)$
$p_{2}(210 \mathrm{lbs} \mid Y=$ guard $)$

Example: NBA

- We'll fit 1-d Gaussians to:
- heights of forwards.
- heights of guards.
- weights of forwards.
weights of guards.

Example: NBA

$$
\begin{aligned}
& \begin{array}{l}
p_{1}(75 \mid Y=\text { forward }) \cdot p_{2}(210 \mid Y=\text { forward }) \cdot \mathbb{P}(Y=\text { forward }) \\
\quad=\mathcal{N}\left(75 ; 80.58,1.53^{2}\right) \cdot \mathcal{N}\left(210 ; 230.46,17.48^{2}\right) \cdot \frac{156}{300} \\
\\
\approx 6.73 \times 10^{-6}
\end{array} \\
& \begin{aligned}
& p_{1}(75 \mid Y=\text { guard }) \cdot p_{2}(210 \mid Y=\text { guard }) \cdot \mathbb{P}(Y=\text { guard }) \\
&=\mathcal{N}\left(75 ; 75.44,2.27^{2}\right) \cdot \mathcal{N}\left(210 ; 195.47,15.83^{2}\right) \cdot \frac{144}{300} \\
& \approx 5.88 \times 10^{-5}
\end{aligned}
\end{aligned}
$$

Example: NBA

About 85\% accurate on test set.

Exercise

Are height and weight conditionally independent given the player's position?

Example: NBA

- No!
- Gaussian Naïve Bayes worked well even though the conditional independence assumption is not accurate.

Gaussian Naïve Bayes

> $p\left(X_{1} \mid Y\right) \cdots p\left(X_{d} \mid Y\right)$ is a product of 1-d Gaussians with different means, variances.

- Remember: result is a d-dimensional Gaussian with diagonal covariance matrix:

$$
C=\left(\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \sigma_{d}^{2}
\end{array}\right)
$$

Gaussian Naïve Bayes

- But in GNB, each class has own diagonal covariance matrix.
- Therefore: Gaussian Naïve Bayes is equivalent to QDA with diagonal covariances.

Beyond Gaussian

- Naïve Bayes is very flexible.
- Can use different parametric distributions for different features.
- E.g., normal for feature 1, log normal for feature 2, etc.
- Can use non-parametric density estimation (densities) for other features.
- Can also handle discrete features.

Up next...

...predicting who survives on the Titanic.

$$
D S C 140 A
$$

The Titanic Dataset

	Survived	Pclass	Sex	Age	Fare	Embarked	FavColor
PassengerID							
0	0	3	female	23.0	7.9250	S	yellow
1	0	1	male	47.0	52.0000	S	purple
2	0	3	male	36.0	7.4958	S	green
3	0	3	male	31.0	7.7500	Q	purple
4	0	3	male	19.0	7.8958	S	purple
\ldots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots

Goal: predict survival given Age, Sex, Pclass.

Let's use Naïve Bayes

- We'll pick y_{i} so as to maximize

$$
p\left(\text { Age }=x_{1} \mid Y=y_{i}\right) \cdot \mathbb{P}\left(\text { Sex }=x_{2} \mid Y=y_{i}\right) \cdot \mathbb{P}\left(\text { Pclass }=x_{3} \mid Y=y_{i}\right) \cdot \mathbb{P}\left(Y=y_{i}\right)
$$

- We must choose how to estimate probabilities. Gaussians?

Estimating Probabilities

- How do we estimate $p\left(\right.$ Age $\left.=x_{1} \mid Y=y_{i}\right)$?
- Age is a continuous variable.
- Looks kind of bell-shaped, we'll fit Gaussians.

Estimating Probabilities

- How do we estimate $\mathbb{P}\left(\operatorname{Sex}=x_{1} \mid Y=y_{i}\right)$?
- Sex is a discrete variable in this data set.
- Fitting Gaussian makes no sense.
- But estimating these probabilities is easy.

Estimating Probabilities

$$
\begin{aligned}
\mathbb{P}(\text { Sex }=\text { male } \mid \text { Survived }) & \approx \frac{\# \text { of survived and male }}{\# \text { of survived }} \\
& =.4
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{P}(\text { Sex }=\text { male } \mid \text { Did Not Survive }) & \approx \frac{\# \text { of died and male }}{\# \text { of died }} \\
& =.87
\end{aligned}
$$

Estimating Probabilities

- Pclass, too, is categorical. Estimate in same way.
- You can estimate $\mathbb{P}\left(X_{i} \mid Y\right)$ however makes sense.
- Can use different ways for different features.
- Gaussian for age, simple ratio of counts for class, sex.

Example: The Titanic

- Using just age, sex, ticket class, Naïve Bayes is 70% accurate on test set.
- Not bad. Not great.
- To do better, add more features.

In High Dimensions

- Naïve Bayes can work well in high dimensions.
- Example: document classification.
- Document represented by a "bag of words".
- Pick a large number of words; say, 20,000.
- Make a d-dimensional vector with ith entry counting number of occurrences of ith word.

Practical Issues

- We are multiplying lots of small probabilities:

$$
\mathbb{P}\left(X_{1} \mid Y\right) \cdots \mathbb{P}\left(X_{d} \mid Y\right)
$$

- Potential for underflow.

Practical Issues

"Trick": work with log-probabilities instead.

- Pick the y_{i} which maximizes

$$
\begin{aligned}
\log & {\left[\mathbb{P}\left(X_{1}=x_{1} \mid Y=y_{i}\right) \cdots \mathbb{P}\left(X_{d}=x_{d} \mid Y=y_{i}\right) \mathbb{P}\left(Y=y_{i}\right)\right] } \\
& =\log \mathbb{P}\left(X_{1}=x_{1} \mid Y=y_{i}\right)+\ldots+\log \mathbb{P}\left(X_{d}=x_{d} \mid Y=y_{i}\right)+\log \mathbb{P}\left(Y=y_{i}\right) \\
& =\left(\sum_{j=1}^{d} \log \mathbb{P}\left(X_{j}=x_{j} \mid Y=y_{i}\right)\right)+\log \mathbb{P}\left(Y=y_{i}\right)
\end{aligned}
$$

