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Recap



Applying the Bayes Classifier

▶ Predict the class 𝑦 which maximizes:

𝑝𝑋( ⃗𝑋 = ⃗𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)

▶ We must estimate the density, 𝑝𝑋.

▶ Two approaches:
1. Non-parametric (e.g., histograms)
2. Parametric (e.g., fit Gaussian with MLE)



Curse of Dimensionality

▶ In practice, we have many features.

▶ This means 𝑝𝑋( ⃗𝑋 = ⃗𝑥 | 𝑌 = 𝑦) is high dimensional.

▶ Non-parametric estimators do not do well in high
dimensions due to the curse of dimensionality:
▶ Data required grows exponentially with number of
features.



Responses

▶ Parametric density estimation can fare better.

▶ However, it too can suffer from the curse.

▶ Today, a different approach: assume conditional
independence.
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What is Conditional Independence?



Remember: Independence

▶ Events 𝐴 and 𝐵 are independent if

ℙ(𝐴, 𝐵) = ℙ(𝐴) ⋅ ℙ(𝐵).

▶ Equivalently, 𝐴 and 𝐵 are independent if1

ℙ(𝐴 | 𝐵) = ℙ(𝐴)

1or ℙ(𝐵) = 0



Informally

▶ 𝐴 and 𝐵 are independent if learning 𝐵 does not
influence your belief that 𝐴 happens.



Example

You draw one card from a deck of 52 cards. 𝐴 is the
event that the card is a heart, 𝐵 is the event that the
card is a face card (J,Q,K,A). Are these independent?

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♣: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A



Example

We’ve lost the King of Clubs! You draw one card from
this deck of 51 cards. 𝐴 is the event that the card is a
heart, 𝐵 is the event that the card is a face card
(J,Q,K,A). Are these independent?

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♣: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, A
♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A



Exercise

Suppose a dart throw is uniformly distributed on
the dartboard below. Are 𝑋1 and 𝑋2 independent?

𝑥1

𝑥2



In the Real World...

▶ ...true independence is rare.

▶ Example, survivors of the titanic:

Survived Pclass Sex Age Fare Embarked FavColor
PassengerID

0 0 3 female 23.0 7.9250 S yellow
1 0 1 male 47.0 52.0000 S purple
2 0 3 male 36.0 7.4958 S green
3 0 3 male 31.0 7.7500 Q purple
4 0 3 male 19.0 7.8958 S purple
… … … … … … … …



In the Real World...

▶ ℙ(Survived = 1) = .408

▶ ℙ(Survived = 1 | FavColor = purple) = .4

▶ Not independent...



In the Real World...

▶ ℙ(Survived = 1) = .408

▶ ℙ(Survived = 1 | FavColor = purple) = .4

▶ Not independent... ...but “close”!



In the Real World...

▶ ℙ(Survived = 1) = .408

▶ ℙ(Survived = 1 |Pclass = 1) =

▶ Strong dependence.



In the Real World...

▶ ℙ(Survived = 1) = .408

▶ ℙ(Survived = 1 |Pclass = 1) = .657

▶ Strong dependence.



In the Real World...

▶ ℙ(Survived = 1) = .408

▶ ℙ(Survived = 1 |Pclass = 1) = .657

▶ Strong dependence.



Remember: Conditional
Independence

▶ Events 𝐴 and 𝐵 are conditionally independent
given 𝐶 if

ℙ(𝐴, 𝐵 | 𝐶) = ℙ(𝐴 | 𝐶) ⋅ ℙ(𝐵 | 𝐶)

▶ Equivalently2:

ℙ(𝐴 | 𝐵, 𝐶) = ℙ(𝐴 | 𝐶)

2Or ℙ(𝐵) = 0



Informally

▶ Suppose you know that 𝐶 has happened.

▶ You have some belief that 𝐴 happens, given 𝐶.

▶ 𝐴 and 𝐵 are conditionally independent given 𝐶 if
learning that 𝐵 happens in addition to 𝐶 does not
influence your belief that 𝐴 happens given 𝐶.



Very informally

▶ 𝐴 and 𝐵 are conditionally independent given 𝐶 if
learning that 𝐵 happens in addition to 𝐶 gives
you no more information about 𝐴.



Example

We’ve lost the King of Clubs! You draw one card from
this deck of 51 cards. 𝐴 is the event that the card is a
heart, 𝐵 is the event that the card is a face card
(J,Q,K,A). Now suppose you know that the card is red.
Are 𝐴 and 𝐵 independent given this information?

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♣: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, A
♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A



Titanic Example

▶ Survival and class are not independent.
▶ ℙ(Survived = 1) = .408
▶ ℙ(Survived = 1 |Pclass = 1) = .657

▶ But they’re (close) to conditionally independent
given ticket price:
▶ ℙ(Survived = 1 |PClass = 1, Fare > 50) = .708
▶ ℙ(Survived = 1 | Fare > 50) = .696



More Variables

▶ 𝑋1, 𝑋2, … , 𝑋𝑑 are mutually conditionally
independent given 𝑌 if

ℙ(𝑋1, 𝑋2, … , 𝑋𝑑 | 𝑌) = ℙ(𝑋1 | 𝑌) ⋅ ℙ(𝑋2 | 𝑌)⋯ℙ(𝑋𝑑 | 𝑌)



Densities

▶ If 𝐴 and 𝐵 are continuous random variables, their
joint density can be factored:

𝑝(𝑎, 𝑏) = 𝑝𝐴(𝑎) ⋅ 𝑝𝐵(𝑏)

▶ If 𝐴 and 𝐵 are conditionally independent given 𝐶,
then:

𝑝(𝑎, 𝑏 | 𝐶 = 𝑐) = 𝑝𝐴(𝑎 | 𝐶 = 𝑐) ⋅ 𝑝𝐵(𝑏 | 𝐶 = 𝑐)



Densities

▶ Suppose 𝑋1, … , 𝑋𝑑 are 𝑑 features, 𝑌 is class label.

▶ If the features are not independent given 𝑌, then:

𝑝( ⃗𝑥 | 𝑌 = 𝑦) = 𝑝(𝑥1, 𝑥2, … , 𝑥𝑑 | 𝑌 = 𝑦)

▶ Curse of dimensionality!



Densities

▶ Suppose 𝑋1, … , 𝑋𝑑 are 𝑑 features, 𝑌 is class label.

▶ However, if the features are mutually
conditionally independent given 𝑌, then:

𝑝( ⃗𝑥 | 𝑌 = 𝑦) = 𝑝(𝑥1, 𝑥2, … , 𝑥𝑑 | 𝑌 = 𝑦)
= 𝑝1(𝑥1 | 𝑌 = 𝑦) ⋅ 𝑝2(𝑥2 | 𝑌 = 𝑦)⋯𝑝𝑑(𝑥𝑑 | 𝑌 = 𝑦)



Exercise

Are 𝑋1 and 𝑋2 (close to) conditionally independent
given 𝑌?
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Exercise

Are height and weight (close to) conditionally in-
dependent given the player’s position?
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How Conditional Independence Helps



Recall: The Bayes Classifier

▶ To use the Bayes classifier, we must estimate

𝑝( ⃗𝑥 | 𝑌 = 𝑦𝑖)

for each class 𝑦𝑖, where ⃗𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑑).

▶ Written differently, we need to estimate:

𝑝(𝑥1, … , 𝑥𝑑 | 𝑌 = 𝑦𝑖)



Recall: Histogram Estimators

▶ When 𝑋1, … , 𝑋𝑑 are continuous, we can use
histogram estimators.

▶ Curse of Dimensionality: if we discretize each
dimension into 10 bins, there are 10𝑑 bins.



Conditional Independence to the
Rescue

▶ Now suppose 𝑋1, … , 𝑋𝑑 are mutually conditionally
independent given 𝑌. Then:

𝑝(𝑥1, … , 𝑥𝑑 | 𝑌 = 𝑦𝑖) = 𝑝1(𝑥1 | 𝑌 = 𝑦𝑖)𝑝2(𝑥2 | 𝑌 = 𝑦𝑖) ⋯ 𝑝𝑑(𝑥𝑑 | 𝑌 = 𝑦𝑖)

▶ Instead of estimating 𝑝(𝑥1, … , 𝑥𝑑 | 𝑌), estimate
𝑝1(𝑥1 | 𝑌), … , 𝑝𝑑(𝑥𝑑 | 𝑌) separately.



Breaking the Curse

▶ Suppose we use histogram estimators.

▶ If we discretize each dimension into 10 bins, we
need:
▶ 10 bins to estimate 𝑝1(𝑥1|𝑌)
▶ 10 bins to estimate 𝑝2(𝑥2|𝑌)
▶ …
▶ 10 bins to estimate 𝑝𝑑(𝑥𝑑|𝑌)

▶ We therefore need 10𝑑 bins in total.



Breaking the Curse

▶ Conditional independence drastically reduced
the number of bins needed to cover the input
space.

▶ From Θ(10𝑑) to Θ(𝑑).



Idea

▶ Bayes Classifier needs a lot of data when 𝑑 is big.

▶ But if the features are conditionally independent
given the label, we don’t need so much data.

▶ So let’s just assume conditional independence.

▶ The result: the Naïve Bayes Classifier.



Naïve Bayes: The Algorithm
▶ Assume that 𝑋1, … , 𝑋𝑑 are mutually independent
given the class label.

▶ Estimate one-dimensional densities
𝑝1(𝑥1 | 𝑌 = 𝑦𝑖), …, 𝑝𝑑(𝑥𝑑 | 𝑌 = 𝑦𝑖) however you’d
like.
▶ histograms, fitting univariate Gaussians, etc.

▶ Pick the 𝑦𝑖 which maximizes

𝑝1(𝑥1 | 𝑌 = 𝑦𝑖) ⋯ 𝑝2(𝑥𝑑 | 𝑌 = 𝑦𝑖)ℙ(𝑌 = 𝑦𝑖)



But wait...

▶ ...are we allowed to just assume conditional
independence?

▶ Sure!

▶ The independence assumption is usually wrong,
but it can work surprisingly well in practice.



Estimating Probabilites

▶ You can estimate 𝑝(𝑋𝑖|𝑌) however makes sense.

▶ Popular: Gaussian Naïve Bayes.



Example: NBA

▶ Given: player with height = 75 in, weight = 210 lbs.

▶ Predict: whether they are a forward or a guard.

▶ Let’s use Gaussian Naïve Bayes.



Example: NBA

▶ Compute:

𝑝(75 in, 210 lbs | 𝑌 = forward)ℙ(𝑌 = forward)

𝑝(75 in, 210 lbs | 𝑌 = guard)ℙ(𝑌 = guard)

▶ Using conditional independence assumption:

𝑝1(75 in | 𝑌 = forward)⋅𝑝2(210 lbs | 𝑌 = forward)ℙ(𝑌 = forward)

𝑝1(75 in | 𝑌 = guard) ⋅ 𝑝2(210 lbs | 𝑌 = guard)ℙ(𝑌 = guard)



Example: NBA

▶ We need to estimate:

𝑝1(75 in | 𝑌 = forward)
𝑝1(75 in | 𝑌 = guard)
𝑝2(210 lbs | 𝑌 = forward)
𝑝2(210 lbs | 𝑌 = guard)



Example: NBA

▶ We’ll fit 1-d Gaussians to:
▶ heights of forwards.
▶ heights of guards.
▶ weights of forwards.
▶ weights of guards.
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Example: NBA

𝑝1(75 | 𝑌 = forward) ⋅ 𝑝2(210 | 𝑌 = forward) ⋅ ℙ(𝑌 = forward)

= N (75; 80.58, 1.532) ⋅N (210; 230.46, 17.482) ⋅ 156300
≈ 6.73 × 10−6

𝑝1(75 | 𝑌 = guard) ⋅ 𝑝2(210 | 𝑌 = guard) ⋅ ℙ(𝑌 = guard)

= N (75; 75.44, 2.272) ⋅N (210; 195.47, 15.832) ⋅ 144300
≈ 5.88 × 10−5



Example: NBA

▶ About 85% accurate on test set.



Exercise

Are height and weight conditionally independent
given the player’s position?
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Example: NBA

▶ No!

▶ Gaussian Naïve Bayes worked well even though
the conditional independence assumption is not
accurate.



Gaussian Naïve Bayes

▶ 𝑝(𝑋1 | 𝑌)⋯𝑝(𝑋𝑑 | 𝑌) is a product of 1-d Gaussians
with different means, variances.

▶ Remember: result is a 𝑑-dimensional Gaussian
with diagonal covariance matrix:

𝐶 = (

𝜎21 0 ⋯ 0
0 𝜎22 ⋯ 0
⋯ ⋯ ⋯ ⋯
0 0 0 𝜎2𝑑

)



Gaussian Naïve Bayes

▶ But in GNB, each class has own diagonal
covariance matrix.

▶ Therefore: Gaussian Naïve Bayes is equivalent to
QDA with diagonal covariances.



Beyond Gaussian

▶ Naïve Bayes is very flexible.

▶ Can use different parametric distributions for
different features.
▶ E.g., normal for feature 1, log normal for feature 2, etc.

▶ Can use non-parametric density estimation
(densities) for other features.

▶ Can also handle discrete features.



Up next...

...predicting who survives on the Titanic.
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The Titanic



The Titanic Dataset

Survived Pclass Sex Age Fare Embarked FavColor
PassengerID

0 0 3 female 23.0 7.9250 S yellow
1 0 1 male 47.0 52.0000 S purple
2 0 3 male 36.0 7.4958 S green
3 0 3 male 31.0 7.7500 Q purple
4 0 3 male 19.0 7.8958 S purple
… … … … … … … …

Goal: predict survival given Age, Sex, Pclass.



Let’s use Naïve Bayes

▶ We’ll pick 𝑦𝑖 so as to maximize

𝑝(Age = 𝑥1 | 𝑌 = 𝑦𝑖) ⋅ ℙ(Sex = 𝑥2 | 𝑌 = 𝑦𝑖) ⋅ ℙ(Pclass = 𝑥3 | 𝑌 = 𝑦𝑖) ⋅ ℙ(𝑌 = 𝑦𝑖)

▶ We must choose how to estimate probabilities.
Gaussians?



Estimating Probabilities

▶ How do we estimate 𝑝(Age = 𝑥1 | 𝑌 = 𝑦𝑖)?

▶ Age is a continuous variable.

▶ Looks kind of bell-shaped, we’ll fit Gaussians.
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Estimating Probabilities

▶ How do we estimate ℙ(Sex = 𝑥1 | 𝑌 = 𝑦𝑖)?

▶ Sex is a discrete variable in this data set.

▶ Fitting Gaussian makes no sense.

▶ But estimating these probabilities is easy.



Estimating Probabilities

ℙ(Sex = male | Survived) ≈ # of survived and male# of survived
= .4

ℙ(Sex = male |Did Not Survive) ≈ # of died and male# of died
= .87



Estimating Probabilities

▶ Pclass, too, is categorical. Estimate in same way.

▶ You can estimate ℙ(𝑋𝑖|𝑌) however makes sense.

▶ Can use different ways for different features.

▶ Gaussian for age, simple ratio of counts for class,
sex.



Example: The Titanic

▶ Using just age, sex, ticket class, Naïve Bayes is
70% accurate on test set.

▶ Not bad. Not great.

▶ To do better, add more features.



In High Dimensions

▶ Naïve Bayes can work well in high dimensions.

▶ Example: document classification.
▶ Document represented by a “bag of words”.
▶ Pick a large number of words; say, 20,000.
▶ Make a 𝑑-dimensional vector with 𝑖th entry counting
number of occurrences of 𝑖th word.



Practical Issues

▶ We are multiplying lots of small probabilities:

ℙ(𝑋1|𝑌)⋯ℙ(𝑋𝑑 | 𝑌)

▶ Potential for underflow.



Practical Issues

▶ “Trick”: work with log-probabilities instead.

▶ Pick the 𝑦𝑖 which maximizes

log [ℙ(𝑋1 = 𝑥1 | 𝑌 = 𝑦𝑖) ⋯ℙ(𝑋𝑑 = 𝑥𝑑 | 𝑌 = 𝑦𝑖)ℙ(𝑌 = 𝑦𝑖)]

= logℙ(𝑋1 = 𝑥1 | 𝑌 = 𝑦𝑖) + … + logℙ(𝑋𝑑 = 𝑥𝑑 | 𝑌 = 𝑦𝑖) + logℙ(𝑌 = 𝑦𝑖)

= (
𝑑

∑
𝑗=1
logℙ(𝑋𝑗 = 𝑥𝑗 | 𝑌 = 𝑦𝑖)) + logℙ(𝑌 = 𝑦𝑖)


