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Bayes with Multiple Features



Recap▶ Bayes Classifier: predict 𝑦 that maximizesℙ(𝑌 = 𝑦 | 𝑋 = 𝑥)▶ Alternatively: predict 𝑦 that maximizes𝑝𝑋(𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)▶ We must estimate these probabilities/densities.



Example: NBA Players▶ Guard and Forward are two positions in
basketball.▶ Forwards tend to be larger than guards.



Example: NBA Players▶ Suppose we have a data set of 𝑛 NBA players:▶ 𝑋1: the player’s height▶ 𝑋2: the player’s weight▶ 𝑌: the player’s position (1 = guard, 0 = forward)▶ Given: a new player’s height and weight, predict
their position.





Bayes in ≥ 2 Dimensions▶ With one feature, Bayes said to pick 𝑦 maximizing:𝑝𝑋(𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)▶ With 𝑘 features, pick 𝑦 maximizing:𝑝 ⃗𝑋( ⃗𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)▶ ⃗𝑥 is the feature vector. Here: (height, weight)𝑇▶ We need to estimate density 𝑝( ⃗𝑥 | 𝑌 = 𝑦) for each class.



Estimating with Histograms



Estimating with Histograms



Estimating with Histograms



Predicting with Histograms
To predict the class of an input ⃗𝑥:
1. Use histograms to estimate 𝑝 ⃗𝑋( ⃗𝑥 | 𝑌 = 𝑦) for each
class separately.

2. Predict the class 𝑦 maximizing𝑝 ⃗𝑋( ⃗𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)



Histogram Estimators▶ Histogram density estimators are very flexible.▶ But suffer heavily from curse of dimensionality.▶ Not feasible for estimating density in more than
a few dimensions.



Today▶ Last time: we saw the parametric approach to
density estimation.▶ Pick a parametric distribution (e.g., Gaussian)▶ Find parameters by maximizing likelihood▶ We saw how to do this for one-dimensional data.▶ Today: multidimensional data.



In particular...▶ Today: multivariate Gaussian density estimation.▶ That is: fitting multivariate Gaussians to data
with maximum likelihood.
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Multivariate Gaussians



Multivariate Gaussians▶ In 1 dimension, a Gaussian seemed to describe
distribution of heights.▶ Does a multivariate Gaussian describe
distribution of heights and weights?



“Deriving” Multivariate Gaussians

𝑋 ∼ N (𝜇, 𝜎2)
𝑝(𝑥) = 1√2𝜋𝜎2𝑒−12 (𝑥−𝜇)2/𝜎2



Setting #1▶ Suppose we have 𝑑 independent random
variables 𝑋1, … , 𝑋𝑑.▶ Assume that each is Gaussian; different mean,
but same variance:𝑋1 ∼ N (𝜇1, 𝜎2), 𝑋2 ∼ N (𝜇2, 𝜎2), … , 𝑋𝑑 ∼ N (𝜇𝑑, 𝜎2).



Setting #1▶ What is the joint density 𝑝(𝑥1, 𝑥2, … , 𝑥𝑑)?▶ Since we assumed 𝑋1, … , 𝑋𝑑 are independent:𝑝(𝑥1, 𝑥2, … , 𝑥𝑑) = 𝑝(𝑥1)𝑝(𝑥2) ⋯ 𝑝(𝑥𝑑)= ( 1√2𝜋𝜎2 𝑒− 12 (𝑥−𝜇1)2/𝜎2) ⋅ ( 1√2𝜋𝜎2 𝑒− 12 (𝑥−𝜇2)2/𝜎2)⋯ ( 1√2𝜋𝜎2 𝑒− 12 (𝑥−𝜇𝑑)2/𝜎2)

IP(A ,1) = (A) xIP(B) if ABB indep .

IP(A ,B, C) = IP(A) (i) ip(c)
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Setting #1▶ What is the joint density 𝑝(𝑥1, 𝑥2, … , 𝑥𝑑)?▶ Since we assumed 𝑋1, … , 𝑋𝑑 are independent:𝑝(𝑥1, 𝑥2, … , 𝑥𝑑) = 𝑝(𝑥1)𝑝(𝑥2) ⋯ 𝑝(𝑥𝑑)= ( 1√2𝜋𝜎2 𝑒− 12 (𝑥−𝜇1)2/𝜎2) ⋅ ( 1√2𝜋𝜎2 𝑒− 12 (𝑥−𝜇2)2/𝜎2)⋯ ( 1√2𝜋𝜎2 𝑒− 12 (𝑥−𝜇𝑑)2/𝜎2)= 1(2𝜋𝜎2)𝑑/2 exp (− (𝑥1 − 𝜇1)2 + (𝑥2 − 𝜇2)2 + … + (𝑥𝑑 − 𝜇𝑑)22𝜎2 )
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Setting #1▶ What is the joint density 𝑝(𝑥1, 𝑥2, … , 𝑥𝑑)?▶ Since we assumed 𝑋1, … , 𝑋𝑑 are independent:𝑝(𝑥1, 𝑥2, … , 𝑥𝑑) = 𝑝(𝑥1)𝑝(𝑥2) ⋯ 𝑝(𝑥𝑑)= ( 1√2𝜋𝜎2 𝑒− 12 (𝑥−𝜇1)2/𝜎2) ⋅ ( 1√2𝜋𝜎2 𝑒− 12 (𝑥−𝜇2)2/𝜎2)⋯ ( 1√2𝜋𝜎2 𝑒− 12 (𝑥−𝜇𝑑)2/𝜎2)= 1(2𝜋𝜎2)𝑑/2 exp (− (𝑥1 − 𝜇1)2 + (𝑥2 − 𝜇2)2 + … + (𝑥𝑑 − 𝜇𝑑)22𝜎2 )= 1(2𝜋𝜎2)𝑑/2 exp (−‖ ⃗𝑥 − �⃗�‖22𝜎2 )



Setting #1



Setting #1: Spherical Gaussians

𝑝( ⃗𝑥) = 1(2𝜋𝜎2)𝑑/2 exp (−12‖ ⃗𝑥 − �⃗�‖2𝜎2 )▶ Contours are (hyper)spheres.▶ Every slice through middle gives
same Gaussian.

�⃗�



Setting #2▶ Still assume 𝑋1, … , 𝑋𝑑 are independent, Gaussian.▶ But they now have different variances:𝑋1 ∼ N (𝜇1, 𝜎21), 𝑋2 ∼ N (𝜇2, 𝜎22), … , 𝑋𝑑 ∼ N (𝜇𝑑, 𝜎2𝑑).



Setting #2

𝑝(𝑥1, 𝑥2, … , 𝑥𝑑) = 𝑝(𝑥1)𝑝(𝑥2) ⋯ 𝑝(𝑥𝑑)= ( 1√2𝜋𝜎21 𝑒− 12 (𝑥−𝜇1)2/𝜎21) ⋅ ( 1√2𝜋𝜎22 𝑒− 12 (𝑥−𝜇2)2/𝜎22)⋯ ( 1√2𝜋𝜎2𝑑 𝑒− 12 (𝑥−𝜇𝑑)2/𝜎2𝑑)I S I



Setting #2

𝑝(𝑥1, 𝑥2, … , 𝑥𝑑) = 𝑝(𝑥1)𝑝(𝑥2) ⋯ 𝑝(𝑥𝑑)= ( 1√2𝜋𝜎21 𝑒− 12 (𝑥−𝜇1)2/𝜎21) ⋅ ( 1√2𝜋𝜎22 𝑒− 12 (𝑥−𝜇2)2/𝜎22)⋯ ( 1√2𝜋𝜎2𝑑 𝑒− 12 (𝑥−𝜇𝑑)2/𝜎2𝑑)= 1(2𝜋)𝑑/2𝜎1 ⋅ 𝜎2 ⋯𝜎𝑑 exp (−12 [ (𝑥1 − 𝜇1)2𝜎21 + (𝑥2 − 𝜇2)2𝜎22 + … + (𝑥𝑑 − 𝜇𝑑)2𝜎2𝑑 ])
mem

(2-i)
+C(X -i)



Setting #2▶ Define 𝐶 = (𝜎21 0 ⋯ 00 𝜎22 ⋯ 0⋯ ⋯ ⋯ ⋯0 0 0 𝜎2𝑑)▶ Then:𝑝( ⃗𝑥) = 1(2𝜋)𝑑/2|𝐶|12 exp (−12( ⃗𝑥 − �⃗�)𝑇𝐶−1( ⃗𝑥 − �⃗�))
where |𝐶| is the determinant of 𝐶.



Setting #2: Axis-Aligned Gaussians

𝑝( ⃗𝑥) = 1(2𝜋)𝑑/2|𝐶| 12 exp (−12( ⃗𝑥 − �⃗�)𝑇𝐶−1( ⃗𝑥 − �⃗�))▶ Contours are axis-aligned (hy-
per)ellipses.▶ 𝐶 is the covariance matrix.▶ Diagonal.▶ Entries are variances.

�⃗�
0. Oz



Setting #3: General Gaussians▶ We have assumed that 𝑋1, … , 𝑋𝑑 are independent.▶ Now assume that they’re not. Define covariance:Cov(𝑋𝑖, 𝑋𝑗) = 𝔼[(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)]▶ Note: Var(Xi) = Cov(𝑋𝑖, 𝑋𝑖)



Covariance▶ Covariance measures how much two quantities
vary together.

Cov(𝑋𝑖, 𝑋𝑗) = 𝔼[(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)]
-:



Setting #3: General Gaussians▶ Now the covariance matrix has off-diagonal
elements:

𝐶 = ( Var(𝑋1) Cov(𝑋1, 𝑋2) ⋯ Cov(𝑋1, 𝑋𝑑)Cov(𝑋2, 𝑋1) Var(𝑋2) ⋯ Cov(𝑋2, 𝑋𝑑)⋯ ⋯ ⋯ ⋯Cov(𝑋𝑑, 𝑋1) Cov(𝑋𝑑, 𝑋2) ⋯ Var(𝑋𝑑) )
▶ Since Cov(𝑋𝑖, 𝑋𝑗) = Cov(𝑋𝑗, 𝑋𝑖), 𝐶 is symmetric.



Setting #3: General Gaussians

𝑝( ⃗𝑥) = 1(2𝜋)𝑑/2|𝐶| 12 exp (−12( ⃗𝑥 − �⃗�)𝑇𝐶−1( ⃗𝑥 − �⃗�))
Contours are general (hyper)ellipses.𝐶 need not be diagonal. �⃗�

Xz

-

-I &

-

-

--

-

&

&-
-a

&

.
-- -.. X

,

0, %
C = (8) -



General Gaussians: Another View▶ A general Gaussian is an axis-aligned Gaussian
that has been rotated:

�⃗� ⟹ �⃗�



General Gaussians: Another View▶ Which matrices are valid covariance matrices?▶ 1. If 𝐶 is the rotation of some diagonal
covariance matrix 𝐶0. That is, 𝐶 = 𝑅𝐶0▶ 2. Equivalently, 𝐶 is symmetric, positive
semi-definite.



Overview▶ The probability density function for a
multivariate Gaussian distribution is:𝑝( ⃗𝑥) = 1(2𝜋)𝑑/2|𝐶|12 exp (−12( ⃗𝑥 − �⃗�)𝑇𝐶−1( ⃗𝑥 − �⃗�))

▶ Here, 𝐶 is the covariance matrix.



Overview▶ There are three cases, from least to most general:

1. 𝐶 is diagonal, with all the same entries.
2. 𝐶 is diagonal, with different entries.
3. 𝐶 is not diagonal.
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Fitting Multivariate Gaussians



Fitting Multivariate Gaussians▶ Suppose ⃗𝑥(1), … , ⃗𝑥(𝑛) came from a multivariate
Gaussian.▶ What were the parameters of that Gaussian?▶ We can use the principle of maximum likelihood.



What are the parameters?

𝑝( ⃗𝑥) = 1(2𝜋)𝑑/2|𝐶|12 exp (−12( ⃗𝑥 − �⃗�)𝑇𝐶−1( ⃗𝑥 − �⃗�))
▶ �⃗�: controls Gaussian’s location▶ 𝐶: controls Gaussian’s shape



Estimating �⃗�▶ The maximum likelihood estimator for 𝜇 is:�⃗�MLE = 1𝑛 𝑛∑𝑖=1 ⃗𝑥(𝑖)



Estimating 𝐶▶ First: make assumptions on covariance matrix.▶ In order from strict to weak:▶ Spherical: 𝐶 is diagonal, with all the same entries.▶ Axis-Aligned: 𝐶 is diagonal, with different entries.▶ General: 𝐶 is not diagonal.▶ The weaker the assumptions, the more
parameters to estimate.



Fitting Spherical Gaussians▶ Only one variance parameter: 𝜎2.▶ The density function becomes:𝑝( ⃗𝑥) = 1(2𝜋𝜎2)𝑑/2 exp (−( ⃗𝑥 − �⃗�)𝑇( ⃗𝑥 − �⃗�)2𝜎2 )▶ The maximum likelihood estimator:𝜎2MLE = 1𝑛 𝑛∑𝑖=1 ‖ ⃗𝑥(𝑖) − �⃗�MLE‖2
&·
MiLE

↑

-



Example: NBA Data▶ What if we fit a spherical Gaussian to the NBA
data?



Fitting Spherical Gaussians



Fitting Spherical Gaussians



Example: NBA Data▶ Spherical Gaussians are not well-suited to this
data.▶ Perhaps if the data were standardized...▶ Instead, try axis-aligned Gaussians.



Fitting Axis-Aligned Gaussians▶ Variance for each axis: 𝜎21 and 𝜎22 .▶ Maximum likelihood estimates:𝜎21 = sample variance of heights𝜎22 = sample variance of weights



Fitting Axis-Aligned Gaussians



Fitting Axis-Aligned Gaussians



Example: NBA Data▶ Axis-aligned Gaussian does not capture
correlation between height and weight.▶ Try general Gaussian with full covariance.



Fitting General Gaussians▶ Must compute covariance for each pair of
dimensions.▶ Maximum likelihood estimate for covariance of
feature 𝑖 and 𝑗:

C𝑖𝑗 = (1𝑛 𝑛∑𝑘=1 ⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗 ) − 𝜇𝑖𝜇𝑗



Computing the Covariance Matrix
Step 1. Make matrix with heights in first column,
weights in second:

(height 1 weight 1
height 2 weight 2⋯ ⋯
height 𝑛 weight 𝑛)



Computing the Covariance Matrix
Step 2. Subtract sample mean height, mean weight
from each column. Call this matrix 𝑋:
𝑋 = (height 1 −mean height weight 1 −mean weight

height 2 −mean height weight 2 −mean weight⋯ ⋯
height 𝑛 −mean height weight 𝑛 −mean weight)



Computing the Covariance Matrix
The empirical covariance matrix is then:𝐶 = 1𝑛𝑋𝑇𝑋



Fitting General Gaussians



Fitting General Gaussians



Up next...
Making predictions using these fitted Gaussians.
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Discriminant Analysis



Bayes Classifier with MV Gaussians

1. Fit Gaussian for 𝑝( ⃗𝑋 | 𝑌 = 𝑦) for each class, 𝑦.
2. For new point, predict 𝑦 maximizing:𝑝( ⃗𝑋 = ⃗𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)



Decision Boundary▶ For every point in space, we have a classification.▶ The decision boundary: surface between
different classifications.▶ On one side, prediction is 𝑦1;▶ on the other, prediction is 𝑦2.



Setting #1▶ Assume:▶ classes equally likely: ℙ(𝑌 = 1) = ℙ(𝑌 = 0)▶ identical covariance matrices



Setting #1▶ If ℙ(𝑌 = 𝑦1) > ℙ(𝑌 = 𝑦2):

Choose class 1 if �⃗� ⋅ (�⃗�1−�⃗�2)𝜎2 ≥ 𝜃.&



Setting #2▶ Assume:▶ covariance matrices identical, diagonal▶ that is: axis-aligned Gaussians

Predict class 1 if⃗𝑥 ⋅ �⃗� ≥ 𝜃.



Example▶ Use to predict position given height and weight.▶ How do we get one covariance matrix?▶ Don’t lump data together...▶ Instead, compute covariance matrix for each
class, perform weighted average:𝐶 = 𝑛1𝐶1 + 𝑛2𝐶2𝑛1 + 𝑛2--



Example



Example



Linear Discriminant Analysis▶ When covariance matrices are equal, decision
boundary is linear.▶ This procedure is called linear discriminant
analysis (LDA).▶ True even if the Gaussians have full covariance.



Setting #3▶ Assume:▶ covariance matrices 𝐶1, 𝐶2 different, non-diagonal



Setting #3▶ Assume:▶ covariance matrices 𝐶1, 𝐶2 different, non-diagonal



Example



Example



Quadratic Discriminant Analysis▶ When covariance matrices are not equal,
decision boundary is quadratic (ellipsoidal,
paraboloidal, hyperboloidal).▶ This procedure is called quadratic discriminant
analysis (QDA).



In practice...▶ A full covariance requires estimating Θ(𝑑2)
parameters; needs more data.▶ Gaussian assumption may be a poor match for
data.


