$$
\text { DSC } 140 \mathrm{~A}
$$

Probabilistic Modeling

- Where does data come from?
- We might imagine that "Nature" generates it using some random (i.e., probabilistic) process.
- Maybe modeling this probabilistic process will suggest new ways of making predictions?

Example: Flowers

- Suppose there are two species of flower.
- One species tends to have more petals.
- Goal: Given a new flower with $X=x$ petals predict its species, Y.

Example: Flowers

- Idea: The number of petals, X, and the species, Y, are random variables.
- Assumption: When Nature generates a new flower, it picks X and Y from some probability distribution.
- Let's imagine (for now) that we know this distribution.

The Joint Distribution

- The joint distribution $\mathbb{P}(X=x, Y=y)$ gives us full information. ${ }^{1}$

$\mid Y=0$	$Y=1$	
$X=0$	0%	0%
$X=1$	5%	0%
$X=2$	10%	5%
$X=3$	15%	15%
$X=4$	5%	20%
$X=5$	0%	15%
$X=6$	0%	10%

Observation

- The entries of the joint distribution table sum to 100%.
- Mathematically: $\sum_{x \in\{0,1, \ldots, 6\}} \sum_{y \in\{0,1\}} \mathbb{P}(X=x, Y=y)=1$.

	$Y=0$	$Y=1$
$X=0$	0%	0%
$X=1$	5%	0%
$X=2$	10%	5%
$X=3$	15%	15%
$X=4$	5%	20%
$X=5$	0%	15%
$X=6$	0%	10%

Marginal Distributions

- What is the probability that a new flower has $X=4$ petals (regardless of species)?

	$Y=0$	$Y=1$
$X=0$	0%	0%
$X=1$	5%	0%
$X=2$	10%	5%
$X=3$	15%	15%
$X=4$	5%	20%
$X=5$	0%	15%
$X=6$	0%	10%

Marginal Distributions

The marginal distribution for X is found by summing over values of Y.
\Rightarrow That is: $\mathbb{P}(X=x)=\sum_{y \in\{0,1\}} P(X=x, Y=y)$

	$Y=0$	$Y=1$
$X=0$	0%	0%
$X=1$	5%	0%
$X=2$	10%	5%
$X=3$	15%	15%
$X=4$	5%	20%
$X=5$	0%	15%
$X=6$	0%	10%

$X=0$	0%
$X=1$	5%
$X=2$	15%
$X=3$	30%
$X=4$	25%
$X=5$	15%
$X=6$	10%

joint

Marginal Distributions

- What is the probability that a new flower is species 1 (regardless of number of petals)?

	$Y=0$	$Y=1$
$X=0$	0%	0%
$X=1$	5%	0%
$X=2$	10%	5%
$X=3$	15%	15%
$X=4$	5%	20%
$X=5$	0%	15%
$X=6$	0%	10%

Marginal Distributions

\Rightarrow The marginal distribution for Y is found by summing over values of X.
\Rightarrow That is: $\mathbb{P}(Y=y)=\sum_{x \in\{0, \ldots, 6\}} P(X=x, Y=y)$

	$Y=0$	$Y=1$
$X=0$	0%	0%
$X=1$	5%	0%
$X=2$	10%	5%
$X=3$	15%	15%
$X=4$	5%	20%
$X=5$	0%	15%
$X=6$	0%	10%

$$
\begin{array}{l|l}
Y=0 & 35 \% \\
Y=1 & 65 \% \\
\hline
\end{array}
$$

marginal in Y
joint

Observation

The probabilities in the marginal distributions also sum to 1 .

Exercise

Suppose flower A has 4 petals. What do you think its species is?

	$Y=0$	$Y=1$
$X=0$	0%	0%
$X=1$	5%	0%
$X=2$	10%	5%
$X=3$	15%	15%
$X=4$	5%	20%
$X=5$	0%	15%
$X=6$	0%	10%

Intuition

- It seems more likely that a petal with 4 flowers is from species 1 .

	$Y=0$	$Y=1$
$X=0$	0%	0%
$X=1$	5%	0%
$X=2$	10%	5%
$X=3$	15%	15%
$X=4$	5%	20%
$X=5$	0%	15%
$X=6$	0%	10%

Conditional Probabilities

- This is captured by the conditional probability $\mathbb{P}(Y=y \mid X=x)=\mathbb{P}(X=x, Y=y) / \mathbb{P}(X=x)$.

	$Y=0$	$Y=1$
$X=0$	0%	0%
$X=1$	5%	0%
$X=2$	10%	5%
$X=3$	15%	15%
$X=4$	5%	20%
$X=5$	0%	15%
$X=6$	0%	10%

joint

$\mathbb{P}(Y=y \mid X=1)$	
$Y=0$	100%
$Y=1$	0%

$\mathbb{P}(Y=y \mid X=2)$	
$Y=0$	66.5%
$Y=1$	33.3%

$$
\begin{array}{c|c}
\mathbb{P}(Y=y \mid X=4) \\
\hline Y=0 & 20 \% \\
Y=1 & 80 \%
\end{array}
$$

Conditional Probabilities

- The conditional probability

$$
\mathbb{P}(X=x \mid Y=y)=\mathbb{P}(X=x, Y=y) / \mathbb{P}(Y=y) .
$$

	$Y=0$	$Y=1$
$X=0$	0%	0%
$X=1$	5%	0%
$X=2$	10%	5%
$X=3$	15%	15%
$X=4$	5%	20%
$X=5$	0%	15%
$X=6$	0%	10%

$\mathbb{P}(X=x \mid Y=0)$	
$X=0$	0%
$X=1$	14.2%
$X=2$	28.5%
$X=3$	42.8%
$X=4$	14.2%
$X=5$	0%
$X=6$	0%

joint

Observation

- Conditional probabilities sum to 1 as well.
- For any fixed x :

$$
\sum_{y} \mathbb{P}(Y=y \mid X=x)=1
$$

- For any fixed y :

$$
\sum_{x} \mathbb{P}(X=x \mid Y=y)=1
$$

Five Distributions

- We've seen five distributions:
$>$ Joint: $\mathbb{P}(X=x, Y=y)$
- Marginal in $X: \mathbb{P}(X=x)$
> Marginal in $Y: \mathbb{P}(Y=y)$
- Conditional on $X: \mathbb{P}(Y=y \mid X=x)$
- Conditional on $Y: \mathbb{P}(X=x \mid Y=y)$
- If we know the joint distribution, we can compute any of the others.

Bayes' Theorem

Bayes' Theorem relates conditional probabilities and provides another way of computing them:

$$
\mathbb{P}(Y=y \mid X=x)=\frac{\mathbb{P}(X=x \mid Y=y) \mathbb{P}(Y=y)}{\mathbb{P}(X=x)}
$$

Bayes' Theorem

Derivation:

$$
\text { DSC } 140 \mathrm{~A}
$$

Probabilistic Classification

- We have seen several paradigms for classification:
- Nearest neighbors
- Linear predictors
- Now we see a probabilistic paradigm.

Probabilistic Classification

- In ML, we think of X as a feature and Y as a label.
- Example: Given new flower with $X=x$ petals, predict the species, Y.
- Idea: predict the most likely label y given $X=x$. - l.e., predict the y that maximizes $\mathbb{P}(Y=y \mid X=x)$.

Binary Probabilistic Classification

- Predict 1 if $\mathbb{P}(Y=1 \mid X=x)>\mathbb{P}(Y=0 \mid X=x)$; otherwise predict 0 .
- That is, pick whichever label is more likely given the features.

Bayes Classification Rule

- This is the Bayes (binary) classification rule:
- Predict class 1 if $\mathbb{P}(Y=1 \mid X=x)>\mathbb{P}(Y=0 \mid X=x)$;
- Otherwise, predict class 0.

Bayes Decision Theory

- Two equivalent forms of the Bayes classification rule:
- "Original" form:
- Predict class 1 if $\mathbb{P}(Y=1 \mid X=x)>\mathbb{P}(Y=0 \mid X=x)$;
- Otherwise, predict class 0.
- "Alternative" form:
- Using Bayes' rule,

$$
\mathbb{P}(Y=y \mid X=x)=\mathbb{P}(X=x \mid Y=y) \mathbb{P}(Y=y) / \mathbb{P}(X=x) \ldots
$$

- Predict class 1 if $\mathbb{P}(X=x \mid Y=1) \mathbb{P}(Y=1)>\mathbb{P}(X=x \mid Y=0) \mathbb{P}(Y=0)$
\downarrow Otherwise, predict class 0 .

Main Idea

If we know the conditional probability of the label Y given feature X, the Bayes classification rule is a natural way to make predictions.

Optimality

- We'll see that the Bayes classification rule is optimal in a certain sense.

$$
\text { DSC } 140 A
$$

Example: Penguins

- Suppose there are two species of penguin.
- One species tends to have longer flippers.
- Goal: given a new penguin with flipper length $X=x$, predict its species, Y.

Five Distributions

- In this situation, what do the five distributions look like?
\Rightarrow Joint distribution of X and Y
- Marginal distribution in X
- Marginal distribution in Y
- Conditional on X
- Conditional on Y

Marginal in Y

- What is the probability that Nature generates a penguin from species Y ?
- Marginal distribution: $\mathbb{P}(Y=y)$.
- This is a discrete distribution, as before.
- Example:

$$
\begin{array}{l|l}
Y=0 & 30 \% \\
Y=1 & 70 \% \\
\hline
\end{array}
$$

Marginal in X

- What is the probability that Nature generates a flipper length of x, without regard to species?
- Flipper length is a continuous random variable.
- Distribution is described by a probability density function (pdf), $p: \mathbb{R} \rightarrow \mathbb{R}^{+}$.

Recall: Density Functions

- A probability density function (pdf) for a random variable X is a function $p: \mathbb{R} \rightarrow \mathbb{R}^{+}$satisfying:

$$
\mathbb{P}(a<X<b)=\int_{a}^{b} p_{X}(x) d x
$$

- That is, the pdf p describes how likely it is to get a value of X in any interval $[a, b]$.
- Note: $\int_{-\infty}^{\infty} p_{\chi}(x) d x=1$, but $p(x)$ can be larger than one.

Intuition

Intuition

Intuition

Intuition

Marginal in X

- The distribution of flipper lengths is described by a density function, $p_{x}(x)$.

Exercise

What is the probability that Nature generates a penguin with flipper length equal to 10 cm ?

Solution

- Zero!
$p_{X}(x)$ is not the probability that $X=x$.

Instead, $\mathbb{P}(X=x)=\mathbb{P}(x<X<x)=\int_{x}^{x} p_{X}(x) d x=0$

- The probability of a continuous random variable being exactly a certain value is zero.

Example

- What is the probability that Nature generates a penguin whose flipper length is between 7.5 and 10 cm ?

$$
\mathbb{P}(7.5<X<10)=\int_{7.5}^{10} p_{x}(x) d x
$$

Conditional on Y

- What is the probability of a certain flipper length, given that the species is y ?
- Also a continuous distribution, described by conditional density $p(x \mid Y=y)$.
- Two conditional density functions: one for $Y=0$ and one for $Y=1$.
\Rightarrow Each integrates to one.

Conditional on Y

Conditional on X

- What is the probability that the species is y given a flipper length of x ?
- The conditional distribution of Y given X.

Exercise

Is this distribution continuous or discrete?

Conditional on X

- Answer: discrete, because Y is discrete.
- One distribution $P(Y=y \mid X=x)$ for each possible value of X (infinitely many).

Conditional on X

- Although for any fixed $x, \mathbb{P}(Y=y \mid X=x)$ is discrete, we can plot the functions $f_{0}(x)=\mathbb{P}(Y=0 \mid X=x)$ and $f_{1}(x)=\mathbb{P}(Y=1 \mid X=x)$

Bayes' Rule

- Bayes' Rule applies to densities, too:

$$
\mathbb{P}(Y=y \mid X=x)=\frac{p(x \mid Y=y) \mathbb{P}(Y=y)}{p_{X}(x)}
$$

Bayes Decision Theory

- The Bayes classification rule applies to continuous distributions, too.
- "Original" form:
- Predict class 1 if $\mathbb{P}(Y=1 \mid X=x)>\mathbb{P}(Y=0 \mid X=x)$;
- Otherwise, predict class 0 .
- "Alternative" form:
- Using Bayes' rule,

$$
\mathbb{P}(Y=y \mid X=x)=\mathbb{P}(X=x \mid Y=y) \mathbb{P}(Y=y) / \mathbb{P}(X=x) \ldots
$$

- Predict class 1 if

$$
\mathbb{P}(X=x \mid Y=1) \mathbb{P}(Y=1)>\mathbb{P}(X=x \mid Y=0) \mathbb{P}(Y=0)
$$

- Otherwise, predict class 0.

Exercise

Penguins with flippers of length 0,3 , and 12 are observed. What are their predicted species according to the Bayes' classification rule?

Joint

- The joint distribution in this case is neither totally continuous nor totally discrete.
- From Bayes' rule:

$$
\begin{aligned}
& p(x, 0)=p(x \mid Y=0) \mathbb{P}(Y=0) \\
& p(x, 1)=p(x \mid Y=1) \mathbb{P}(Y=1)
\end{aligned}
$$

Joint Distribution

Exercise

Where does the Bayes decision rule make a prediction for class 1?

- Predict class 1 if $p(x \mid Y=1) \mathbb{P}(Y=$ 1) $>p(X=x \mid Y=0) \mathbb{P}(Y=0)$
- Otherwise, predict class 0 .

Multivariate Distributions

- In binary classification, $y \in\{0,1\}$.
- But we usually deal with feature vectors, \vec{x}.
- The previous applies with straightforward changes.

Example: Penguins

- Again consider penguins of two species, but now consider both flipper length and body mass.
- Each penguin's measurements are a random vector: \vec{x}.
- Densities are now functions of a vector.
- E.g., marginal: $p_{x}(\vec{x}): \mathbb{R}^{2} \rightarrow \mathbb{R}^{+}$

Marginal in \vec{X}

Conditional on Y

Conditional on X

$$
D S C 140 A
$$

Bayes Error

- The Bayes classification rule is a natural approach to making predictions.
- It is also the best you can do, in a sense.

Errors

- Let's say you have a rule for predicting Y given \vec{X}.
- In binary classification, there are two types of errors:
$>$ Predicted 0 , but the right answer is 1 (Case 1).
\Rightarrow Predicted 1 , but the right answer is 0 (Case 2).
- The probability of making a classification error is:

$$
\mathbb{P}(\text { error })=\mathbb{P}(\text { Case } 1)+\mathbb{P}(\text { Case } 2)
$$

Probability of Error

- Case 1: you predict 0, but the right answer is 1.
- The probability of this error is:

$$
\begin{aligned}
\mathbb{P}(\text { Case } 1) & =\mathbb{P}(Y \text { is actually } 1, \text { predict } 0) \\
& =\mathbb{P}(Y \text { is actually } 1) \times \mathbb{P}(\text { predict } 0 \mid Y \text { is actually } 1)
\end{aligned}
$$

Probability of Error

- Case 2: you predict 1, but the right answer is 0 .
- The probability of this error is:

```
P}(\mathrm{ Case 2) = P}(Y\mathrm{ is actually 0, predict 1)
    = P}(Y\mathrm{ is actually 0) }\times\mathbb{P}(\mathrm{ predict 1 | Y is actually 0)
```


Probability of Error

- The total probability of a classification error is:

$$
\begin{aligned}
P(\text { error })= & \mathbb{P}(\text { Case } 1)+\mathbb{P}(\text { Case } 2) \\
= & \mathbb{P}(Y \text { is actually } 1) \times \mathbb{P}(\text { predict } 0 \mid Y \text { is actually } 1) \\
& +\mathbb{P}(Y \text { is actually } 0) \times \mathbb{P}(\text { predict } 1 \mid Y \text { is actually } 0)
\end{aligned}
$$

Fact

- The Bayes classifier has the smallest possible error probability ${ }^{2}$ of any classifier.
- The error probability of the Bayes classifier is called the Bayes error.
- In most cases, the minimum possible error probability is >0.

[^0]
Exercise

What is the Bayes error if $P(Y=0)=P(Y=1)=0.5$?

Exercise

What is the Bayes error if $P(Y=0)=0.3$ and $P(Y=1)=0.7$?

Intuition

Problem

- The Bayes classifier is optimal.
- But it requires knowing the joint distribution; we almost never know this.
- Next time: estimating probability distributions from data.

[^0]: ${ }^{2}$ Note that this is a statement about a probability, and not about any finite data set!

