
Lecture 12 | Part 1

Estimating Discrete Probabilities



Last Time

▶ How do we make predictions in the face of
uncertainty?



Bayes Classifier

▶ The Bayes classification rule.

▶ Given a new point ⃗𝑥, predict:
▶ Class 1 if ℙ(𝑌 = 1 | ⃗𝑋 = ⃗𝑥) > ℙ(𝑌 = 0 | ⃗𝑋 = ⃗𝑥)
▶ Class 0 otherwise.

▶ Alternative form:
▶ Class 1 if

ℙ( ⃗𝑋 = ⃗𝑥 | 𝑌 = 1)ℙ(𝑌 = 1) > ℙ( ⃗𝑋 = ⃗𝑥 | 𝑌 = 0)ℙ(𝑌 = 0)
▶ Class 0 otherwise.



Bayes Error

▶ If ℙ(𝑌 = 1 | ⃗𝑋 = ⃗𝑥) ≠ 1, there is some chance of
error.

▶ The Bayes classifier achieves the lowest possible
error rate.



Problem

▶ This assumed that we know the true
probabilities used by Nature.

▶ Typically, we do not.

▶ But we can estimate them from data.



Example: Flowers

▶ Example: two species of flower (1 and 0); one
species tends to have more petals than the other.

▶ Goal: given new flower with 𝑋 petals, predict
species, 𝑌.

▶ Both 𝑋 and 𝑌 are discrete.



Before: Joint Distribution

▶ Before: we somehow knew the joint distribution:

𝑌 = 0 𝑌 = 1

𝑋 = 0 0% 0%
𝑋 = 1 5% 0%
𝑋 = 2 10% 5%
𝑋 = 3 15% 15%
𝑋 = 4 5% 20%
𝑋 = 5 0% 15%
𝑋 = 6 0% 10%



Now

▶ In practice, we do not know the joint distribution:

𝑌 = 0 𝑌 = 1

𝑋 = 0 ? ?
𝑋 = 1 ? ?
𝑋 = 2 ? ?
𝑋 = 3 ? ?
𝑋 = 4 ? ?
𝑋 = 5 ? ?
𝑋 = 6 ? ?



Data

▶ Suppose we observe 10 flowers.

▶ We can use this data to estimate
probabilities.

▶ E.g., what is ℙ(𝑋 = 4, 𝑌 = 1)?

X Y

5 0
3 0
4 1
4 1
2 0
5 1
2 1
5 1
4 1
3 0



Estimating Joint Probabilities

▶ We estimate ℙ(𝑋 = 𝑥, 𝑌 = 𝑦) with:

ℙ(𝑋 = 𝑥, 𝑌 = 𝑦) ≈ #(𝑋 = 𝑥 and 𝑌 = 𝑦)
𝑛

▶ E.g., estimate ℙ(𝑋 = 4, 𝑌 = 1):

▶ E.g., estimate ℙ(𝑋 = 3, 𝑌 = 0):

▶ E.g., estimate ℙ(𝑋 = 3, 𝑌 = 1):

X Y

5 0
3 0
4 1
4 1
2 0
5 1
2 1
5 1
4 1
3 0



Estimating Other Probabilities

▶ Recall the other probabilities:
▶ Marginals: ℙ(𝑋 = 𝑥) and ℙ(𝑌 = 𝑦).
▶ Conditionals: ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦) and ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥).

▶ Can be calculated from the joint distribution.
▶ Or an estimate of the joint distribution.

▶ Can also estimate more directly.



Estimating Marginals

▶ We estimate ℙ(𝑌 = 𝑦) with:

ℙ(𝑌 = 𝑦) ≈ #(𝑌 = 𝑦)
𝑛

▶ E.g., estimate ℙ(𝑌 = 1):

▶ E.g., estimate ℙ(𝑌 = 0):

X Y

5 0
3 0
4 1
4 1
2 0
5 1
2 1
5 1
4 1
3 0



Estimating Marginals

▶ We estimate ℙ(𝑋 = 𝑥) with:

ℙ(𝑋 = 𝑥) ≈ #(𝑋 = 𝑥)
𝑛

▶ E.g., estimate ℙ(𝑋 = 4):

▶ E.g., estimate ℙ(𝑋 = 3):

X Y

5 0
3 0
4 1
4 1
2 0
5 1
2 1
5 1
4 1
3 0



Estimating Conditionals

▶ We estimate ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦) with:

ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦) ≈ #(𝑋 = 𝑥 and 𝑌 = 𝑦)
#(𝑌 = 𝑦)

▶ E.g., estimate ℙ(𝑋 = 4 | 𝑌 = 1):

▶ E.g., estimate ℙ(𝑋 = 2 | 𝑌 = 0):

X Y

5 0
3 0
4 1
4 1
2 0
5 1
2 1
5 1
4 1
3 0



Estimating Conditionals

▶ We estimate ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) with:

ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) ≈ #(𝑋 = 𝑥 and 𝑌 = 𝑦)
#(𝑋 = 𝑥)

▶ E.g., estimate ℙ(𝑌 = 1 | 𝑋 = 4):

▶ E.g., estimate ℙ(𝑌 = 0 | 𝑋 = 2):

▶ E.g., estimate ℙ(𝑌 = 0 | 𝑋 = 6):

X Y

5 0
3 0
4 1
4 1
2 0
5 1
2 1
5 1
4 1
3 0



Law of Large Numbers

▶ As data size 𝑛 → ∞, these esimated probabilities
converge to their true values.1

1Assuming the data was sampled iid from the true distribution.



Bayes Classifier

▶ The Bayes classifier assumed we knew the true
probabilities.

▶ But we can still use it if we replace the true
probabilities with estimated probabilities.

▶ No longer guaranteed to be optimal!



Bayes Classifier

▶ Given a new flower with 5 petals, what
is its class?

▶ Idea: estimate ℙ(𝑌 = 1 | 𝑋 = 5).

X Y

5 0
3 0
4 1
4 1
2 0
5 1
2 1
5 1
4 1
3 0



Multivariate Distributions

▶ We can also estimate when there are
more variables in the same way.

▶ E.g., estimate ℙ(𝑌 = 1 | 𝑋1 = 4, 𝑋2 = 2):

▶ E.g., estimate ℙ(𝑋1 = 2):

▶ E.g., estimate ℙ(𝑋1 = 5, 𝑋2 = 1 | 𝑌 = 1):

𝑋1 𝑋2 Y

5 1 0
3 3 0
4 2 1
4 5 1
2 3 0
5 2 1
2 1 1
5 1 1
4 2 0
3 6 0
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Histogram Density Estimators



Continuous Variables

▶ We have seen how to estimate discrete
probabilities. What about continous variables?

▶ Suppose there are two species of penguin; one
species tends to have longer flippers.

▶ Goal: given a new penguin with flipper length
𝑋 = 𝑥, predict its species, 𝑌.



Data
▶ Recall: The distribution of a
continuous random variable is
described by a density.

▶ Can we estimate a density from data
in the same way?

▶ E.g.: marginal density for 𝑥, 𝑝𝑋(𝑥).
What is 𝑝𝑋(7)?

𝑝𝑋(7)
?≈ #(𝑋 = 7)

𝑛

X Y

7.2 0
11.3 1
8.0 1
5.1 0
5.6 1
12.3 1
13.1 1
10.9 0
12.0 1
5.0 0



Estimating Density

▶ Since 𝑋 is continuous, most values of 𝑋 are never
seen in the data.

▶ We need to do some smoothing.

▶ One approach: histogram estimators.



Histogram Estimators

▶ Suppose data 𝑥1, … , 𝑥𝑛 came from density 𝑓

▶ Divide domain into 𝑘 bins: [𝑎𝑖, 𝑏𝑖).
▶ Often equal-sized grid, though not necessary.

▶ Within each bin 𝑖, estimate density:

𝑓(𝑥) within bin 𝑖 ≈
# data points ∈ [𝑎𝑖, 𝑏𝑖)

𝑛 × (𝑏𝑖 − 𝑎𝑖)⏟
“bin width”



Example

4 7 10 13 16

[𝑎1, 𝑏1) = [4, 7) [𝑎2, 𝑏2) = [7, 10) [𝑎3, 𝑏3) = [10, 13) [𝑎4, 𝑏4) = [13, 16)

X Y

7.2 0
11.3 1
8.0 1
5.1 0
5.6 1
12.3 1
13.1 1
10.9 0
12.0 1
5.0 0



Histogram Estimator

4 7 10 13 16
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
p X

(x
)

X Y

7.2 0
11.3 1
8.0 1
5.1 0
5.6 1
12.3 1
13.1 1
10.9 0
12.0 1
5.0 0



Histogram Estimator
▶ Histogram estimators produce density functions.

▶ E.g., what is the estimated 𝑝𝑋(4.7)?
▶ integrates (sums) to 1.

4 7 10 13 16
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

p X
(x

)



Bin Number and Sizes
▶ As we get more data, we can:

▶ Decrease bin width.
▶ Increase number of bins.

6 8 10 12 14
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

p X
(x

)



Bin Number and Sizes
▶ As we get more data, we can:

▶ Decrease bin width.
▶ Increase number of bins.

6 8 10 12 14
x

0.00

0.05

0.10

0.15

0.20

0.25

p X
(x

)



Bin Number and Sizes
▶ As we get more data, we can:

▶ Decrease bin width.
▶ Increase number of bins.

4 6 8 10 12
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

p X
(x

)



Bin Number and Sizes
▶ As we get more data, we can:

▶ Decrease bin width.
▶ Increase number of bins.

4 6 8 10 12 14
x

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

p X
(x

)



Bin Number and Sizes
▶ As we get more data, we can:

▶ Decrease bin width.
▶ Increase number of bins.

4 6 8 10 12 14
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
p X

(x
)



Bin Number and Sizes
▶ As we get more data, we can:

▶ Decrease bin width.
▶ Increase number of bins.

4 6 8 10 12 14
x

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
p X

(x
)



Bin Number and Sizes
▶ As we get more data, we can:

▶ Decrease bin width.
▶ Increase number of bins.

4 6 8 10 12 14
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
p X

(x
)



Law of Large Numbers
▶ Eventually, as 𝑛 and # of bins→ ∞, the histogram
estimator approaches the true density:

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Flipper Length (cm)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175



Estimating Conditional Distributions

▶ How do we estimate 𝑝(𝑥 | 𝑌 = 1) and 𝑝(𝑥 | 𝑌 = 0)?
▶ The flipper length densities for species 1 and 0.

▶ Restrict to data where 𝑌 = 1 (or 𝑌 = 0) and use
histogram estimator.



Estimating 𝑝(𝑥 | 𝑌 = 𝑦)

4 7 10 13 16

Estimate 𝑝(𝑥 | 𝑌 = 0)

X Y

7.2 0
11.3 1
8.0 1
5.1 0
5.6 1
12.3 1
13.1 1
10.9 0
12.0 1
5.0 0



Law of Large Numbers
▶ Eventually, as 𝑛 and # of bins→ ∞, the histogram
estimators approach the true densities:

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Flipper Length (cm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Y = 0
Y = 1



Estimating ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥)

▶ How do we estimate ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) with
histograms?

▶ Recall: useful for making predictions.

▶ A discrete distribution, but conditioned on
continuous variable.

▶ Particular 𝑥 may not be seen in data.



Estimating ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥)

▶ Two equivalent approaches:
1. Count #(𝑌 = 1) and #(𝑌 = 0) within bin containing 𝑥.
2. Compute from Bayes’ rule and other estimates.



Approach #1: Directly

▶ To estimate ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) with histograms when
𝑌 is discrete and 𝑋 is continuous:

1. Find the bin containing 𝑥.

2. Estimate:

ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) ≈ #(𝑌 = 𝑦 within this bin )
#(points within this bin)



Approach #1: Directly

4 7 10 13 16
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
p X

(x
)

Example: estimate ℙ(𝑌 = 1 | 𝑋 = 4.3).

X Y

7.2 0
11.3 1
8.0 1
5.1 0
5.6 1
12.3 1
13.1 1
10.9 0
12.0 1
5.0 0



Approach #2: Bayes’ Rule

1. Estimate other densities / probabilities:

𝑝(𝑥 | 𝑌 = 𝑦) ℙ(𝑌 = 𝑦) 𝑝𝑋(𝑥)

2. Use Bayes’ rule to combine them:

ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = 𝑝(𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)
𝑝𝑋(𝑥)



Approach #2: Bayes’ Rule
▶ Using Bayes’ rule:

ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = 𝑝(𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)
𝑝𝑋(𝑥)

4 7 10 13 16
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

p X
(x

)

4 7 10 13 16
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

p(
x|

Y
=

1)

Example: estimate ℙ(𝑌 = 1 | 𝑋 = 4.3).

X Y

7.2 0
11.3 1
8.0 1
5.1 0
5.6 1
12.3 1
13.1 1
10.9 0
12.0 1
5.0 0



Equivalence

▶ Both approaches produce the same answer if
same bins used to estimate all densities.

▶ Related via Bayes’ rule.



Prediction

▶ Suppose there are two species of penguin; one
species tends to have longer flippers.

▶ Goal: given a new penguin with flipper length
𝑋 = 𝑥, predict its species, 𝑌.



Example

4 7 10 13 16
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
p X

(x
)

Example: what is predicted species when 𝑋 = 10.8?

X Y

7.2 0
11.3 1
8.0 1
5.1 0
5.6 1
12.3 1
13.1 1
10.9 0
12.0 1
5.0 0



Over- and Under-fitting
▶ The number of bins must be chosen
appropriately to avoid over- or under-fitting.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

p X
(x

)

5 bins



Over- and Under-fitting
▶ The number of bins must be chosen
appropriately to avoid over- or under-fitting.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

p X
(x

)

10 bins



Over- and Under-fitting
▶ The number of bins must be chosen
appropriately to avoid over- or under-fitting.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

p X
(x

)

20 bins



Over- and Under-fitting
▶ The number of bins must be chosen
appropriately to avoid over- or under-fitting.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

p X
(x

)

40 bins



Over- and Under-fitting
▶ The number of bins must be chosen
appropriately to avoid over- or under-fitting.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

p X
(x

)

80 bins



Over- and Under-fitting
▶ The number of bins must be chosen
appropriately to avoid over- or under-fitting.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

p X
(x

)

160 bins



Over- and Under-fitting
▶ The number of bins must be chosen
appropriately to avoid over- or under-fitting.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x

0.00

0.05

0.10

0.15

0.20

p X
(x

)

320 bins



Over- and Under-fitting
▶ The number of bins must be chosen
appropriately to avoid over- or under-fitting.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x

0.00

0.05

0.10

0.15

0.20

0.25

p X
(x

)

1000 bins
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Multivariate Histogram Density Estimators



Multivariate Estimation

▶ In practice, we typically want to predict 𝑌 from
many variables, 𝑋1, 𝑋2, …

▶ How do we estimate densities 𝑝( ⃗𝑥) of several
variables?



Histogram Estimators
▶ Histograms naturally generalize to 𝑑 > 1:

▶ Suppose data ⃗𝑥(1), … , ⃗𝑥(𝑛) came from density 𝑓

▶ Divide ℝ𝑑 into rectangular bins bins with regular
side-lengths ℓ1, ℓ2, … , ℓ𝑑

▶ Within a bin, estimate density:

𝑓( ⃗𝑥) within bin ≈
# data points ∈ [𝑎𝑖, 𝑏𝑖)
𝑛 × (ℓ1 × ℓ2 × ⋯ × ℓ𝑑)⏟⏟⏟⏟⏟⏟⏟⏟⏟

“bin volume”



Example: 𝑑 = 2

1

1

2

2

3

3

4

4

5

5 𝑋1 𝑋2 Y

4.1 1.8 0
3.6 3.0 0
4.2 2.2 1
4.2 2.4 1
2.3 3.2 0
4.9 2.4 1
2.1 0.8 1
3.2 1.1 1
4.7 2.3 0
3.8 4.9 0

E.g., estimate: 1) 𝑝𝑥1,𝑥2(2.3, 2.5) 2) 𝑝𝑥1,𝑥2(3.3, 2.5)



Estimating 2-d Densities

4 2 0 2 4 6 8 10 12
x1

3

4

5

6

7

8

9

10

11

x 2



Estimating 2-d Densities

2.50.0 2.5 5.0 7.510.012.5
x1 0

2
4

6
8

10
12

x 2

0.00

0.02

0.04

0.06

0.08

p(
x 1

, x
2)



Estimating in High Dimensions

▶ Histogram estimators can be used to estimate
high-dimensional densities, in principle.

▶ That is, densities of many continuous variables.

▶ But they typically do not work well due to the
curse of dimensionality.



Curse of Dimensionality

▶ Intuition: need sufficiently-many points in each
bin to make good estimates.

▶ Law of large numbers.

▶ Number of points needed is proportional to
number of bins.

▶ Many bins in high dimensions.



Curse of Dimensionality

▶ Suppose we have two continuous variables, 𝑋1
and 𝑋2, each taking values between 0 and 1.

▶ Divide each feature into 5 equal bins:

0 0.2 0.4 0.6 0.8 1



Curse of Dimensionality

▶ Total number of bins: 5 × 5 = 25



Curse of Dimensionality

▶ Suppose we have two continuous variables, 𝑋1,
𝑋2, 𝑋3, each taking values between 0 and 1.

▶ Divide each feature into 5 equal bins:

0 0.2 0.4 0.6 0.8 1



Curse of Dimensionality

0.0 0.2
0.4

0.6
0.8

1.0 0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6

0.8

1.0

▶ Total number of bins: 5 × 5 × 5 = 53 = 125



Curse of Dimensionality

▶ With 𝑑 features, we’d have 5𝑑 bins.

▶ Example: with 20 features, we’d have

520 ≈ 10 trillion





Curse of Dimensionality

▶ To accurately estimate densities in more than a
few dimensions, we need too much data.

▶ Most bins will be empty.

▶ And so we take different approaches.



A Different Approach

▶ Histogram estimators don’t make assumptions
about the shape of the density.

▶ Good: very flexible.
▶ Bad: requires a lot of data.

▶ Next: Assume a particular shape (e.g., a
Gaussian) and try to learn it from data.


