
Lecture 11 | Part 1

Probabilistic Modeling



Probabilistic Modeling▶ Where does data come from?▶ We might imagine that “Nature” generates it
using some random (i.e., probabilistic) process.▶ Maybe modeling this probabilistic process will
suggest new ways of making predictions?



Example: Flowers▶ Suppose there are two species
of flower.▶ One species tends to have more
petals.▶ Goal: Given a new flower with𝑋 = 𝑥 petals predict its species, 𝑌.



Example: Flowers▶ Idea: The number of petals, 𝑋, and the species, 𝑌,
are random variables.▶ Assumption: When Nature generates a new
flower, it picks 𝑋 and 𝑌 from some probability
distribution.▶ Let’s imagine (for now) that we know this
distribution.



The Joint Distribution▶ The joint distribution ℙ(𝑋 = 𝑥, 𝑌 = 𝑦) gives us full
information.1 𝑌 = 0 𝑌 = 1𝑋 = 0 0% 0%𝑋 = 1 5% 0%𝑋 = 2 10% 5%𝑋 = 3 15% 15%𝑋 = 4 5% 20%𝑋 = 5 0% 15%𝑋 = 6 0% 10%

1Note: it’s conventional to encode 𝑌 as 0 or 1 instead of 1 and -1.



Observation▶ The entries of the joint distribution table sum to 100%.▶ Mathematically: ∑𝑥∈{0,1,…,6} ∑𝑦∈{0,1}ℙ(𝑋 = 𝑥, 𝑌 = 𝑦) = 1.𝑌 = 0 𝑌 = 1𝑋 = 0 0% 0%𝑋 = 1 5% 0%𝑋 = 2 10% 5%𝑋 = 3 15% 15%𝑋 = 4 5% 20%𝑋 = 5 0% 15%𝑋 = 6 0% 10%



Marginal Distributions▶ What is the probability that a new flower has𝑋 = 4 petals (regardless of species)?𝑌 = 0 𝑌 = 1𝑋 = 0 0% 0%𝑋 = 1 5% 0%𝑋 = 2 10% 5%𝑋 = 3 15% 15%𝑋 = 4 5% 20%𝑋 = 5 0% 15%𝑋 = 6 0% 10%+ = 25 %



Marginal Distributions▶ The marginal distribution for 𝑋 is found by summing over
values of 𝑌.▶ That is: ℙ(𝑋 = 𝑥) = ∑𝑦∈{0,1} ℙ(𝑋 = 𝑥, 𝑌 = 𝑦)𝑌 = 0 𝑌 = 1𝑋 = 0 0% 0%𝑋 = 1 5% 0%𝑋 = 2 10% 5%𝑋 = 3 15% 15%𝑋 = 4 5% 20%𝑋 = 5 0% 15%𝑋 = 6 0% 10%

joint

𝑋 = 0 0%𝑋 = 1 5%𝑋 = 2 15%𝑋 = 3 30%𝑋 = 4 25%𝑋 = 5 15%𝑋 = 6 10%
marginal in X



Marginal Distributions▶ What is the probability that a new flower is
species 1 (regardless of number of petals)?𝑌 = 0 𝑌 = 1𝑋 = 0 0% 0%𝑋 = 1 5% 0%𝑋 = 2 10% 5%𝑋 = 3 15% 15%𝑋 = 4 5% 20%𝑋 = 5 0% 15%𝑋 = 6 0% 10%

⑬5% 65%



Marginal Distributions▶ The marginal distribution for 𝑌 is found by summing over
values of 𝑋.▶ That is: ℙ(𝑌 = 𝑦) = ∑𝑥∈{0,…,6} ℙ(𝑋 = 𝑥, 𝑌 = 𝑦)𝑌 = 0 𝑌 = 1𝑋 = 0 0% 0%𝑋 = 1 5% 0%𝑋 = 2 10% 5%𝑋 = 3 15% 15%𝑋 = 4 5% 20%𝑋 = 5 0% 15%𝑋 = 6 0% 10%

joint

𝑌 = 0 35%𝑌 = 1 65%
marginal in Y



Observation▶ The probabilities in the marginal distributions
also sum to 1.



Exercise
Suppose flower 𝐴 has 4 petals. What do you think
its species is?

𝑌 = 0 𝑌 = 1𝑋 = 0 0% 0%𝑋 = 1 5% 0%𝑋 = 2 10% 5%𝑋 = 3 15% 15%𝑋 = 4 5% 20%𝑋 = 5 0% 15%𝑋 = 6 0% 10%
G



Intuition▶ It seems more likely that a petal with 4 flowers is
from species 1. 𝑌 = 0 𝑌 = 1𝑋 = 0 0% 0%𝑋 = 1 5% 0%𝑋 = 2 10% 5%𝑋 = 3 15% 15%𝑋 = 4 5% 20%𝑋 = 5 0% 15%𝑋 = 6 0% 10%oo



Conditional Probabilities▶ This is captured by the conditional probabilityℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = ℙ(𝑋 = 𝑥, 𝑌 = 𝑦)/ℙ(𝑋 = 𝑥).𝑌 = 0 𝑌 = 1𝑋 = 0 0% 0%𝑋 = 1 5% 0%𝑋 = 2 10% 5%𝑋 = 3 15% 15%𝑋 = 4 5% 20%𝑋 = 5 0% 15%𝑋 = 6 0% 10%
joint

ℙ(𝑌 = 𝑦 | 𝑋 = 1)𝑌 = 0 100%𝑌 = 1 0%ℙ(𝑌 = 𝑦 | 𝑋 = 2)𝑌 = 0 66.5%𝑌 = 1 33.3%ℙ(𝑌 = 𝑦 | 𝑋 = 4)𝑌 = 0 20%𝑌 = 1 80%

u
#

25%



Conditional Probabilities▶ The conditional probabilityℙ(𝑋 = 𝑥 | 𝑌 = 𝑦) = ℙ(𝑋 = 𝑥, 𝑌 = 𝑦)/ℙ(𝑌 = 𝑦).𝑌 = 0 𝑌 = 1𝑋 = 0 0% 0%𝑋 = 1 5% 0%𝑋 = 2 10% 5%𝑋 = 3 15% 15%𝑋 = 4 5% 20%𝑋 = 5 0% 15%𝑋 = 6 0% 10%
joint

ℙ(𝑋 = 𝑥 | 𝑌 = 0)𝑋 = 0 0%𝑋 = 1 14.2%𝑋 = 2 28.5%𝑋 = 3 42.8%𝑋 = 4 14.2%𝑋 = 5 0%𝑋 = 6 0%



Observation▶ Conditional probabilities sum to 1 as well.▶ For any fixed 𝑥:∑𝑦 ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = 1▶ For any fixed 𝑦:∑𝑥 ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦) = 1



Five Distributions▶ We’ve seen five distributions:▶ Joint: ℙ(𝑋 = 𝑥, 𝑌 = 𝑦)▶ Marginal in 𝑋: ℙ(𝑋 = 𝑥)▶ Marginal in 𝑌: ℙ(𝑌 = 𝑦)▶ Conditional on 𝑋: ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥)▶ Conditional on 𝑌: ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦)▶ If we know the joint distribution, we can
compute any of the others.



Bayes’ Theorem▶ Bayes’ Theorem relates conditional probabilities
and provides another way of computing them:ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)ℙ(𝑋 = 𝑥)



Bayes’ Theorem▶ Derivation:

IP(X=x(Y=y)(Y=y)= (P(X=x, Y=y) Q

IP(Y =y(X=x)IP(X=x) = 1P(X= X, Y=y). ②

IP(X= x (Y=y)(Y=y)= |P(y =y(X=x)(P(X=x)



Lecture 11 | Part 2

Bayes Decision Theory



Probabilistic Classification▶ We have seen several paradigms for
classification:▶ Nearest neighbors▶ Linear predictors▶ Now we see a probabilistic paradigm.



Probabilistic Classification▶ In ML, we think of 𝑋 as a feature and 𝑌 as a label.▶ Example: Given new flower with 𝑋 = 𝑥 petals, predict
the species, 𝑌.▶ Idea: predict the most likely label 𝑦 given 𝑋 = 𝑥.▶ I.e., predict the 𝑦 that maximizes ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥).



Binary Probabilistic Classification▶ Predict 1 if ℙ(𝑌 = 1 | 𝑋 = 𝑥) > ℙ(𝑌 = 0 | 𝑋 = 𝑥);
otherwise predict 0.▶ That is, pick whichever label is more likely given
the features.



Bayes Classification Rule▶ This is the Bayes (binary) classification rule:▶ Predict class 1 if ℙ(𝑌 = 1 | 𝑋 = 𝑥) > ℙ(𝑌 = 0 | 𝑋 = 𝑥);▶ Otherwise, predict class 0.



Bayes Decision Theory▶ Two equivalent forms of the Bayes classification rule:▶ “Original” form:▶ Predict class 1 if ℙ(𝑌 = 1 | 𝑋 = 𝑥) > ℙ(𝑌 = 0 | 𝑋 = 𝑥);▶ Otherwise, predict class 0.▶ “Alternative” form:▶ Using Bayes’ rule,ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)/ℙ(𝑋 = 𝑥)...▶ Predict class 1 ifℙ(𝑋 = 𝑥 | 𝑌 = 1)ℙ(𝑌 = 1) > ℙ(𝑋 = 𝑥 | 𝑌 = 0)ℙ(𝑌 = 0)▶ Otherwise, predict class 0.



Main Idea
If we know the conditional probability of the label𝑌 given feature 𝑋, the Bayes classification rule is a
natural way to make predictions.



Optimality▶ We’ll see that the Bayes classification rule is
optimal in a certain sense.
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Continuous Distributions



Example: Penguins▶ Suppose there are two species of penguin.▶ One species tends to have longer flippers.▶ Goal: given a new penguin with flipper length𝑋 = 𝑥, predict its species, 𝑌.



Five Distributions▶ In this situation, what do the five distributions
look like?▶ Joint distribution of 𝑋 and 𝑌▶ Marginal distribution in 𝑋▶ Marginal distribution in 𝑌▶ Conditional on 𝑋▶ Conditional on 𝑌



Marginal in 𝑌▶ What is the probability that Nature generates a
penguin from species 𝑌?▶ Marginal distribution: ℙ(𝑌 = 𝑦).▶ This is a discrete distribution, as before.▶ Example: 𝑌 = 0 30%𝑌 = 1 70%



Marginal in 𝑋▶ What is the probability that Nature generates a
flipper length of 𝑥, without regard to species?▶ Flipper length is a continuous random variable.▶ Distribution is described by a probability density
function (pdf), 𝑝 ∶ ℝ → ℝ+.



Recall: Density Functions▶ A probability density function (pdf) for a random
variable 𝑋 is a function 𝑝 ∶ ℝ → ℝ+ satisfying:ℙ(𝑎 < 𝑋 < 𝑏) = ∫𝑏𝑎 𝑝𝑋(𝑥) 𝑑𝑥▶ That is, the pdf 𝑝 describes how likely it is to get
a value of 𝑋 in any interval [𝑎, 𝑏].▶ Note: ∫∞−∞ 𝑝𝑋(𝑥) 𝑑𝑥 = 1, but 𝑝(𝑥) can be larger than
one.

⑭
a 17



Intuition



Intuition



Intuition



Intuition

W



Marginal in 𝑋▶ The distribution of flipper lengths is described
by a density function, 𝑝𝑋(𝑥).



Exercise
What is the probability that Nature generates a
penguin with flipper length equal to 10 cm? Zero



Solution▶ Zero!▶ 𝑝𝑋(𝑥) is not the probability that 𝑋 = 𝑥.▶ Instead, ℙ(𝑋 = 𝑥) = ℙ(𝑥 < 𝑋 < 𝑥) = ∫𝑥𝑥 𝑝𝑋(𝑥) 𝑑𝑥 = 0▶ The probability of a continuous random variable
being exactly a certain value is zero.



Example▶ What is the probability that Nature generates a
penguin whose flipper length is between 7.5 and
10 cm?

ℙ(7.5 < 𝑋 < 10) = ∫107.5 𝑝𝑋(𝑥) 𝑑𝑥



Conditional on 𝑌▶ What is the probability of a certain flipper length,
given that the species is 𝑦?▶ Also a continuous distribution, described by
conditional density 𝑝(𝑥 | 𝑌 = 𝑦).▶ Two conditional density functions: one for 𝑌 = 0
and one for 𝑌 = 1.▶ Each integrates to one.

IP



Conditional on 𝑌



Conditional on 𝑋▶ What is the probability that the species is 𝑦 given
a flipper length of 𝑥?▶ The conditional distribution of 𝑌 given 𝑋.
Exercise
Is this distribution continuous or discrete?G



Conditional on 𝑋▶ Answer: discrete, because 𝑌 is discrete.▶ One distribution ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) for each possible
value of 𝑋 (infinitely many).

IP(Y=/X= 11 .5) = 70%
IP(Y= 11 X= 11.5) = 30 %



Conditional on 𝑋▶ Although for any fixed 𝑥, ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) is
discrete, we can plot the functions𝑓0(𝑥) = ℙ(𝑌 = 0 | 𝑋 = 𝑥) and 𝑓1(𝑥) = ℙ(𝑌 = 1 | 𝑋 = 𝑥)



Bayes’ Rule▶ Bayes’ Rule applies to densities, too:ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = 𝑝(𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)𝑝𝑋(𝑥)



Bayes Decision Theory▶ The Bayes classification rule applies to continuous
distributions, too.▶ “Original” form:▶ Predict class 1 if ℙ(𝑌 = 1 | 𝑋 = 𝑥) > ℙ(𝑌 = 0 | 𝑋 = 𝑥);▶ Otherwise, predict class 0.▶ “Alternative” form:▶ Using Bayes’ rule,ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)/ℙ(𝑋 = 𝑥)...▶ Predict class 1 ifℙ(𝑋 = 𝑥 | 𝑌 = 1)ℙ(𝑌 = 1) > ℙ(𝑋 = 𝑥 | 𝑌 = 0)ℙ(𝑌 = 0)▶ Otherwise, predict class 0.
Pi



Exercise
Penguins with flippers of length 0, 3, and 12 are ob-
served. What are their predicted species according
to the Bayes’ classification rule?

P(Y=, (X)

1P(Y(X)=x

A

↓ I



Joint▶ The joint distribution in this case is neither
totally continuous nor totally discrete.▶ From Bayes’ rule:𝑝(𝑥, 0) = 𝑝(𝑥 | 𝑌 = 0)ℙ(𝑌 = 0)𝑝(𝑥, 1) = 𝑝(𝑥 | 𝑌 = 1)ℙ(𝑌 = 1)



Joint Distribution



Exercise
Where does the Bayes decision rule make a predic-
tion for class 1?

▶ Predict class 1 if 𝑝(𝑥 | 𝑌 = 1)ℙ(𝑌 =1) > 𝑝(𝑋 = 𝑥 | 𝑌 = 0)ℙ(𝑌 = 0)▶ Otherwise, predict class 0.ed



Multivariate Distributions▶ In binary classification, 𝑦 ∈ {0, 1}.▶ But we usually deal with feature vectors, ⃗𝑥.▶ The previous applies with straightforward
changes.



Example: Penguins▶ Again consider penguins of two species, but now
consider both flipper length and body mass.▶ Each penguin’s measurements are a random
vector: ⃗𝑋.▶ Densities are now functions of a vector.▶ E.g., marginal: 𝑝𝑋( ⃗𝑥) ∶ ℝ2 → ℝ+



Marginal in ⃗𝑋



Conditional on 𝑌



Conditional on 𝑋
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Bayes Error



Exercise
Can a classifier exist that predicts the species of an
unseen penguin with 0% chance of error? No



Bayes Error▶ The Bayes classification rule is a natural
approach to making predictions.▶ It is also the best you can do, in a sense.



Errors▶ What is the probability that the Bayes classifier
makes a mistake?▶ In binary classification, there are two types of
errors:▶ Predicted 0, but the right answer is 1 (Case 1).▶ Predicted 1, but the right answer is 0 (Case 2).▶ The probability of making a classification error is:ℙ(error) = ℙ(Case 1) + ℙ(Case 2)



Probability of Error▶ Case 1: it predicts 0, but the right answer is 1.▶ The probability of this error is:ℙ(Case 1) = ℙ(𝑌 is actually 1, predict 0)= ℙ(𝑌 is actually 1) × ℙ(predict 0 | 𝑌 is actually 1)



Probability of Error▶ Case 2: it predicts 1, but the right answer is 0.▶ The probability of this error is:ℙ(Case 2) = ℙ(𝑌 is actually 0, predict 1)= ℙ(𝑌 is actually 0) × ℙ(predict 1 | 𝑌 is actually 0)



Bayes Error▶ The probability that the Bayes classifier makes a
mistake is:ℙ(error) = ℙ(Case 1) + ℙ(Case 2)= ℙ(𝑌 is actually 1) × ℙ(predict 0 | 𝑌 is actually 1)+ ℙ(𝑌 is actually 0) × ℙ(predict 1 | 𝑌 is actually 0)▶ This is called the Bayes error.▶ It depends on the distribution.



Interpretation▶ The Bayes error measures the overlap between
the class-conditional distributions.

▶ It is the unavoidable error rate for any classifier
on that distribution.



Fact▶ The Bayes error is the lowest possible error rate
for any classifier.▶ Take any classifier. The probability that it makes
an error is ≥ the Bayes error.2▶ In other words, the Bayes classifier is optimal.

2Note that this is a statement about a probability, and not about any finite
data set!



Exercise
What is the Bayes error if ℙ(𝑌 = 0) = ℙ(𝑌 = 1) = 0.5?

𝑥

𝑝(𝑥)

1 2 3 4 5 6
0.10.2
0.30.4
0.5

𝑝0(𝑥|𝑌 = 0)𝑝1(𝑥|𝑌 = 1) ℙ(𝑌 is actually 1) × ℙ(predict 0 | 𝑌 is actually 1)+ ℙ(𝑌 is actually 0) × ℙ(predict 1 | 𝑌 is actually 0)
0 . 1

↳ 0
. 3

al

mmm
-2 0. 3

= (0 .
3+ 0 .3) = 0. 3



Exercise
What is the Bayes error if ℙ(𝑌 = 0)0.3 and ℙ(𝑌 = 1) = 0.7?

𝑥

𝑝(𝑥)

1 2 3 4 5 6
0.10.2
0.30.4
0.5

𝑝0(𝑥|𝑌 = 0)𝑝1(𝑥|𝑌 = 1) ℙ(𝑌 is actually 1) × ℙ(predict 0 | 𝑌 is actually 1)+ ℙ(𝑌 is actually 0) × ℙ(predict 1 | 𝑌 is actually 0)

=



Bayes Error vs. Accuracy▶ But wait... can’t we usually make a classifier with 100%
training accuracy?▶ Yes! But training accuracy is not the same as the
probability of making a mistake on new data.▶ In fact, training accuracy is one way of estimating the
true error rate.▶ Test accuracy is another (better) estimate.▶ If train accuracy is much larger than the true error
rate, we are overfitting.



Problem▶ The Bayes classifier is optimal.▶ But it requires knowing the joint distribution; we
almost never know this.▶ Next time: estimating probability distributions
from data.


