

Lecture 14 | Part 1

Bayes with Multiple Features

Recap

- Bayes Classifier: predict y that maximizes
 P(Y = y | X = x)
- Alternatively: predict y that maximizes

 $p_X(x \mid Y = y) \mathbb{P}(Y = y)$

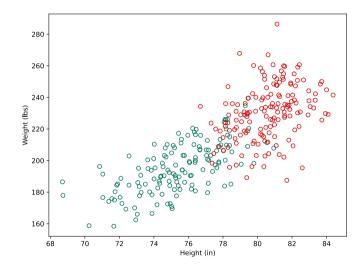
We must estimate these probabilities/densities.

Example: NBA Players

- Guard and Forward are two positions in basketball.
- Forwards tend to be larger than guards.

Example: NBA Players

- Suppose we have a data set of n NBA players:
 - \blacktriangleright X₁: the player's height
 - \triangleright X₂: the player's weight
 - Y: the player's position (1 = guard, 0 = forward)
- Given: a new player's height and weight, predict their position.



Bayes in ≥ 2 Dimensions

With one feature, Bayes said to pick y maximizing:

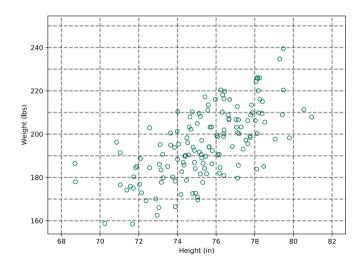
 $p_{\boldsymbol{X}}(\boldsymbol{x}\mid\boldsymbol{Y}=\boldsymbol{y})\mathbb{P}(\boldsymbol{Y}=\boldsymbol{y})$

With k features, pick y maximizing:

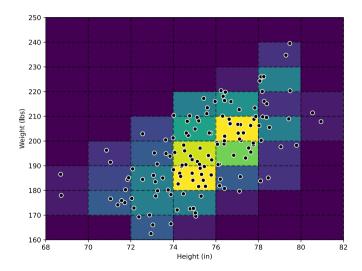
 $p_{\vec{x}}(\vec{x} \mid Y = y) \mathbb{P}(Y = y)$

- \overrightarrow{x} is the **feature vector**. Here: (height, weight)⁷
- We need to estimate density $p(\vec{x} | Y = y)$ for each class.

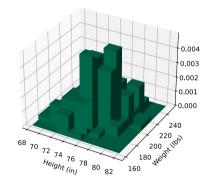
Estimating with Histograms



Estimating with Histograms



Estimating with Histograms



Predicting with Histograms

To predict the class of an input \vec{x} :

- 1. Use histograms to estimate $p_{\vec{X}}(\vec{x} | Y = y)$ for each class separately.
- 2. Predict the class y maximizing

$$p_{\vec{X}}(\vec{x} \mid Y = y) \mathbb{P}(Y = y)$$

Histogram Estimators

- Histogram density estimators are very flexible.
- But suffer heavily from curse of dimensionality.
- Not feasible for estimating density in more than a few dimensions.

Today

- Last time: we saw the parametric approach to density estimation.
 - Pick a parametric distribution (e.g., Gaussian)
 - Find parameters by maximizing likelihood
- We saw how to do this for one-dimensional data.
- **Today:** multidimensional data.

In particular...

- **Today:** multivariate Gaussian density estimation.
- That is: fitting multivariate Gaussians to data with maximum likelihood.

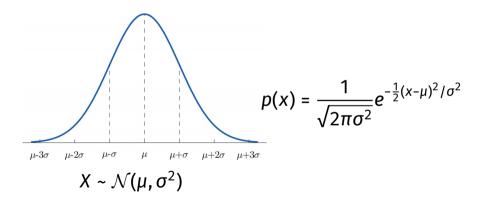
Lecture 14 | Part 2

Multivariate Gaussians

Multivariate Gaussians

- In 1 dimension, a Gaussian seemed to describe distribution of heights.
- Does a multivariate Gaussian describe distribution of heights and weights?

"Deriving" Multivariate Gaussians



- Suppose we have d independent random variables X_1, \dots, X_d .
- Assume that each is Gaussian; different mean, but same variance:

$$X_1 \sim \mathcal{N}(\mu_1, \sigma^2), \quad X_2 \sim \mathcal{N}(\mu_2, \sigma^2), \dots, \quad X_d \sim \mathcal{N}(\mu_d, \sigma^2).$$

$P(A,B) = P(A) \times P(B)$ if $A \neq B$ indep. P(A,B,C) = P(A) P(B) P(C)Setting #1

- What is the **joint density** $p(x_1, x_2, ..., x_d)$?
- Since we assumed X_1, \ldots, X_d are independent:

$$p(x_1, x_2, \dots, x_d) = p(x_1)p(x_2) \cdots p(x_d)$$

= $\left(\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}(x_r\mu_1)^2/\sigma^2}\right) \cdot \left(\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}(x_r\mu_2)^2/\sigma^2}\right) \cdots \left(\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}(x_r\mu_d)^2/\sigma^2}\right)$

$e^{x}e^{y} = e^{x+y}$ Setting #1

- What is the **joint density** $p(x_1, x_2, ..., x_d)$?
- Since we assumed X_1, \dots, X_d are independent:

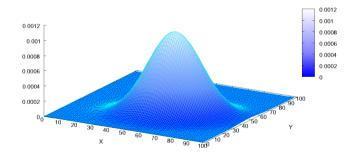
$$p(x_1, x_2, \dots, x_d) = p(x_1)p(x_2) \cdots p(x_d)$$

= $\left(\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}(x_1-\mu_1)^2/\sigma^2}\right) \cdot \left(\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}(x_2-\mu_2)^2/\sigma^2}\right) \cdots \left(\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}(x_2-\mu_d)^2/\sigma^2}\right)$
= $\frac{1}{(2\pi\sigma^2)^{d/2}}\exp\left(-\frac{(x_1-\mu_1)^2 + (x_2-\mu_2)^2 + \dots + (x_d-\mu_d)^2}{2\sigma^2}\right)$

- What is the **joint density** $p(x_1, x_2, ..., x_d)$?
- Since we assumed X_1, \dots, X_d are independent:

$$p(x_1, x_2, ..., x_d) = p(x_1)p(x_2) \cdots p(x_d)$$

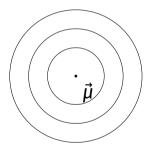
= $\left(\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}(x-\mu_1)^2/\sigma^2}\right) \cdot \left(\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}(x-\mu_2)^2/\sigma^2}\right) \cdots \left(\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}(x-\mu_d)^2/\sigma^2}\right)$
= $\frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{(x_1 - \mu_1)^2 + (x_2 - \mu_2)^2 + \dots + (x_d - \mu_d)^2}{2\sigma^2}\right)$
= $\frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|\vec{x} - \vec{\mu}\|^2}{2\sigma^2}\right)$



Setting #1: Spherical Gaussians

$$p(\vec{x}) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{1}{2}\frac{\|\vec{x} - \vec{\mu}\|^2}{\sigma^2}\right)$$

Contours are (hyper)spheres.
 Every slice through middle gives same Gaussian.



- Still assume X_1, \ldots, X_d are independent, Gaussian.
- But they now have different variances:

$$X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), \quad X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2), \dots, \quad X_d \sim \mathcal{N}(\mu_d, \sigma_d^2).$$

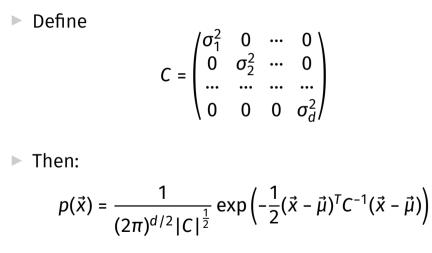
$$p(x_1, x_2, \dots, x_d) = p(x_1)p(x_2) \cdots p(x_d)$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma_1^2}} e^{-\frac{1}{2}(x_r, \mu_1)^2/\sigma_1^2}\right) \cdot \left(\frac{1}{\sqrt{2\pi\sigma_2^2}} e^{-\frac{1}{2}(x_r, \mu_2)^2/\sigma_2^2}\right) \cdots \left(\frac{1}{\sqrt{2\pi\sigma_d^2}} e^{-\frac{1}{2}(x_r, \mu_d)^2/\sigma_d^2}\right)$$

$$p(x_{1}, x_{2}, ..., x_{d}) = p(x_{1})p(x_{2}) \cdots p(x_{d})$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma_{1}^{2}}}e^{-\frac{1}{2}(x-\mu_{1})^{2}/\sigma_{1}^{2}}\right) \cdot \left(\frac{1}{\sqrt{2\pi\sigma_{2}^{2}}}e^{-\frac{1}{2}(x-\mu_{2})^{2}/\sigma_{2}^{2}}\right) \cdots \left(\frac{1}{\sqrt{2\pi\sigma_{d}^{2}}}e^{-\frac{1}{2}(x-\mu_{d})^{2}/\sigma_{d}^{2}}\right)$$

$$= \frac{1}{(2\pi)^{d/2}\sigma_{1} \cdot \sigma_{2} \cdots \sigma_{d}} \exp\left(-\frac{1}{2}\left[\frac{(x_{1}-\mu_{1})^{2}}{\sigma_{1}^{2}} + \frac{(x_{2}-\mu_{2})^{2}}{\sigma_{2}^{2}} + \dots + \frac{(x_{d}-\mu_{d})^{2}}{\sigma_{d}^{2}}\right]\right)$$

$$\left(\frac{1}{\sqrt{2\pi\sigma_{d}^{2}}}e^{-\frac{1}{2}(x-\mu_{d})^{2}/\sigma_{d}^{2}}\right)$$

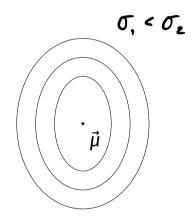


where |C| is the **determinant** of C.

Setting #2: Axis-Aligned Gaussians

$$p(\vec{x}) = \frac{1}{(2\pi)^{d/2} |C|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^T C^{-1}(\vec{x} - \vec{\mu})\right)$$

- Contours are axis-aligned (hyper)ellipses.
- **C** is the **covariance matrix**.
 - Diagonal.
 - Entries are variances.



Setting #3: General Gaussians

• We have assumed that X_1, \dots, X_d are independent.

Now assume that they're not. Define covariance:

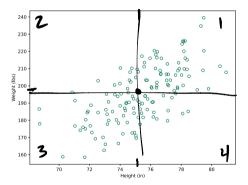
$$Cov(X_i, X_j) = \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)]$$

Note:

$$Var(X_i) = Cov(X_i, X_i)$$

Covariance

Covariance measures how much two quantities vary together.



$$Cov(X_i, X_j) = \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)]$$

(

Setting #3: General Gaussians

Now the covariance matrix has off-diagonal elements:

$$C = \begin{pmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_d) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \cdots & \operatorname{Cov}(X_2, X_d) \\ \cdots & \cdots & \cdots \\ \operatorname{Cov}(X_d, X_1) & \operatorname{Cov}(X_d, X_2) & \cdots & \operatorname{Var}(X_d) \end{pmatrix}$$

Since $Cov(X_i, X_j) = Cov(X_j, X_i)$, C is symmetric.

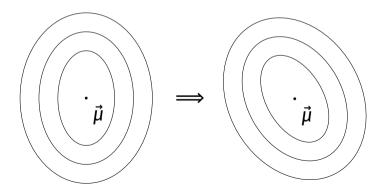
Setting #3: General Gaussians

$$p(\vec{x}) = \frac{1}{(2\pi)^{d/2}|C|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^{T}C^{-1}(\vec{x} - \vec{\mu})\right)$$
Contours are general (hyper)ellipses.
C need not be diagonal.

$$C = \begin{pmatrix} \sigma_{1}^{2} & \cdots & \sigma_{n}^{2} \\ \sigma_{n}^{2} & \sigma_{n}^{2} \end{pmatrix}$$

General Gaussians: Another View

A general Gaussian is an axis-aligned Gaussian that has been rotated:



General Gaussians: Another View

- Which matrices are valid covariance matrices?
- I. If C is the rotation of some diagonal covariance matrix C₀. That is, C = RC₀
- 2. Equivalently, C is symmetric, positive semi-definite.

Overview

The probability density function for a multivariate Gaussian distribution is:

$$p(\vec{x}) = \frac{1}{(2\pi)^{d/2} |C|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^T C^{-1}(\vec{x} - \vec{\mu})\right)$$

► Here, *C* is the **covariance matrix**.

Overview

- There are three cases, from least to most general:
- 1. *C* is diagonal, with all the same entries.
- 2. C is diagonal, with different entries.
- 3. C is not diagonal.

Lecture 14 | Part 3

Fitting Multivariate Gaussians

Fitting Multivariate Gaussians

- Suppose $\vec{x}^{(1)}, \dots, \vec{x}^{(n)}$ came from a multivariate Gaussian.
- What were the parameters of that Gaussian?
- ▶ We can use the principle of **maximum likelihood**.

What are the parameters?

$$p(\vec{x}) = \frac{1}{(2\pi)^{d/2} |C|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^T C^{-1}(\vec{x} - \vec{\mu})\right)$$

 \blacktriangleright $\vec{\mu}$: controls Gaussian's location

C: controls Gaussian's shape

Estimating $\vec{\mu}$

The maximum likelihood estimator for μ is:

$$\vec{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} \vec{x}^{(i)}$$

Estimating *C*

- First: make assumptions on covariance matrix.
- In order from strict to weak:
 - Spherical: *C* is diagonal, with all the same entries.
 - Axis-Aligned: C is diagonal, with different entries.
 - ▶ General: *C* is not diagonal.
- The weaker the assumptions, the more parameters to estimate.

Fitting Spherical Gaussians

- Only one variance parameter: σ^2 .
- The density function becomes:

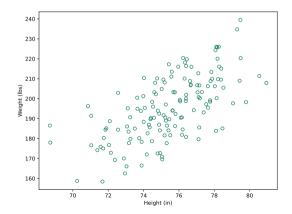
$$p(\vec{x}) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{(\vec{x} - \vec{\mu})^T (\vec{x} - \vec{\mu})}{2\sigma^2}\right)$$

The maximum likelihood estimator:

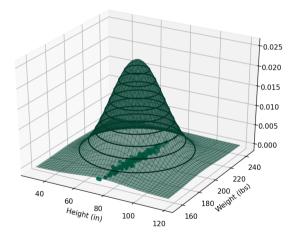
$$\sigma_{\mathsf{MLE}}^2 = \frac{1}{n} \sum_{i=1}^n \|\vec{x}^{(i)} - \vec{\mu}_{\mathsf{MLE}}\|^2$$

Example: NBA Data

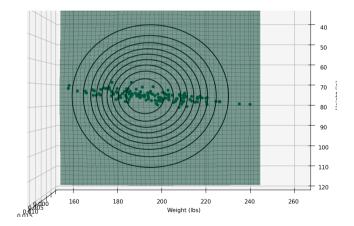
What if we fit a spherical Gaussian to the NBA data?



Fitting Spherical Gaussians



Fitting Spherical Gaussians



Example: NBA Data

- Spherical Gaussians are not well-suited to this data.
- Perhaps if the data were standardized...
- Instead, try axis-aligned Gaussians.

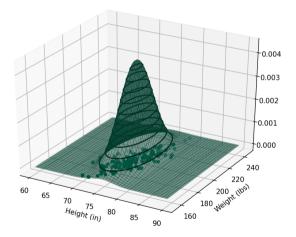
Fitting Axis-Aligned Gaussians

• Variance for each axis: σ_1^2 and σ_2^2 .

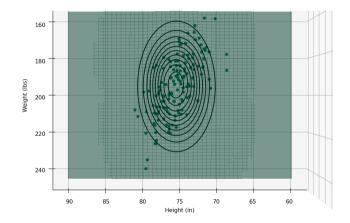
Maximum likelihood estimates:

$$\sigma_1^2$$
 = sample variance of heights
 σ_2^2 = sample variance of weights

Fitting Axis-Aligned Gaussians



Fitting Axis-Aligned Gaussians



Example: NBA Data

- Axis-aligned Gaussian does not capture correlation between height and weight.
- Try general Gaussian with full covariance.

Fitting General Gaussians

- Must compute covariance for each pair of dimensions.
- Maximum likelihood estimate for covariance of feature *i* and *j*:

$$\mathsf{C}_{ij} = \left(\frac{1}{n}\sum_{k=1}^n \vec{x}_i^{(k)}\vec{x}_j^{(k)}\right) - \mu_i\mu_j$$

Computing the Covariance Matrix

Step 1. Make matrix with heights in first column, weights in second:

/height 1 height 2	weight 1 weight 2
•••	•••
height n	weight n

Computing the Covariance Matrix

Step 2. Subtract sample mean height, mean weight from each column. Call this matrix *X*:

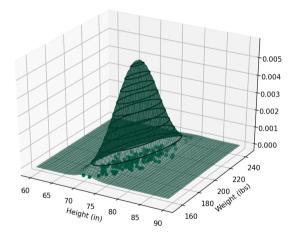
$$X = \begin{pmatrix} \text{height 1 - mean height} & \text{weight 1 - mean weight} \\ \text{height 2 - mean height} & \text{weight 2 - mean weight} \\ \dots & \dots \\ \text{height } n - \text{mean height} & \text{weight } n - \text{mean weight} \end{pmatrix}$$

Computing the Covariance Matrix

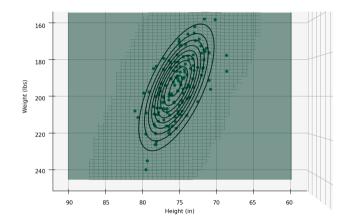
The empirical covariance matrix is then:

$$C = \frac{1}{n} X^T X$$

Fitting General Gaussians



Fitting General Gaussians



Up next...

Making predictions using these fitted Gaussians.

Lecture 14 | Part 4

Discriminant Analysis

Bayes Classifier with MV Gaussians

1. Fit Gaussian for $p(\vec{X} | Y = y)$ for each class, y.

2. For new point, predict y maximizing:

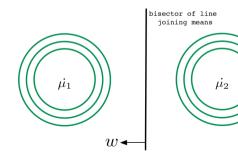
$$p(\vec{X} = \vec{x} \mid Y = y) \mathbb{P}(Y = y)$$

Decision Boundary

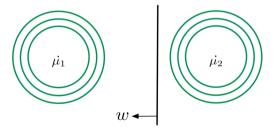
- ► For every point in space, we have a classification.
- The decision boundary: surface between different classifications.
 - On one side, prediction is y_1 ;
 - on the other, prediction is y_2 .

Assume:

- ► classes equally likely: $\mathbb{P}(Y = 1) = \mathbb{P}(Y = 0)$
- identical covariance matrices



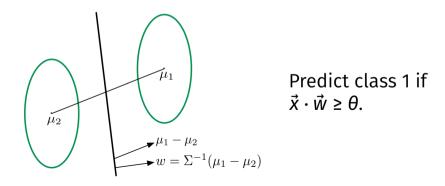
If
$$\mathbb{P}(Y = y_1) > \mathbb{P}(Y = y_2)$$
:



Choose class 1 if
$$\vec{w} \cdot \underbrace{P_1 \cdot \vec{u}_2}_{\sigma^2} \ge \theta$$
.

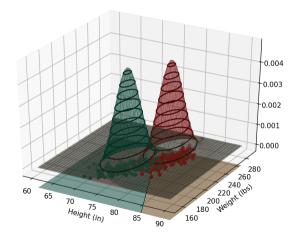
Assume:

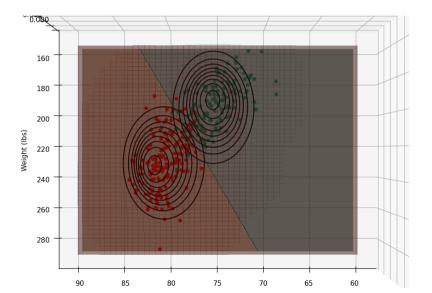
- covariance matrices identical, diagonal
- that is: axis-aligned Gaussians



- Use to predict position given height and weight.
- How do we get one covariance matrix?
- Don't lump data together...
- Instead, compute covariance matrix for each class, perform weighted average:

$$C = \frac{n_1 C_1 + n_2 C_2}{n_1 + n_2}$$



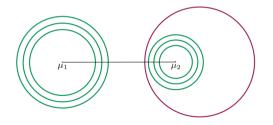


Linear Discriminant Analysis

- When covariance matrices are equal, decision boundary is linear.
- This procedure is called linear discriminant analysis (LDA).
- ► True even if the Gaussians have full covariance.

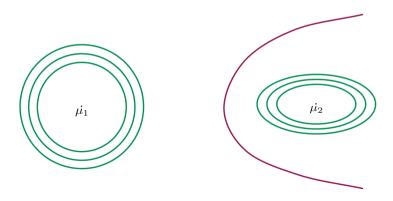
Assume:

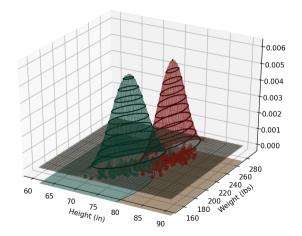
• covariance matrices C_1, C_2 different, non-diagonal

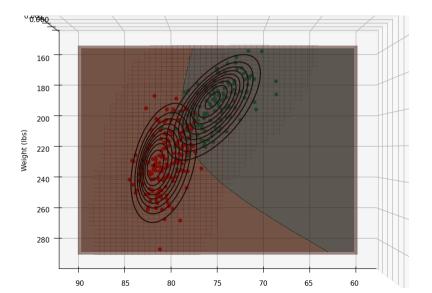


Assume:

• covariance matrices C_1, C_2 different, non-diagonal







Quadratic Discriminant Analysis

- When covariance matrices are **not** equal, decision boundary is quadratic (ellipsoidal, paraboloidal, hyperboloidal).
- This procedure is called quadratic discriminant analysis (QDA).

In practice...

- A full covariance requires estimating Θ(d²) parameters; needs more data.
- Gaussian assumption may be a poor match for data.