DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 13 | Part 1

Parametric Density Estimation

Bayes Classifier

Recall the Bayes Classifier: predict

$$\begin{cases} 1, & \text{if } \mathbb{P}(Y=1 \mid \vec{X}=\vec{x}) > \mathbb{P}(Y=0 \mid \vec{X}=\vec{x}), \\ 0, & \text{otherwise.} \end{cases}$$

Equivalently, using Bayes' rule:

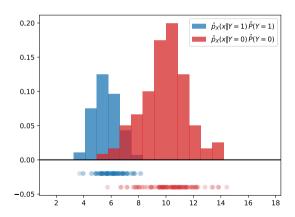
$$\begin{cases} 1, & \text{if } p_X(x \mid Y = 1) \mathbb{P}(Y = 1) > p_X(x \mid Y = 0) \mathbb{P}(Y = 0), \\ 0, & \text{otherwise.} \end{cases}$$

Estimating Densities

- We rarely know the true distribution.
- We must **estimate** it from data.
- ightharpoonup When \vec{X} is continuous, we estimate **density**.

Last Time: Histogram Estimators

Histograms provide one way of estimating densities.



Histogram Drawbacks

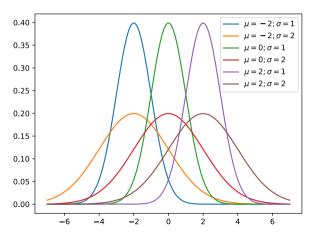
- We saw that histograms need massive amounts of data in high dimensions.
- The Curse of Dimensionality.

Observation

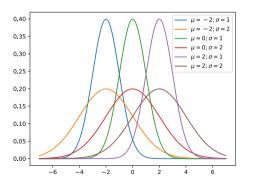
- Histogram estimators assume nothing about the shape of the true density.
- This makes them very flexible, but also data-hungry.
- ▶ **Idea:** Assume that the true, underlying density has a certain form.

Example: Gaussians

Often assume that the true distribution is Gaussian (aka, Normal).



Example: Gaussians



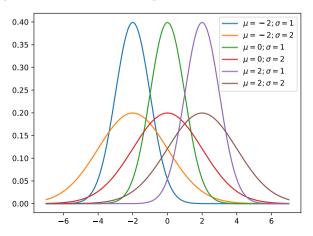
► **Recall:** the pdf of the Gaussian distribution:

$$p(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

- $\triangleright \mu$ and σ are parameters
 - \triangleright μ controls center
 - \triangleright σ controls width

Gaussian

- ► **Central Limit Theorem**: sums of independent random variables are Gaussian
- **Examples:** test scores, heights, measurement errors, ...



Parametric Distributions

- A parametric distribution is totally determined by a finite number of parameters.
- **Example:** knowing μ and σ tells you everything about a Gaussian distribution.

Other Parametric Distributions

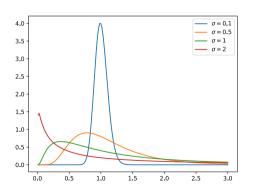
► There are many parametric distributions.

Discrete: Bernoulli, Multinomial, Poisson, ...

Continuous: Log-normal, Gamma, Pareto, ...

Example: Lognormal

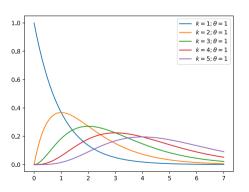
- Product of many independent positive random numbers.
- **Example:** length of comments in an internet forum



$$p(x; \mu, \sigma) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

Example: Gamma

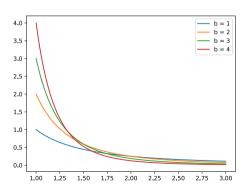
Examples: wait times, size of rainfalls, insurance claims, ...



$$p(x; k, \theta) = \frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-x/\theta}$$

Example: Pareto

Examples: distribution of wealth, size of meteorites, ...



$$p(x; x_m, \alpha) = \frac{\alpha x_m^{\alpha}}{x^{\alpha+1}}$$

Parametric Density Estimation

- In parametric density estimation, we assume data comes from some parametric density.
 - ► E.g., Gaussian, Log-Normal, Pareto, etc.
- But we don't know the parameters.
- Use data to estimate the parameters.

Non-Parametric Density Estimation

- Contrast this with estimating density with histograms.
- There were no parameters controlling the shape of the density.
- Histograms are non-parametric density estimators.

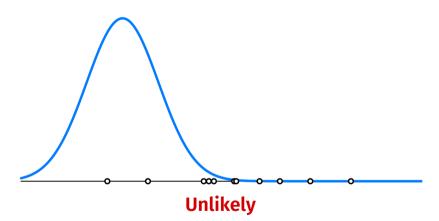
DSC 140A Probabilistic Modeling & Machine Xuarning

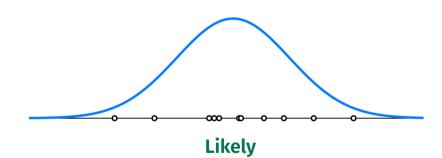
Lecture 13 | Part 2

Maximum Likelihood Estimation

Parametric Density Estimation

- Suppose we have data $x^{(1)}, ..., x^{(n)} \in \mathbb{R}$.
- Assume it came from a parametric distribution.
 - Say, a Gaussian.
- What were the parameter values used to generate the data?
- ▶ Using data to guess μ and σ is called **estimating** the parameters.





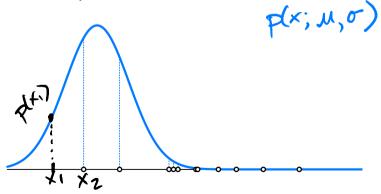
Intuition

Some parameter choices seem more likely than others.

- That is, there is a greater chance that the data could have been generated by them.
- How can we quantify this?

Intuition

- ightharpoonup Let p be the Guassian probability density function.
- $p(x^{(i)}; \mu, \sigma)$ quantifies how likely it is to see $x^{(i)}$ if parameters μ and σ are used.



Exercise

under parameters μ and σ .

Assume that $x^{(1)}, ..., x^{(n)}$ are all sampled independently from a density with parameters u, σ

dently from a density with parameters μ , σ . Think of $p(x^{(i)}; \mu, \sigma)$ as the "chance" of seeing $x^{(i)}$

What is the chance of seeing $x^{(1)}$ and $x^{(2)}$ and $x^{(3)}$ and ... and $x^{(n)}$?

Intuition

- ▶ $p(x^{(1)}; \mu, \sigma) \times p(x^{(2)}; \mu, \sigma) \times \cdots \times p(x^{(n)}; \mu, \sigma)$ quantifies likelihood of seeing $x^{(1)}, \dots, x^{(n)}$ simultaneously.
- In fact, it is the joint density of the data.
- ▶ But instead think of this as a function of μ and σ .

Likelihood

The **likelihood** of μ and σ with respect to data $x^{(1)}, \dots, x^{(n)}$ is:

$$\mathcal{L}(\mu,\sigma;x^{(1)},\dots,x^{(n)}) = p(x^{(1)};\mu,\sigma) \times p(x^{(2)};\mu,\sigma) \times \dots \times p(x^{(n)};\mu,\sigma)$$
$$= \prod_{i=1}^{n} p(x^{(i)};\mu,\sigma)$$

Likelihood

The likelihood function takes in parameters μ and σ and returns a real number.

- ▶ **Interpretation:** likelihood that data was generated by this choice of μ and σ .
- ▶ **Goal:** find μ and σ that **maximize** the likelihood.

http://dsc140a.com/static/vis/mle/

Maximizing Likelihood

- To maximize $\mathcal{L}(\mu, \sigma)$, we might take derivatives $\frac{\partial \mathcal{L}}{\partial \mu}$ and $\frac{\partial \mathcal{L}}{\partial \sigma}$, set to 0, solve.
- ▶ But the likelihood is often difficult to work with.

Example: Gaussian

Assume that *p* is the Gaussian pdf.

$$p(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

► Then the likelihood function is:

$$\mathcal{L}(\mu,\sigma) = \prod_{i=1}^{n} \left(\frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x^{(i)}-\mu)^2}{2\sigma^2}} \right)$$

Log Likelihood

It is typically easier to work with the **log likelihood** instead.

$$\mathcal{\tilde{L}}(\mu, \sigma) = \ln \mathcal{L}(\mu, \sigma)$$

► Fact: Because $\ln x$ is monotonically increasing, a maximizer of $\ln \mathcal{L}$ also maximizes \mathcal{L}

Procedure: Gaussian

- 1. Write the log likelihood function $\tilde{\mathcal{L}}$.
- 2. Take derivatives $\partial \tilde{\mathcal{L}}/\partial \mu$ and $\partial \tilde{\mathcal{L}}/\partial \sigma$
- 3. Set to zero and solve for μ and σ .

Recall: Log Properties

- If a and b are positive: $ln(a \times b) = ln a + ln b$
- ► If a and b are positive: ln(a/b) = ln a ln b
- If a is positive: $\ln a^p = p \ln a$

Step 1: Write Log Likelihood

Write the log likelihood function for the Normal

$$= \sum_{i=1}^{n} \left[\ln \frac{1}{\sqrt{2\pi}} + \ln e^{-\frac{(x^{(i)} - \mu)^2}{2\sigma^2}} \right]$$

Step 1: Write Log Likelihood

Write the log likelihood function for the Normal distribution.

$$= \sum_{i=1}^{n} \left[\ln \frac{1}{\sigma \sqrt{2\pi}} + \ln e^{-\frac{(x'''-\mu)^2}{2\sigma^2}} \right]$$

$$= \sum_{i=1}^{n} \left[\ln \frac{1}{\sigma \sqrt{2\pi}} - \frac{(x'''-\mu)^2}{2\sigma^2} \right]$$

Step 2: Differentiate

We have:
$$\tilde{\mathcal{L}} = \sum_{i=1}^{n} \left[-\ln \sigma - \ln \sqrt{2\pi} - \frac{(x^{(i)} - \mu)^2}{2\sigma^2} \right]$$

► Compute $\partial \tilde{\mathcal{L}}/\partial u$:

$$\frac{\partial}{\partial u} \sum_{i=1}^{n} \left[- \int_{u} \sigma - \int_{u} \sqrt{2\pi} - \frac{\left(\times^{(i)} - \mu \right)^{2}}{2\sigma^{2}} \right]$$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial u} \left[- \int_{u} \sigma - \int_{u} \sqrt{2\pi} - \frac{\left(\times^{(i)} - \mu \right)^{2}}{2\sigma^{2}} \right]$$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial u} \frac{\left(\times^{(i)} - \mu \right)^{2}}{2\sigma^{2}} = \sum_{i=1}^{n} \sum_{i=1}^{n} \frac{\partial}{\partial u} \left(\times^{(i)} - \mu \right)^{2}$$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial u} \frac{\left(\times^{(i)} - \mu \right)^{2}}{2\sigma^{2}} = \sum_{i=1}^{n} \sum_{i=1}^{n} \frac{\partial}{\partial u} \left(\times^{(i)} - \mu \right)^{2}$$

Step 2: Differentiate

We have:
$$\tilde{\mathcal{L}} = \sum_{i=1}^{n} \left[-\ln \sigma - \ln \sqrt{2\pi} - \frac{(x^{(i)} - \mu)^2}{2\sigma^2} \right]$$

► Compute $\partial \tilde{\mathcal{L}}/\partial \sigma$:

Compute
$$\partial \mathcal{L}/\partial \sigma$$
:

$$\frac{\partial}{\partial \sigma} \sum_{i=1}^{n} \left[-\ln \sigma - \ln \sqrt{2\pi} - \frac{1}{z\sigma^2} (x^{(i)} - \mu)^2 \right]$$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial \sigma} \left[-\ln \sigma - \ln \sqrt{2\pi} - \frac{1}{z\sigma^2} (x^{(i)} - \mu)^2 \right]$$

$$= \sum_{i=1}^{n} \left[-\frac{1}{\sigma} + \frac{1}{\sigma^3} (x^{(i)} - \mu)^2 \right]$$

Step 3: Solve

- We have $\partial \tilde{L}/\partial \mu = \frac{1}{\sigma^2} \sum_{i=1}^n (x^{(i)} \mu)$
- Solve $\partial \tilde{L}/\partial \mu = 0$ for μ .

$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (x^{(i)} - \mu) = 0$$

$$\sum_{i=1}^{n} (x^{(i)} - \mu) = 0$$

$$\sum_{i=1}^{n} x^{(i)} - n\mu = 0 \implies \mu^* = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

Step 3: Solve

We have
$$\partial \tilde{L}/\partial \sigma = \sum_{i=1}^{n} \left[-\frac{1}{\sigma} + \frac{(x^{(i)}-\mu)^2}{\sigma^3} \right]$$

Solve $\partial \tilde{L}/\partial \sigma = 0$ for σ .

$$\sum_{i=1}^{n} \left(\frac{1}{\sigma_{i}} + \frac{(x_{i}, -y_{i})^{2}}{\sigma_{i}^{2}}\right) = 0$$

$$-\frac{1}{2}\sum_{i=1}^{n}\frac{1}{2}\sum_$$

MLEs for Gaussian Distribution

We have found the maximum likelihood estimates for the Gaussian distribution:

$$\mu_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$
 $\sigma_{\text{MLE}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu_{\text{MLE}})^2}$

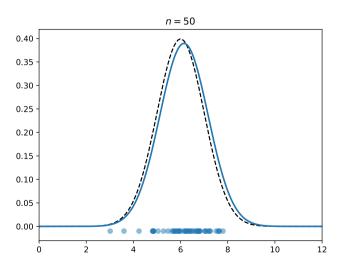
"Fitting" a Guassian

- Suppose we wish to "fit" a Gaussian to data $x^{(1)}, ..., x^{(n)}$.
- ► The **maximum likelihood** approach:
 - Compute:

$$\mu_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$
 $\sigma_{\text{MLE}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu_{\text{MLE}})^2}$

2. Use these as parameters of the Gaussian.

Example



In General

- Maximum Likelihood Estimation (MLE) can be used for a variety of densities.
- ► Suppose density p has parameters $\theta_1, \dots, \theta_k$
- 1. Write log likelihood function:

$$\ln \mathcal{L}(\theta_1, \dots, \theta_k) = \sum_{i=1}^n \ln p(x^{(1)}, \dots, x^{(n)}; \theta_1, \dots, \theta_k)$$

- 2. Compute derivatives: $\partial \tilde{\mathcal{L}}/\partial \theta_1$, $\partial \tilde{\mathcal{L}}/\partial \theta_2$, ..., $\partial \tilde{\mathcal{L}}/\partial \theta_k$
- 3. Set derivates to zero, solve for $\theta_1, \dots, \theta_k$.

In Practice

The MLE for a parameter only needs to be derived once.

Many textbooks, statistics packages, and Wikipedia list the MLE parameter estimators.

Lecture 13 | Part 3

Parametric vs. Non-Parametric Density Estimation

Making Predictions

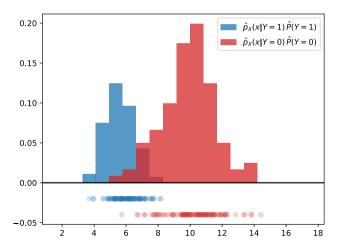
- We observe a data set $\{(x^{(i)}, y_i)\}$ of flipper lengths and penguin species (0 or 1).
- ► **Task**: Given the flipper length of a new penguin, what is its species?
- Bayes' classifier: predict
 - $\begin{cases} 1, & \text{if } p_X(x \mid Y = 1) \mathbb{P}(Y = 1) > p_X(x \mid Y = 0) \mathbb{P}(Y = 0), \\ 0, & \text{otherwise.} \end{cases}$

Estimating Densities

- We must estimate $p_x(x \mid Y = 0)$ and $p_x(x \mid Y = 1)$.
- Approach 1: Non-parametric (histograms)
- Approach 2: Parametric

Approach 1: Non-Parametric

Estimate $p_X(x \mid Y = 0)$ and $p_X(x \mid Y = 1)$ with histograms.

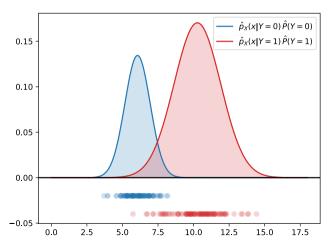


Approach 2: Parametric

- Must choose a parametric distribution.
- Plotting a histogram, data looks roughly normal.
- We will fit Gaussians.

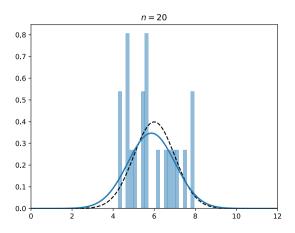
Approach 2: Parametric

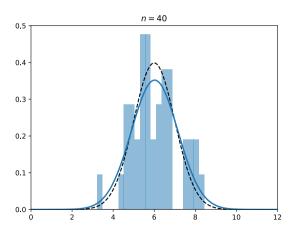
Estimate $p_X(x \mid Y = 0)$ and $p_X(x \mid Y = 1)$ by fitting Gaussians with MLE.

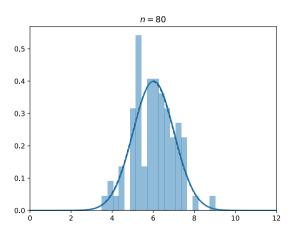


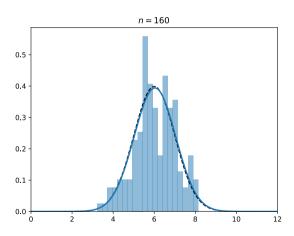
- Suppose the underlying distribution that produced the data actually was a Gaussian.
 - Or close to one.

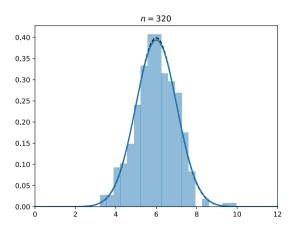
► The parametric approach will require less data than the non-parametric.

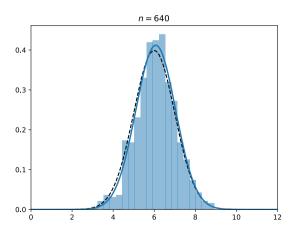


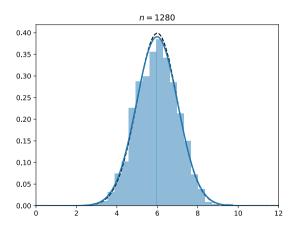








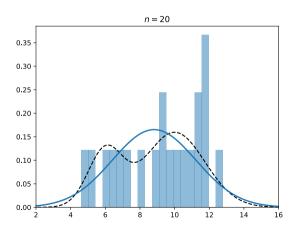


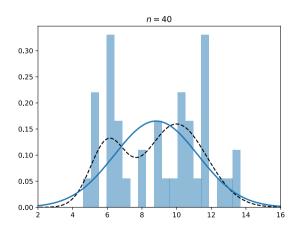


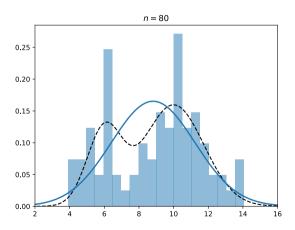
Mis-specification

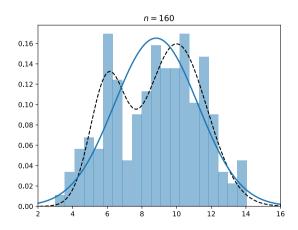
However, suppose the underlying distribution is not Gaussian.

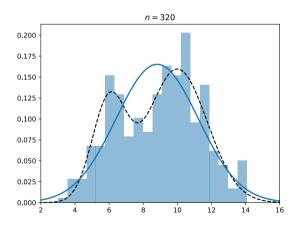
- No amount of data will allow the parametric approach to get close.
 - The model has been mis-specified.
- But the non-parametric approach will be close, eventually.

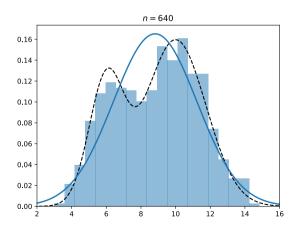


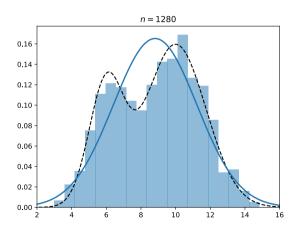












High Dimensions

- Non-parametric approaches can fit arbitrary densities, but they require lots of data.
 - Especially in high dimensions!
- Parametric approaches require less data, provided that they are correctly specified.
- Next time: parametric density estimation in high dimensions.