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Estimating Discrete Probabilities



Last Time

How do we make predictions in the face of
uncertainty?



Bayes Classifier
The Bayes classification rule.

Given a new point X, predict:
Class Tif P(Y =1|X=X)>P(Y = 0| X = X)
Class 0 otherwise.

Alternative form:
Class 1if
PX=X|Y=1P(Y=1)>P(X=X|Y=0)P(Y =0)
Class 0 otherwise.



Bayes Error

If P(Y =1|X = X) # 1, there is some chance of
error.

The Bayes classifier achieves the lowest possible
error rate.



Problem

This assumed that we know the true
probabilities used by Nature.

Typically, we do not.

But we can estimate them from data.



Example: Flowers

Example: two species of flower (1and 0); one
species tends to have more petals than the other.

Goal: given new flower with X petals, predict
species, Y.

Both X and Y are discrete.



Before: Joint Distribution

Before: we somehow knew the joint distribution:
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Now

In practice, we do not know the joint distribution:
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Data

Suppose we observe 10 flowers.

We can use this data to estimate
probabilities.
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E.g., whatis P(X = 4,Y =1)? ‘I—D’ = 0.3
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Estimating Joint Probabilities

We estimate P(X = x, Y = y) with:

#(X=xandY =y)

PX=x,Y=y)= p

E.g., estimate P(X = 4,Y = 1): ._(% 0.2
. 2
E.g., estimate P(X =3,Y=0): -5 ~ 0.2

E.g., estimate P(X =3,Y = 1):
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Estimating Other Probabilities

Recall the other probabilities:
Marginals: P(X = x) and P(Y = y).
Conditionals: P(X =x|Y =y)and P(Y =y | X = x).

Can be calculated from the joint distribution.
Or an estimate of the joint distribution.

Can also estimate more directly.



Estimating Marginals

We estimate P(Y = y) with:

P(Y = y) = #(Y,: y)

E.g., estimate P(Y = 1): L, 0.6
o
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E.g, estimate P(Y = 0): 4
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Estimating Marginals

We estimate P(X = x) with:

P(X = X) ~ #H(X = x)

E.g., estimate P(X = 4): 3/0-.

E.g., estimate P(X = 3): Z/to = .2
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Estimating Conditionals

We estimate P(X = x| Y = y) with: X Y
5 0

#X=xandY =y) 3 0

PX=x]|Y=y)=

: 2 -\ 9

E.g., estimate P(X =4|Y =1): C -Esos -
51—

43

E.g., estimate P(X =2|Y =0): }L\ =0.2% 3 0



Estimating Conditionals

We estimate P(Y = y | X = x) with:

#HX=xandY =y)

P(Y=y|X=Xx)= X = %)

E.g., estimate P(Y =1 | X = 4): _gg
. .
E.g., estimate P(Y =0|X =2): - 0.5
o
(]

E.g., estimate P(Y =0 | X = 6):
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Law of Large Numbers

As data size n —» oo, these esimated probabilities
converge to their true values.’

TAssuming the data was sampled iid from the true distribution.



Bayes Classifier

The Bayes classifier assumed we knew the true
probabilities.

But we can still use it if we replace the true
probabilities with estimated probabilities.

No longer guaranteed to be optimal!



Bayes Classifier

Given a new flower with 5 petals, what
is its class?

=1|x=5).=—23-

|dea: estimate P(Y

Redicd: Clasa A




Multivariate Distributions

We can also estimate when there are
more variables in the same way.

E.g, estimate P(Y = 1| X, = 4, X, = 2): =

\]

E.g., estimate P(X; = 2): TZS

E.g., estimate P(X; =5,X, =1]Y =1): ‘g
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Histogram Density Estimators



Continuous Variables

We have seen how to estimate discrete
probabilities. What about continous variables?

Suppose there are two species of penguin; one
species tends to have longer flippers.

Goal: given a new penguin with flipper length
X = x, predict its species, Y.



Data

Recall: The distribution of a
continuous random variable is
described by a density.

Can we estimate a density from data
in the same way?

E.g.: marginal density for x, p,(x).
What is p,(7)?

?#(x ) -p

px(7) =
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Estimating Density

Since X is continuous, most values of X are never
seen in the data.

We need to do some smoothing.

One approach: histogram estimators.



Histogram Estimators
Suppose data X, ..., X,, came from density f

Divide domain into k bins: [a;, b;).
Often equal-sized grid, though not necessary.
! ) L

(Vic)

[ /
Within each bin i, estimate density:

# data points € [a;, b;)
nx (b; - a;)

%._l
“bin width”

£(x) within bin i =



Example

# data points € [a;, b;)

nx(b; - a;)
2/
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Histogram Estimator
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Histogram Estimator

Histogram estimators produce density functions.
E.g., what is the estimated p,(4.7)?
integrates (sums) to 1.

0.14

0.12 1
0.10 1
0.08 1

z
0.06 1

0.04 A

0.02 A

0.00 -




Bin Number and Sizes

As we get more data, we can:
Decrease bin width.
Increase number of bins.

0.14 A

0.12 A

0.10 A

0.08 1

Px(x)

0.06

0.04 A

0.02 A

0.00 -




Bin Number and Sizes

As we get more data, we can:
Decrease bin width.
Increase number of bins.

0.25 1

Px(x)




Bin Number and Sizes

As we get more data, we can:
Decrease bin width.
Increase number of bins.

0.16 1

0.14 1

0.12 1




Bin Number and Sizes

As we get more data, we can:
Decrease bin width.
Increase number of bins.

0.175 4

0.150

0.125 4

0.100 -

Px(x)

0.075 4

0.050 1

0.025 4

0.000 -



Bin Number and Sizes

As we get more data, we can:
Decrease bin width.
Increase number of bins.

0.16 1




Bin Number and Sizes

As we get more data, we can:
Decrease bin width.
Increase number of bins.

0.175
0.150 -
0.125 -

< 0.100 A
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0.075

0.050 -
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0.000 -
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Bin Number and Sizes

As we get more data, we can:
Decrease bin width.
Increase number of bins.

Px(x)




Law of Large Numbers

Eventually, as n and # of bins — oo, the histogram
estimator approaches the true density:

0.175 A

0.150

0.125 A

0.100 A

0.075 A

0.050 1

0.025 A

0.000 -

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Flipper Length (cm)



Estimating Conditional Distributions

How do we estimate p(x|Y =1)and p(x|Y = 0)?
The flipper length densities for species 1 and 0.

Restrict to data where Y =1 (or Y = 0) and use
histogram estimator.



o
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Estimating p(x | Y = y)

v
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Estimate p(x | Y = 0)
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Law of Large Numbers

Eventually, as n and # of bins — oo, the histogram
estimators approach the true densities:

mm Y=0
0.40 mm Y=1

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5
Flipper Length (cm)



Estimating P(Y =y | X = x)

How do we estimate P(Y = y | X = x) with
histograms?

Recall: useful for making predictions.

A discrete distribution, but conditioned on

continuous variable.
Particular x may not be seen in data.



Estimating P(Y =y | X = x)

Two equivalent approaches:
Count #(Y = 1) and #(Y = 0) within bin containing x.
Compute from Bayes' rule and other estimates.



Approach #1: Directly

To estimate P(Y = y | X = x) with histograms when
Y is discrete and X is continuous:

Find the bin containing x.

Estimate:

_ _ .\ _ #(Y =y within this bin)
PV =y]X=x)= #(points within this bin)




Approach #1: Directly

L .0.23

5

0.14

0.12 A
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px(x)

0.06 -

0.04 -

0.02 -

0.00 -
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Approach #2: Bayes’ Rule

Estimate other densities / probabilities:
pix[Y=y) P(Y=y) pxx)

Use Bayes' rule to combine them:
pix1Y =y)P(Y = y)
P(Y=y|X=X)=
Y=yl ) Px(X)




Approach #2: Bayes’ Rule

Using Bayes’ rule: ~0.655 0.6

Yys U 1
[p(Y=y|X=X)=P(X|Y=y)ﬂ3’(Y=y)

Yy px(X )
1 Us, |

Example: estimate P(Y = 1| X = 4.3).

72
1.3
8.0
51
5.6
12.3
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Equivalence

Both approaches produce the same answer if
same bins used to estimate all densities.

Related via Bayes’ rule.



Prediction

Suppose there are two species of penguin; one
species tends to have longer flippers.

Goal: given a new penguin with flipper length
X = x, predict its species, Y.



Exam
+H s l v bin (ov\‘\'tdkh 6.9 - 2

- - A/

‘P(Y-i')(—lo.8> v #oh in Yt 5iA Y
0.12 1 X Y
0.10 1 7.2 O
0.08 4 4113 1

g 8.0 1
QO.OG' 5.1 0
56 1

=123 1
131 1
—>109 0

—=12.0 1

4 7 10 13 16
X

Example: what is predicted species when X = 1087 Rt : 4
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Over- and Under-fitting

The number of bins must be chosen
appropriately to avoid over- or under-fitting.

5 bins

0.16
0.14
0.12 1
0.10 1

X

X 0.08
0.06 -

0.04 -

0.02 -

0.00 -

0.0



Over- and Under-fitting

The number of bins must be chosen
appropriately to avoid over- or under-fitting.

10 bins

0.16
0.14
0.12 1
0.10 1

X

X 0.08
0.06 -

0.04 -

0.02 -

0.00 -

0.0



Over- and Under-fitting

The number of bins must be chosen
appropriately to avoid over- or under-fitting.

20 bins

0.16 -

0.14 A

0.12 A

0.10 A

Px(x)

0.08 -

0.06 -

0.04 A

0.02 -

0.00 -

0.0



Over- and Under-fitting

The number of bins must be chosen
appropriately to avoid over- or under-fitting.

40 bins

0.14

0.12

0.10 -

Px(x)

0.08 -

0.06 -

0.04 -

0.02 -

0.00 -

0.0



Over- and Under-fitting

The number of bins must be chosen
appropriately to avoid over- or under-fitting.

80 bins

0.175 A

0.150 -

0.125 A
< 0.100 4
=

0.075 A

0.050 -

0.025 -

0.000 -

0.0



Over- and Under-fitting

The number of bins must be chosen
appropriately to avoid over- or under-fitting.

160 bins

0.200 -
0.175 -
0.150 -
0.125 A

=

2 0.100 4
0.075 A
0.050 -

0.025 -

0.000 -

0.0



Over- and Under-fitting

The number of bins must be chosen
appropriately to avoid over- or under-fitting.

320 bins

0.20 A

0.15 A

Px(x)

0.10 -

0.05 -

0.00 -
0.0 25 5.0 7.5 10.0 125 15.0 17.5
X



Over- and Under-fitting

The number of bins must be chosen
appropriately to avoid over- or under-fitting.

1000 bins

0.25 -

0.0 25 5.0 7.5 10.0 125 15.0 17.5
X
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Multivariate Estimation

In practice, we typically want to predict Y from
many variables, X;, X,, ...

How do we estimate densities p(X) of several
variables?



Histogram Estimators

Histograms naturally generalizeto d > 1:

ISuppose data X, ..., XM came from density f

Divide R into rectangular bins bins with regular
side-lengths ¢,,%,,..., ¢,

Within a bin, estimate density: bin L
e . H .

f(X) within bin = data points € [oyb7)

n X‘(P1 X {)2 X ees X ?d)

J

“bin volume”



" Example: d = 2

# data points € [a+17) \> [ . \
nox (B x 8y x e xdy) \OX 2 20
» =L
SO R R EOAT A
o 41 18 0
4ot FE L B S I ; 36 30 O
42 22 1
42 24 1
. —223 32 0
L b thhh 49 24 1
21 08 1
32 11 1
0 47 23 0
0 1 2 3 4 5 6 238 49 0

E.g., estimate: 1_) Py, x,(2:3,2.5) 2) Py, x,(3:3,4.1)



X2
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10 4

w » (O] (o)) ~ [e0) ©o
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Estimating 2-d Densities

12



Estimating 2-d Densities

0.08
0.06 3
3
0.04 <
0.02
0.00




Estimating in High Dimensions

Histogram estimators can be used to estimate
high-dimensional densities, in principle.
That is, densities of many continuous variables.

But they typically do not work well due to the
curse of dimensionality.



Curse of Dimensionality

Intuition: need sufficiently-many points in each

bin to make good estimates.
Law of large numbers.

Number of points needed is proportional to
number of bins.

Many bins in high dimensions.



Curse of Dimensionality

Suppose we have two continuous variables, X,
and X,, each taking values between 0 and 1.

Divide each feature into 5 equal bins:

0 02 04 06 08 1



Curse of Dimensionality
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Total number of bins: 5x5 =25



Curse of Dimensionality

Suppose we have two continuous variables, X,
X,, X5, each taking values between 0 and 1.

Divide each feature into 5 equal bins:

0 02 04 06 08 1
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Total number of bins: 5x5 x5



Curse of Dimensionality

With d features, we’'d have 5¢ bins.

Example: with 20 features, we'd have

520 = 10 trillion



% Put that in perspective using more familiar quantities.

@ 10713, which is 10 trillion, is a very large quantity. Here are some ways to put it into

perspective using more familiar quantities:

* Time: 10 trillion seconds is about 317,000 years. That's longer than human beings have
been around!

* Distance: 10 trillion centimeters is about 106 light years, the distance light travels in
106 years. For comparison, the nearest star to our solar system, Proxima Centauri, is
about 4.24 light years away.

* Money: 10 trillion dollars is more than the entire annual GDP of many countries,
including Canada, Australia, and South Korea.

* Population: 10 trillion people is more than the total number of people who have ever
lived on Earth. It's estimated that the total number of human beings who have ever

lived is around 100 billion.

These examples show just how large 10 trillion is, and how it compares to other quantities
we might be more familiar with.




Curse of Dimensionality

To accurately estimate densities in more than a
few dimensions, we need too much data.

Most bins will be empty.

And so we take different approaches.



A Different Approach

Histogram estimators don’t make assumptions

about the shape of the density.
Good: very flexible.
Bad: requires a lot of data.

Next: Assume a particular shape (e.g., a
Gaussian) and try to learn it from data.



