
Lecture 11 | Part 1

Probabilistic Modeling



Probabilistic Modeling

▶ Where does data come from?

▶ We might imagine that “Nature” generates it
using some random (i.e., probabilistic) process.

▶ Maybe modeling this probabilistic process will
suggest new ways of making predictions?



Example: Flowers

▶ Suppose there are two species
of flower.

▶ One species tends to have more
petals.

▶ Goal: Given a new flower with
𝑋 = 𝑥 petals predict its species, 𝑌.



Example: Flowers

▶ Idea: The number of petals, 𝑋, and the species, 𝑌,
are random variables.

▶ Assumption: When Nature generates a new
flower, it picks 𝑋 and 𝑌 from some probability
distribution.

▶ Let’s imagine (for now) that we know this
distribution.



The Joint Distribution
▶ The joint distribution ℙ(𝑋 = 𝑥, 𝑌 = 𝑦) gives us full
information.1

𝑌 = 0 𝑌 = 1

𝑋 = 0 0% 0%
𝑋 = 1 5% 0%
𝑋 = 2 10% 5%
𝑋 = 3 15% 15%
𝑋 = 4 5% 20%
𝑋 = 5 0% 15%
𝑋 = 6 0% 10%

1Note: it’s conventional to encode 𝑌 as 0 or 1 instead of 1 and -1.



Observation
▶ The entries of the joint distribution table sum to 100%.
▶ Mathematically: ∑

𝑥∈{0,1,…,6}
∑
𝑦∈{0,1}

ℙ(𝑋 = 𝑥, 𝑌 = 𝑦) = 1.

𝑌 = 0 𝑌 = 1

𝑋 = 0 0% 0%
𝑋 = 1 5% 0%
𝑋 = 2 10% 5%
𝑋 = 3 15% 15%
𝑋 = 4 5% 20%
𝑋 = 5 0% 15%
𝑋 = 6 0% 10%



Marginal Distributions
▶ What is the probability that a new flower has
𝑋 = 4 petals (regardless of species)?

𝑌 = 0 𝑌 = 1

𝑋 = 0 0% 0%
𝑋 = 1 5% 0%
𝑋 = 2 10% 5%
𝑋 = 3 15% 15%
𝑋 = 4 5% 20%
𝑋 = 5 0% 15%
𝑋 = 6 0% 10%



Marginal Distributions
▶ The marginal distribution for 𝑋 is found by summing over
values of 𝑌.

▶ That is: ℙ(𝑋 = 𝑥) = ∑𝑦∈{0,1} ℙ(𝑋 = 𝑥, 𝑌 = 𝑦)

𝑌 = 0 𝑌 = 1

𝑋 = 0 0% 0%
𝑋 = 1 5% 0%
𝑋 = 2 10% 5%
𝑋 = 3 15% 15%
𝑋 = 4 5% 20%
𝑋 = 5 0% 15%
𝑋 = 6 0% 10%

joint

𝑋 = 0 0%
𝑋 = 1 5%
𝑋 = 2 15%
𝑋 = 3 30%
𝑋 = 4 25%
𝑋 = 5 15%
𝑋 = 6 10%

marginal in X



Marginal Distributions
▶ What is the probability that a new flower is
species 1 (regardless of number of petals)?

𝑌 = 0 𝑌 = 1

𝑋 = 0 0% 0%
𝑋 = 1 5% 0%
𝑋 = 2 10% 5%
𝑋 = 3 15% 15%
𝑋 = 4 5% 20%
𝑋 = 5 0% 15%
𝑋 = 6 0% 10%



Marginal Distributions
▶ The marginal distribution for 𝑌 is found by summing over
values of 𝑋.

▶ That is: ℙ(𝑌 = 𝑦) = ∑𝑥∈{0,…,6} ℙ(𝑋 = 𝑥, 𝑌 = 𝑦)

𝑌 = 0 𝑌 = 1

𝑋 = 0 0% 0%
𝑋 = 1 5% 0%
𝑋 = 2 10% 5%
𝑋 = 3 15% 15%
𝑋 = 4 5% 20%
𝑋 = 5 0% 15%
𝑋 = 6 0% 10%

joint

𝑌 = 0 35%
𝑌 = 1 65%

marginal in Y



Observation

▶ The probabilities in the marginal distributions
also sum to 1.



Exercise

Suppose flower 𝐴 has 4 petals. What do you think
its species is?

𝑌 = 0 𝑌 = 1

𝑋 = 0 0% 0%
𝑋 = 1 5% 0%
𝑋 = 2 10% 5%
𝑋 = 3 15% 15%
𝑋 = 4 5% 20%
𝑋 = 5 0% 15%
𝑋 = 6 0% 10%



Intuition

▶ It seems more likely that a petal with 4 flowers is
from species 1.

𝑌 = 0 𝑌 = 1

𝑋 = 0 0% 0%
𝑋 = 1 5% 0%
𝑋 = 2 10% 5%
𝑋 = 3 15% 15%
𝑋 = 4 5% 20%
𝑋 = 5 0% 15%
𝑋 = 6 0% 10%



Conditional Probabilities
▶ This is captured by the conditional probability
ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = ℙ(𝑋 = 𝑥, 𝑌 = 𝑦)/ℙ(𝑋 = 𝑥).

𝑌 = 0 𝑌 = 1

𝑋 = 0 0% 0%
𝑋 = 1 5% 0%
𝑋 = 2 10% 5%
𝑋 = 3 15% 15%
𝑋 = 4 5% 20%
𝑋 = 5 0% 15%
𝑋 = 6 0% 10%

joint

ℙ(𝑌 = 𝑦 | 𝑋 = 1)

𝑌 = 0 100%
𝑌 = 1 0%

ℙ(𝑌 = 𝑦 | 𝑋 = 2)

𝑌 = 0 66.5%
𝑌 = 1 33.3%

ℙ(𝑌 = 𝑦 | 𝑋 = 4)

𝑌 = 0 20%
𝑌 = 1 80%



Conditional Probabilities

▶ The conditional probability
ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦) = ℙ(𝑋 = 𝑥, 𝑌 = 𝑦)/ℙ(𝑌 = 𝑦).

𝑌 = 0 𝑌 = 1

𝑋 = 0 0% 0%
𝑋 = 1 5% 0%
𝑋 = 2 10% 5%
𝑋 = 3 15% 15%
𝑋 = 4 5% 20%
𝑋 = 5 0% 15%
𝑋 = 6 0% 10%

joint

ℙ(𝑋 = 𝑥 | 𝑌 = 0)

𝑋 = 0 0%
𝑋 = 1 14.2%
𝑋 = 2 28.5%
𝑋 = 3 42.8%
𝑋 = 4 14.2%
𝑋 = 5 0%
𝑋 = 6 0%



Observation

▶ Conditional probabilities sum to 1 as well.

▶ For any fixed 𝑥:

∑
𝑦
ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = 1

▶ For any fixed 𝑦:

∑
𝑥
ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦) = 1



Five Distributions

▶ We’ve seen five distributions:
▶ Joint: ℙ(𝑋 = 𝑥, 𝑌 = 𝑦)
▶ Marginal in 𝑋: ℙ(𝑋 = 𝑥)
▶ Marginal in 𝑌: ℙ(𝑌 = 𝑦)
▶ Conditional on 𝑋: ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥)
▶ Conditional on 𝑌: ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦)

▶ If we know the joint distribution, we can
compute any of the others.



Bayes’ Theorem

▶ Bayes’ Theorem relates conditional probabilities
and provides another way of computing them:

ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)ℙ(𝑋 = 𝑥)



Bayes’ Theorem

▶ Derivation:



Lecture 11 | Part 2

Bayes Decision Theory



Probabilistic Classification

▶ We have seen several paradigms for
classification:
▶ Nearest neighbors
▶ Linear predictors

▶ Now we see a probabilistic paradigm.



Probabilistic Classification

▶ In ML, we think of 𝑋 as a feature and 𝑌 as a label.
▶ Example: Given new flower with 𝑋 = 𝑥 petals, predict
the species, 𝑌.

▶ Idea: predict the most likely label 𝑦 given 𝑋 = 𝑥.
▶ I.e., predict the 𝑦 that maximizes ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥).



Binary Probabilistic Classification

▶ Predict 1 if ℙ(𝑌 = 1 | 𝑋 = 𝑥) > ℙ(𝑌 = 0 | 𝑋 = 𝑥);
otherwise predict 0.

▶ That is, pick whichever label is more likely given
the features.



Bayes Classification Rule

▶ This is the Bayes (binary) classification rule:
▶ Predict class 1 if ℙ(𝑌 = 1 | 𝑋 = 𝑥) > ℙ(𝑌 = 0 | 𝑋 = 𝑥);
▶ Otherwise, predict class 0.



Bayes Decision Theory
▶ Two equivalent forms of the Bayes classification rule:

▶ “Original” form:
▶ Predict class 1 if ℙ(𝑌 = 1 | 𝑋 = 𝑥) > ℙ(𝑌 = 0 | 𝑋 = 𝑥);
▶ Otherwise, predict class 0.

▶ “Alternative” form:
▶ Using Bayes’ rule,
ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)/ℙ(𝑋 = 𝑥)...

▶ Predict class 1 if
ℙ(𝑋 = 𝑥 | 𝑌 = 1)ℙ(𝑌 = 1) > ℙ(𝑋 = 𝑥 | 𝑌 = 0)ℙ(𝑌 = 0)

▶ Otherwise, predict class 0.



Main Idea

If we know the conditional probability of the label
𝑌 given feature 𝑋, the Bayes classification rule is a
natural way to make predictions.



Optimality

▶ We’ll see that the Bayes classification rule is
optimal in a certain sense.
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Continuous Distributions



Example: Penguins

▶ Suppose there are two species of penguin.

▶ One species tends to have longer flippers.

▶ Goal: given a new penguin with flipper length
𝑋 = 𝑥, predict its species, 𝑌.



Five Distributions

▶ In this situation, what do the five distributions
look like?
▶ Joint distribution of 𝑋 and 𝑌
▶ Marginal distribution in 𝑋
▶ Marginal distribution in 𝑌
▶ Conditional on 𝑋
▶ Conditional on 𝑌



Marginal in 𝑌

▶ What is the probability that Nature generates a
penguin from species 𝑌?
▶ Marginal distribution: ℙ(𝑌 = 𝑦).

▶ This is a discrete distribution, as before.

▶ Example:

𝑌 = 0 30%
𝑌 = 1 70%



Marginal in 𝑋

▶ What is the probability that Nature generates a
flipper length of 𝑥, without regard to species?

▶ Flipper length is a continuous random variable.

▶ Distribution is described by a probability density
function (pdf), 𝑝 ∶ ℝ → ℝ+.



Recall: Density Functions

▶ A probability density function (pdf) for a random
variable 𝑋 is a function 𝑝 ∶ ℝ → ℝ+ satisfying:

ℙ(𝑎 < 𝑋 < 𝑏) = ∫
𝑏

𝑎
𝑝𝑋(𝑥) 𝑑𝑥

▶ That is, the pdf 𝑝 describes how likely it is to get
a value of 𝑋 in any interval [𝑎, 𝑏].

▶ Note: ∫∞−∞ 𝑝𝑋(𝑥) 𝑑𝑥 = 1, but 𝑝(𝑥) can be larger than
one.



Intuition
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Intuition
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Intuition
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Marginal in 𝑋
▶ The distribution of flipper lengths is described
by a density function, 𝑝𝑋(𝑥).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Flipper Length (cm)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16



Exercise

What is the probability that Nature generates a
penguin with flipper length equal to 10 cm?

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Flipper Length (cm)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16



Solution

▶ Zero!

▶ 𝑝𝑋(𝑥) is not the probability that 𝑋 = 𝑥.

▶ Instead, ℙ(𝑋 = 𝑥) = ℙ(𝑥 < 𝑋 < 𝑥) = ∫𝑥𝑥 𝑝𝑋(𝑥) 𝑑𝑥 = 0

▶ The probability of a continuous random variable
being exactly a certain value is zero.



Example

▶ What is the probability that Nature generates a
penguin whose flipper length is between 7.5 and
10 cm?

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Flipper Length (cm)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

ℙ(7.5 < 𝑋 < 10) = ∫
10

7.5
𝑝𝑋(𝑥) 𝑑𝑥



Conditional on 𝑌

▶ What is the probability of a certain flipper length,
given that the species is 𝑦?

▶ Also a continuous distribution, described by
conditional density 𝑝(𝑥 | 𝑌 = 𝑦).

▶ Two conditional density functions: one for 𝑌 = 0
and one for 𝑌 = 1.
▶ Each integrates to one.



Conditional on 𝑌

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Flipper Length (cm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 Y = 0
Y = 1



Conditional on 𝑋

▶ What is the probability that the species is 𝑦 given
a flipper length of 𝑥?

▶ The conditional distribution of 𝑌 given 𝑋.

Exercise

Is this distribution continuous or discrete?



Conditional on 𝑋

▶ Answer: discrete, because 𝑌 is discrete.

▶ One distribution ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) for each possible
value of 𝑋 (infinitely many).



Conditional on 𝑋
▶ Although for any fixed 𝑥, ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) is
discrete, we can plot the functions
𝑓0(𝑥) = ℙ(𝑌 = 0 | 𝑋 = 𝑥) and 𝑓1(𝑥) = ℙ(𝑌 = 1 | 𝑋 = 𝑥)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Flipper Length (cm)

0.0

0.2

0.4

0.6

0.8

1.0

P(
Y

=
y|

X
=

x)

Y=0
Y=1



Bayes’ Rule

▶ Bayes’ Rule applies to densities, too:

ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = 𝑝(𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)𝑝𝑋(𝑥)



Bayes Decision Theory
▶ The Bayes classification rule applies to continuous
distributions, too.

▶ “Original” form:
▶ Predict class 1 if ℙ(𝑌 = 1 | 𝑋 = 𝑥) > ℙ(𝑌 = 0 | 𝑋 = 𝑥);
▶ Otherwise, predict class 0.

▶ “Alternative” form:
▶ Using Bayes’ rule,
ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)/ℙ(𝑋 = 𝑥)...

▶ Predict class 1 if
ℙ(𝑋 = 𝑥 | 𝑌 = 1)ℙ(𝑌 = 1) > ℙ(𝑋 = 𝑥 | 𝑌 = 0)ℙ(𝑌 = 0)

▶ Otherwise, predict class 0.



Exercise

Penguins with flippers of length 0, 3, and 12 are ob-
served. What are their predicted species according
to the Bayes’ classification rule?

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Flipper Length (cm)

0.0

0.2

0.4

0.6

0.8

1.0

P(
Y

=
y|

X
=

x)

Y=0
Y=1



Joint

▶ The joint distribution in this case is neither
totally continuous nor totally discrete.

▶ From Bayes’ rule:

𝑝(𝑥, 0) = 𝑝(𝑥 | 𝑌 = 0)ℙ(𝑌 = 0)
𝑝(𝑥, 1) = 𝑝(𝑥 | 𝑌 = 1)ℙ(𝑌 = 1)



Joint Distribution

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Flipper Length (cm)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
p(x|Y = 0)P(Y = 0)
p(x|Y = 1)P(Y = 1)



Exercise

Where does the Bayes decision rule make a predic-
tion for class 1?

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Flipper Length (cm)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
p(x|Y = 0)P(Y = 0)
p(x|Y = 1)P(Y = 1)

▶ Predict class 1 if 𝑝(𝑥 | 𝑌 = 1)ℙ(𝑌 =
1) > 𝑝(𝑋 = 𝑥 | 𝑌 = 0)ℙ(𝑌 = 0)

▶ Otherwise, predict class 0.



Multivariate Distributions

▶ In binary classification, 𝑦 ∈ {0, 1}.

▶ But we usually deal with feature vectors, ⃗𝑥.

▶ The previous applies with straightforward
changes.



Example: Penguins

▶ Again consider penguins of two species, but now
consider both flipper length and body mass.

▶ Each penguin’s measurements are a random
vector: ⃗𝑋.

▶ Densities are now functions of a vector.
▶ E.g., marginal: 𝑝𝑋( ⃗𝑥) ∶ ℝ2 → ℝ+



Marginal in ⃗𝑋

Flipper length (cm)

0 2
4

6
8

10

Mass
 (k

g)

0
2

4
6

8
10

0.01
0.02
0.03
0.04
0.05
0.06



Conditional on 𝑌

Flipper length (cm)

0 2
4

6
8

10

Mass
 (k

g)

0
2

4
6

8
10

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Y = 0
Y = 1



Conditional on 𝑋

Flipper length (cm)

0 2
4

6
8

10

Mass
 (k

g)

0
2

4
6

8
10

0.0
0.2
0.4
0.6

0.8

1.0
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Bayes Error



Exercise

Can a classifier exist that predicts the species of an
unseen penguin with 0% chance of error?

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Flipper Length (cm)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
p(x|Y = 0)P(Y = 0)
p(x|Y = 1)P(Y = 1)



Bayes Error

▶ The Bayes classification rule is a natural
approach to making predictions.

▶ It is also the best you can do, in a sense.



Errors

▶ What is the probability that the Bayes classifier
makes a mistake?

▶ In binary classification, there are two types of
errors:
▶ Predicted 0, but the right answer is 1 (Case 1).
▶ Predicted 1, but the right answer is 0 (Case 2).

▶ The probability of making a classification error is:

ℙ(error) = ℙ(Case 1) + ℙ(Case 2)



Probability of Error

▶ Case 1: it predicts 0, but the right answer is 1.

▶ The probability of this error is:

ℙ(Case 1) = ℙ(𝑌 is actually 1, predict 0)
= ℙ(𝑌 is actually 1) × ℙ(predict 0 | 𝑌 is actually 1)



Probability of Error

▶ Case 2: it predicts 1, but the right answer is 0.

▶ The probability of this error is:

ℙ(Case 2) = ℙ(𝑌 is actually 0, predict 1)
= ℙ(𝑌 is actually 0) × ℙ(predict 1 | 𝑌 is actually 0)



Bayes Error

▶ The probability that the Bayes classifier makes a
mistake is:

ℙ(error) = ℙ(Case 1) + ℙ(Case 2)
= ℙ(𝑌 is actually 1) × ℙ(predict 0 | 𝑌 is actually 1)
+ ℙ(𝑌 is actually 0) × ℙ(predict 1 | 𝑌 is actually 0)

▶ This is called the Bayes error.
▶ It depends on the distribution.



Interpretation

▶ The Bayes error measures the overlap between
the class-conditional distributions.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Flipper Length (cm)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
p(x|Y = 0)P(Y = 0)
p(x|Y = 1)P(Y = 1)

▶ It is the unavoidable error rate for any classifier
on that distribution.



Fact

▶ The Bayes error is the lowest possible error rate
for any classifier.

▶ Take any classifier. The probability that it makes
an error is ≥ the Bayes error.2

▶ In other words, the Bayes classifier is optimal.

2Note that this is a statement about a probability, and not about any finite
data set!



Exercise

What is the Bayes error if ℙ(𝑌 = 0) = ℙ(𝑌 = 1) = 0.5?

𝑥

𝑝(𝑥)

1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

𝑝0(𝑥|𝑌 = 0)
𝑝1(𝑥|𝑌 = 1)

ℙ(𝑌 is actually 1) × ℙ(predict 0 | 𝑌 is actually 1)
+ ℙ(𝑌 is actually 0) × ℙ(predict 1 | 𝑌 is actually 0)



Exercise

What is the Bayes error if ℙ(𝑌 = 0)0.3 and ℙ(𝑌 = 1) = 0.7?

𝑥

𝑝(𝑥)

1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

𝑝0(𝑥|𝑌 = 0)
𝑝1(𝑥|𝑌 = 1)

ℙ(𝑌 is actually 1) × ℙ(predict 0 | 𝑌 is actually 1)
+ ℙ(𝑌 is actually 0) × ℙ(predict 1 | 𝑌 is actually 0)



Bayes Error vs. Accuracy

▶ But wait... can’t we usually make a classifier with 100%
training accuracy?

▶ Yes! But training accuracy is not the same as the
probability of making a mistake on new data.

▶ In fact, training accuracy is one way of estimating the
true error rate.
▶ Test accuracy is another (better) estimate.

▶ If train accuracy is much larger than the true error
rate, we are overfitting.



Problem

▶ The Bayes classifier is optimal.

▶ But it requires knowing the joint distribution; we
almost never know this.

▶ Next time: estimating probability distributions
from data.


