
Lecture 10 | Part 1

High-Dimensional Feature Maps

Linear Prediction Rules

▶ We have seen how to fit linear functions:

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑

▶ Used for both regression and classification

▶ Limitation: regression function / decision
boundary is a straight line / plane / hyperplane

Example
▶ The data below is not linearly separable

▶ No prediction function of the form
𝐻(𝑥1, 𝑥2) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 will work well

1.0 0.5 0.0 0.5 1.0
x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x 2

However...

▶ We have seen a way around this limitation: basis
functions.

▶ Idea: design a function �⃗�(⃗𝑥) that maps data to a
new space in which it is linearly separable.

Example

▶ Consider the mapping �⃗�(𝑥1, 𝑥2) = (𝑥1, 𝑥2, |𝑥1𝑥2|)𝑇

1.0 0.5 0.0 0.5 1.0
x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x 2

1

1.00.50.0
0.5
1.0

2
1.0 0.5 0.0 0.5 1.0

3

0.0

0.2

0.4

0.6

0.8

1

1.0
0.5

0.0
0.5

1.0

2

1.0
0.5

0.0
0.5

1.0

3

1.0
0.5

0.0
0.5
1.0
1.5
2.0

Procedure

1. Define feature map �⃗�(⃗𝑥) ∶ ℝ𝑑 → ℝ𝑘
▶ �⃗�(⃗𝑥) = (𝜙1(⃗𝑥), … , 𝜙𝑘(⃗𝑥))𝑇
▶ Number of basis functions 𝑘 can be > or ≤ than 𝑑

2. Map each training point to 𝑘-dimensional
feature space: ⃗𝑥(𝑖) ↦ �⃗�(⃗𝑥(𝑖))

3. Learn a linear predictor in feature space:

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝜙1(⃗𝑥) + … + 𝜙𝑘(⃗𝑥)

Procedure

Procedure

Example
▶ Use mapping �⃗�(⃗𝑥) = (𝑥1, 𝑥2, |𝑥1𝑥2|)𝑇

▶ Decision boundary in “data space” no longer a
straight line.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Exercise

Suppose �⃗� = (3, −1, 2)𝑇 defines a linear predictor in
feature space and �⃗� = (𝑥1, 𝑥2, |𝑥1𝑥2|)𝑇 is the map-
ping from “data space” to “feature space”.

Let ⃗𝑥 = (2, −3)𝑇 be a new point that needs to be
classified. What is the predicted label?

Feature Maps

▶ How do we choose �⃗�?

▶ Hope: data is linearly separable in feature space

▶ Appears difficult to engineer �⃗� to satisfy this.
▶ Need to design �⃗� for each new data set?

▶ Goal: design a general feature map that is likely
to make any data set linearly separable

High-Dimensional Feature Maps

▶ Observe: in our example, �⃗� mapped to space of
larger dimension

1.0 0.5 0.0 0.5 1.0
x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x 2

1

1.00.50.0
0.5
1.0

2
1.0 0.5 0.0 0.5 1.0

3

0.0

0.2

0.4

0.6

0.8

1

1.0
0.5

0.0
0.5

1.0

2

1.0
0.5

0.0
0.5

1.0

3

1.0
0.5

0.0
0.5
1.0
1.5
2.0

High-Dimensional Feature Maps

▶ Intuition: each additional feature makes the
data easier to classify.

▶ Intuition: a high-dimensional feature map is
likely to make the data linearly separable.

▶ Idea: design very high-dimensional generic
feature maps.

Example: Monomials

▶ Define a feature map �⃗� ∶ ℝ2 → ℝ6 as follows:

�⃗�(⃗𝑥) = (1, 𝑥1, 𝑥2, 𝑥1𝑥2, 𝑥21 , 𝑥22)𝑇

▶ We fit a prediction function of the form:

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1𝑥2 + 𝑤4𝑥21 + 𝑤5𝑥22

Example: Monomials

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Example: Monomials

▶ In general, define a feature map �⃗� to contain all
monomials of the form:

1, 𝑥𝑖, 𝑥𝑖𝑥𝑗, 𝑥2𝑖

▶ If ⃗𝑥 ∈ ℝ𝑑, then �⃗�(⃗𝑥) ∈ ℝ1+2𝑑+(
𝑑
2).

▶ Example: if ⃗𝑥 ∈ ℝ50, then �⃗�(⃗𝑥) ∈ ℝ1,326.

Example: Monomials

▶ Why stop there? Design �⃗� to contain all terms of
form:

1, 𝑥𝑖, 𝑥𝑖𝑥𝑗, 𝑥2𝑖 , 𝑥𝑖𝑥𝑗𝑥𝑘, 𝑥3𝑖

▶ If ⃗𝑥 ∈ ℝ𝑑, then �⃗�(⃗𝑥) ∈ ℝ1+3𝑑+(
𝑑
2)+(𝑑3).

▶ Example: if ⃗𝑥 ∈ ℝ50, then �⃗�(⃗𝑥) ∈ ℝ20,976!

▶ And so on...

Example: Monomials

▶ Monomial feature maps take low-dimensional
data and map it to very high-dimensional space.

▶ It is very general: the data is likely to be linearly
separable in this space.

▶ It solves the problem of needing to manually
craft basis functions for each new data set.

Problem

▶ Mapping to very high dimensions is likely to
make the data linearly separable.

▶ But fitting a linear prediction rule in very high
dimensions is computationally costly.

Lecture 10 | Part 2

The Kernel Trick

Recap

▶ We can learn non-linear patterns by:

1. Defining a high-dimensional feature map,
�⃗� ∶ ℝ𝑑 → ℝ𝑘

2. Mapping each training point to 𝑘-dimensional feature
space: ⃗𝑥(𝑖) ↦ �⃗�(⃗𝑥(𝑖))

3. Training a linear predictor in feature space.

Problem

▶ Learning in a very high-dimensional space can
be costly, or even infeasible.

The Trick

▶ We can train many linear predictors as if we have
mapped data to feature space, without actually
doing so.

Idea

▶ In many algorithms, when �⃗�(⃗𝑥) appears, it always
appears as part of a dot product:

�⃗�(⃗𝑥) ⋅ �⃗�(⃗𝑥′)

▶ To compute, we could map and do dot product in
feature space.

▶ But this is costly!

Kernels

▶ But some �⃗� are special; for them, there is a
function 𝜅 satisfying:

𝜅(⃗𝑥, ⃗𝑥′) = �⃗�(⃗𝑥) ⋅ �⃗�(⃗𝑥′)

▶ Crucially, computing 𝜅 does not require mapping
to feature space!

▶ 𝜅 is called a kernel function.

Example: Polynomial Kernel

▶ Define the feature map �⃗� ∶ ℝ2 → ℝ6 as follows:

�⃗�(⃗𝑥) = (1, 𝑥21 , 𝑥22 , √2 𝑥1, √2 𝑥2, √2 𝑥1𝑥2,)𝑇

▶ 𝜅(⃗𝑥, ⃗𝑥′) = (1 + ⃗𝑥 ⋅ ⃗𝑥′)2 is a kernel for this �⃗�.
▶ That is, 𝜅(⃗𝑥, ⃗𝑥′) = �⃗�(⃗𝑥) ⋅ �⃗�(⃗𝑥′)

▶ Called the polynomial kernel1

1In general, 𝜅(⃗𝑥, ⃗𝑥′) = (1 + ⃗𝑥 ⋅ ⃗𝑥′)𝑘 is kernel for 𝑘-order monomial mappings

Exercise

As before, define

�⃗�(⃗𝑥) = (1, 𝑥21 , 𝑥22 , √2 𝑥1, √2 𝑥2, √2 𝑥1𝑥2)𝑇,

and let 𝜅(⃗𝑥, ⃗𝑥′) = (1 + ⃗𝑥 ⋅ ⃗𝑥′)2 be the polynomial
kernel.

Let ⃗𝑥 = (2, −3)𝑇 and ⃗𝑥′ = (1, 4)𝑇.

1. Compute �⃗�(⃗𝑥) and �⃗�(⃗𝑥′).
2. Use that to compute �⃗�(⃗𝑥) ⋅ �⃗�(⃗𝑥′).
3. Now compute 𝜅(⃗𝑥, ⃗𝑥′) by evaluating (1 + ⃗𝑥 ⋅ ⃗𝑥′)2.
4. Are they the same?

Main Idea

For certain feature maps �⃗�, there is an easy way
to compute �⃗�(⃗𝑥) ⋅ �⃗�(⃗𝑥′) without actually computing
�⃗�(⃗𝑥) and �⃗�(⃗𝑥′): use the kernel function 𝜅(⃗𝑥, ⃗𝑥′).

The Kernel Trick

▶ In many algorithms, when �⃗�(⃗𝑥) appears, it always
appears as part of a dot product of the form:

�⃗�(⃗𝑥) ⋅ �⃗�(⃗𝑥′)

▶ By replacing all instances of �⃗�(⃗𝑥) ⋅ �⃗�(⃗𝑥′) with
𝜅(⃗𝑥, ⃗𝑥′), we kernelize the algorithm; avoid
explicitly mapping to feature space.

▶ This is called the kernel trick.

Kernelized Algorithms

▶ Only certain feature maps have
efficiently-computed kernels.

▶ Only certain learning algorithms can be
kernelized.

▶ All of the linear algorithms we’ve learned can.
▶ Least squares, perceptron, SVMs, etc.

Lecture 10 | Part 3

Kernel Ridge Regression (and Kernel SVM)

Kernel Ridge Regression

▶ Let’s kernelize ridge regression.

▶ First: verify that all instances of �⃗�(⃗𝑥) appear as
part of a dot product: �⃗�(⃗𝑥) ⋅ �⃗�(⃗𝑥′)

Review: Ridge Regression

▶ Suppose �⃗�(⃗𝑥) is a feature map. To train a ridge
regressor in feature space, we’d solve

argmin
�⃗�

1
𝑛

𝑛

∑
𝑖=1
(�⃗�(⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)

2
+ 𝜆‖�⃗�‖2

▶ In matrix-vector form, where Φ is the design
matrix, solve:

argmin
�⃗�

1
𝑛‖Φ�⃗� − ⃗𝑦‖2 + 𝜆�⃗�𝑇�⃗�

Problem

▶ To perform ridge regression, solve:

argmin
�⃗�

1
𝑛‖Φ�⃗� − ⃗𝑦‖2 + 𝜆�⃗�𝑇�⃗�

▶ To kernelize this, we need to replace all
instances of �⃗�(⃗𝑥) ⋅ �⃗�(⃗𝑥′) with 𝜅(⃗𝑥, ⃗𝑥′).

▶ But �⃗�(⃗𝑥) ⋅ �⃗�(⃗𝑥′) doesn’t appear here!

▶ Fix: rewrite this problem in a dual form.

Fact
▶ The solution 𝑤∗ is a linear combination of �⃗�(⃗𝑥(𝑖)):

�⃗�∗ =
𝑛

∑
𝑖=1
𝛼𝑖�⃗�(⃗𝑥(𝑖))

▶ Why? The gradient of the regularized risk is:
2
𝑛

𝑛

∑
𝑖=1
(�⃗�(⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖) �⃗�(⃗𝑥(𝑖)) + 2𝜆�⃗�

▶ Setting to zero, solving for �⃗� gives:

�⃗�∗ =
𝑛

∑
𝑖=1

(− 1𝑛𝜆�⃗�(⃗𝑥
(𝑖)) ⋅ �⃗�∗ − 𝑦𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝛼𝑖

�⃗�(⃗𝑥(𝑖))

Fact

▶ The solution 𝑤∗ is a linear combination of �⃗�(⃗𝑥(𝑖)):

�⃗�∗ =
𝑛

∑
𝑖=1
𝛼𝑖�⃗�(⃗𝑥(𝑖))

▶ In matrix-vector form, where �⃗� = (𝛼1, … , 𝛼𝑛)𝑇:

�⃗�∗ = Φ𝑇�⃗�

Dual Problem

▶ Using the fact that �⃗�∗ = ∑𝑛𝑖=1 𝛼𝑖�⃗�(⃗𝑥(𝑖)) = Φ𝑇�⃗� for
some �⃗�, the problem:

argmin
�⃗�

1
𝑛‖Φ�⃗� − ⃗𝑦‖2 + 𝜆�⃗�𝑇�⃗�

is equivalent to the dual problem:

argmin
�⃗�

1
𝑛‖ΦΦ

𝑇�⃗� − ⃗𝑦‖2 + 𝜆�⃗�𝑇ΦΦ𝑇�⃗�

Main Idea

To do ridge regression, you can either solve:

argmin
�⃗�

1
𝑛‖Φ�⃗� − ⃗𝑦‖2 + 𝜆�⃗�𝑇�⃗�

or you can solve the dual problem:

argmin
�⃗�

1
𝑛‖ΦΦ

𝑇�⃗� − ⃗𝑦‖2 + 𝜆�⃗�𝑇ΦΦ𝑇�⃗�

They give the same answer! But the dual problem
can be kernelized.

Kernelizing

▶ Where does �⃗�(⃗𝑥) appear in this problem?

argmin
�⃗�

1
𝑛‖ΦΦ

𝑇�⃗� − ⃗𝑦‖2 + 𝜆�⃗�𝑇ΦΦ𝑇�⃗�

▶ Inside Φ:

Φ = (

�⃗�(⃗𝑥(1))
�⃗�(⃗𝑥(2))

⋮
�⃗�(⃗𝑥(𝑛))

)

Exercise

Argue that the (i, j) entry of ΦΦ𝑇 is equal to
𝜅(⃗𝑥(𝑖), ⃗𝑥(𝑗)).

Φ = (

�⃗�(⃗𝑥(1))
�⃗�(⃗𝑥(2))

⋮
�⃗�(⃗𝑥(𝑛))

)

Kernelizing

▶ The (𝑖, 𝑗) entry of ΦΦ𝑇 is �⃗�(⃗𝑥(𝑖)) ⋅ �⃗�(⃗𝑥(𝑗)) = 𝜅(⃗𝑥(𝑖), ⃗𝑥(𝑗))

ΦΦ𝑇 = (

𝜅(⃗𝑥(1), ⃗𝑥(1)) 𝜅(⃗𝑥(1), ⃗𝑥(2)) ⋯ 𝜅(⃗𝑥(1), ⃗𝑥(𝑛))
𝜅(⃗𝑥(2), ⃗𝑥(1)) 𝜅(⃗𝑥(2), ⃗𝑥(2)) ⋯ 𝜅(⃗𝑥(2), ⃗𝑥(𝑛))

⋮ ⋮ ⋱ ⋮
𝜅(⃗𝑥(𝑛), ⃗𝑥(1)) 𝜅(⃗𝑥(𝑛), ⃗𝑥(2)) ⋯ 𝜅(⃗𝑥(𝑛), ⃗𝑥(𝑛))

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐾

▶ 𝐾 is called the Kernel matrix (or Gram matrix).

Kernel Ridge Regression

▶ The dual problem becomes:

argmin
�⃗�

1
𝑛‖𝐾�⃗� − ⃗𝑦‖2 + 𝜆�⃗�𝑇𝐾�⃗�

▶ Exact solution to the dual problem:

�⃗�∗ = (𝐾 + 𝑛𝜆𝐼)−1 ⃗𝑦

▶ This is kernel ridge regression.

Kernelization

▶ Observe: we train linear predictor in feature
space without actually mapping to feature space:

�⃗�∗ = (𝐾 + 𝑛𝜆𝐼)−1 ⃗𝑦

Making Predictions
▶ To predict on a new point ⃗𝑥, normally:
𝐻(⃗𝑥) = �⃗�∗ ⋅ �⃗�(⃗𝑥).

▶ How to do this without actually mapping?

▶ Recall: 𝑤∗ = ∑𝑛𝑖=1 𝛼∗𝑖 �⃗�(⃗𝑥(𝑖))

▶ So:

𝐻(⃗𝑥) =
𝑛

∑
𝑖=1
𝛼∗𝑖 �⃗�(⃗𝑥(𝑖)) ⋅ �⃗�(⃗𝑥) =

𝑛

∑
𝑖=1
𝛼∗𝑖 𝜅(⃗𝑥(𝑖), ⃗𝑥)

Making Predictions

▶ To make a prediction on a new point:

𝐻(⃗𝑥) =
𝑛

∑
𝑖=1
𝛼∗𝑖 𝜅(⃗𝑥(𝑖), ⃗𝑥)

▶ No need to map to feature space.

▶ Interpretation: A weighted sum of kernel
evaluations.

Procedure: Kernel Ridge Regression

1. Pick a kernel function, 𝜅, and compute the kernel
matrix, 𝐾.

2. Solve linear system: �⃗�∗ = (𝐾 + 𝑛𝜆𝐼)−1 ⃗𝑦

3. To make new prediction, 𝐻(⃗𝑥) = ∑𝑛𝑖=1 𝛼∗𝑖 𝜅(⃗𝑥(𝑖), ⃗𝑥)

Kernel Soft-SVM

▶ Soft-SVM can also be kernelized.

1. Pick a kernel function, 𝜅.

2. Solve dual problem (e.g., with SGD):

argmin
�⃗�

(𝜆�⃗�𝑇𝐾�⃗� + 1𝑛

𝑛

∑
𝑖=1
max{0, 1 − 𝑦𝑖(𝐾�⃗�)𝑖})

3. To make new prediction, 𝐻(⃗𝑥) = ∑𝑖∈𝑆 𝛼∗𝑖 𝜅(⃗𝑥(𝑖), ⃗𝑥)
▶ Where 𝑆 is the set of indices of support vectors.

Kernelization Downsides

▶ Often, training involves the 𝑛 × 𝑛 kernel matrix.
▶ Can be very large!

▶ There are ways to mitigate this:
▶ Small-batch stochastic gradient descent.
▶ Nyström method.

Lecture 10 | Part 4

Kernel Functions

Valid Kernels

▶ The first step in kernel learning is to pick a
kernel function, 𝜅.

▶ To be a valid kernel, must compute the dot
product w.r.t., some mapping, �⃗�(⃗𝑥).

▶ That is, it must be that

𝜅(⃗𝑥, ⃗𝑥′) = �⃗�(⃗𝑥) ⋅ �⃗�(⃗𝑥′)

for some �⃗�.

Constructing Kernels: Approach #1

▶ How do we come up with valid kernel functions?

▶ Approach #1:
1. Start by picking �⃗�
2. Find a function 𝜅 that efficiently computes �⃗�(⃗𝑥) ⋅ �⃗�(⃗𝑥′),
if one exists.

Constructing Kernels: Approach #2
▶ New kernels can be constructed from other
kernels.

▶ Suppose 𝜅1, 𝜅2, 𝜅3 are kernels and 𝑓 is any
function. Then the below are kernels:

▶ 𝜅(⃗𝑥, ⃗𝑥′) = 𝜅1(⃗𝑥, ⃗𝑥′) + 𝜅2(⃗𝑥, ⃗𝑥′)

▶ 𝜅(⃗𝑥, ⃗𝑥′) = 𝜅1(⃗𝑥, ⃗𝑥′) × 𝜅2(⃗𝑥, ⃗𝑥′)

▶ 𝜅(⃗𝑥, ⃗𝑥′) = 𝜅3(�⃗�(⃗𝑥), �⃗�(⃗𝑥′))

▶ 𝜅(⃗𝑥, ⃗𝑥′) = 𝑓(⃗𝑥)𝜅1(⃗𝑥, ⃗𝑥′)𝑓(⃗𝑥′)

Verifying Kernels

Theorem

A symmetric function 𝜅 is a valid kernel if and only
if the kernel matrix, 𝐾, is positive semi-definite for
any choice of data, ⃗𝑥(1), … , ⃗𝑥(𝑛).

Radial Basis Function Kernel

▶ Often, though, we don’t design our own kernel.

▶ A very popular choice: the radial basis function
(RBF) kernel (or Gaussian kernel):

𝜅(⃗𝑥, ⃗𝑥′) = 𝑒
−‖ ⃗𝑥− ⃗𝑥′‖2

2𝜎2 = 𝑒−𝛾‖ ⃗𝑥− ⃗𝑥′‖2 where 𝛾 = 1/(2𝜎2)

RBF Kernel

6 4 2 0 2 4 6 4
2

0
2

4

0.0
0.2
0.4
0.6

0.8

1.0

RBF Kernel Interpretation

𝜅(⃗𝑥, ⃗𝑥′) = 𝑒
−‖ ⃗𝑥− ⃗𝑥′‖2

2𝜎2 = 𝑒−𝛾‖ ⃗𝑥− ⃗𝑥′‖2

▶ Interpretation: RBF kernel measures similarity of
⃗𝑥 and ⃗𝑥′
▶ Very similar: 𝜅(⃗𝑥, ⃗𝑥′) ≈ 1.
▶ Very different: 𝜅(⃗𝑥, ⃗𝑥′) ≈ 0.

▶ Parameter 𝜎 (or 𝛾) controls the scale
▶ The larger 𝜎 (smaller 𝛾), the wider the Guassian

RBF Kernel Interpretation

▶ Recall that in kernel ridge regression / SVM, the
prediction is:

𝐻(⃗𝑥) =
𝑛

∑
𝑖=1
𝛼𝑖𝜅(⃗𝑥(𝑖), ⃗𝑥)

▶ Observations:
▶ One parameter 𝛼𝑖 learned for each training point ⃗𝑥(𝑖)
▶ 𝜅(⃗𝑥(𝑖), ⃗𝑥) will be ≈ 0 for any ⃗𝑥(𝑖) far from ⃗𝑥
▶ 𝐻(⃗𝑥) is largely determined by the training points
closest to ⃗𝑥

RBF Kernel Interpretation
▶ RBF function placed at each training point.
▶ 𝐻(⃗𝑥) is largely determined by training points closest to ⃗𝑥

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

RBF Kernel Interpretation

▶ An RBF Kernel predictor can be seen as a
generalization of the 𝑘-nearest neighbor rule

RBF Kernel Map

▶ What 𝜙 is the RBF kernel a kernel for?

▶ The mapping �⃗�(⃗𝑥) with entries of the form:

𝑒−‖ ⃗𝑥‖2/2𝑥𝑖,
1
√2!

𝑒−‖ ⃗𝑥‖2/2𝑥𝑖𝑥𝑗,
1
√3!

𝑒−‖ ⃗𝑥‖2/2𝑥𝑖𝑥𝑗𝑥𝑘, …

▶ This is a mapping to an infinite dimensional
Hilbert space!

Other Kernels

▶ There are other interesting kernels useful for
specific domains.

▶ Example: string kernels for text classification.
▶ Dot product in space generated by all substrings.

Lecture 10 | Part 5

Demo: Kernel SVM

Demo
▶ Train an RBF kernel SVM on the data below.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Aside: Hyperparameter Selection

▶ Two hyperparameters to specify:
▶ Slack: 𝐶
▶ Kernel width: 𝛾

▶ Choose with grid search cross-validation

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
= 0.02

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
= 0.05

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
= 0.18

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
= 0.63

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
= 2.16

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
= 7.41

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
= 25.40

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
= 87.09

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
= 298.63

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
= 1024.00

