DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 8 | Part 1

Model Complexity and Regularization

Linear Regression, Non-linear Trends

We can use least squares regression to fit non-linear patterns.

Recall: Regression with Basis Functions

We can fit any function of the form:

$$H(\vec{x};\vec{w}) = w_0 + w_1 \phi_1(\vec{x}) + w_2 \phi_2(\vec{x}) + \dots + w_k \phi_k(\vec{x})$$

 $\phi_i(\vec{x}): \mathbb{R}^d \to \mathbb{R}$ is called a basis function.

Procedure

1. Define
$$\vec{\phi}(\vec{x}) = (\phi_1(\vec{x}), \phi_2(\vec{x}), ..., \phi_k(\vec{x}))^T$$

2. Form $n \times k$ design matrix:

$$\Phi = \begin{pmatrix} \mathsf{Aug}(\phi(\vec{x}^{(1)})) & \cdots & \cdots \\ \mathsf{Aug}(\phi(\vec{x}^{(2)})) & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Aug}(\phi(\vec{x}^{(n)})) & \cdots & \cdots \end{pmatrix} = \begin{pmatrix} \phi_1(\vec{x}^{(1)}) & \phi_2(\vec{x}^{(1)}) & \dots & \phi_k(\vec{x}^{(1)}) \\ \phi_1(\vec{x}^{(2)}) & \phi_2(\vec{x}^{(2)}) & \dots & \phi_k(\vec{x}^{(2)}) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_1(\vec{x}^{(n)}) & \phi_2(\vec{x}^{(n)}) & \dots & \phi_k(\vec{x}^{(n)}) \end{pmatrix}$$

3. Solve the **normal equations**:

$$\vec{w}^* = (\Phi^T \Phi)^{-1} \Phi^T \vec{y}$$

Example: Polynomial Curve Fitting

Fit a function of the form:

$$H(X; \vec{W}) = W_0 + W_1 X + W_2 X^2 + W_3 X^3$$

Use basis functions:

$$\phi_0(x) = 1$$
 $\phi_1(x) = x$ $\phi_2(x) = x^2$ $\phi_3(x) = x^3$

Example: Polynomial Curve Fitting

Design matrix becomes:

$$\Phi = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ \dots & \dots & \ddots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 \end{pmatrix}$$

Gaussian Basis Functions

Gaussians make for useful basis functions.

$$\phi_i(x) = \exp\left(-\frac{(x - \mu_i)^2}{\sigma_i^2}\right)$$

Must specify¹ **center** μ_i and **width** σ_i for each Gaussian basis function.

¹You pick these; they are not learned!

Example: *k* = 3

A function of the form: $H(x) = w_1\phi_1(x) + w_2\phi_2(x) + w_3\phi_3(x)$, using 3 Gaussian basis functions.

Example: *k* = 10

▶ The more basis functions, the more complex *H* can be.

Demo: Sinusoidal Data

- Fit curve to 50 noisy data points.
- ▶ Use k = 50 Gaussian basis functions.

Result

Overfitting!

Today's Problem

- We sometimes want to fit complex models.
- Overfitting can occur when model is too complex.
- Can decrease complexity by reducing number of basis functions.

Another way: regularization.

Complexity and \vec{w}

Consider fitting 3 points with k = 3:

$$w_1\phi_1(\vec{x}) + w_2\phi_2(\vec{x}) + w_3\phi_3(\vec{x})$$

Exercise

What will happen to w_1, w_2, w_3 as the middle point is shifted down towards zero?

Solution

Solution

Solution

Observations

- As the middle point moves down, H becomes more "complex".
- ► The weights grow in magnitude: $\|\vec{w}\|$ increases.
- ▶ **Idea:** $\|\vec{w}\|$ measures **complexity** of *H*.
 - ► Think: the larger $\|\vec{w}\|$ is, the more complex H may be.

$$H(x) = w_1 \psi_1(x) + w_2 \psi_2(x) + \dots + w_w \psi_2(x)$$
Experiment

- Consider model with k = 20 Gaussian basis functions.
- ► Generate 100 random parameter vectors \vec{w} .
- Plot overlapping; observe complexity.

Conclusion

- $\|\vec{w}\|$ is a proxy for model complexity.
 - ▶ The larger ||w||, the more complex the model may be.
- Idea: find a model with
 - small risk on the data;
 - ▶ but also small || w ||

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 8 | Part 2

Regularized Least Squares

Recall: Least Squares Regression

In **least squares regression**, we minimize the empirical **risk**:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (H(\vec{x}^{(i)}) - y_i)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\vec{w} \cdot \phi(\vec{x}^{(i)}) - y_i)^2$$

► Solution: $\vec{w}^* = (\Phi^T \Phi)^{-1} \Phi^T \vec{y}$

Regularized Least Squares

- ▶ **Idea:** penalize large $\|\vec{w}\|$ to control overfitting.
- Goal: Minimize the regularized risk:

$$\tilde{R}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(\vec{w} \cdot \phi(\vec{x}^{(i)}) - y_i \right)^2 + \frac{\lambda \|\vec{w}\|^2}{\text{Regularizer}}$$

- $\triangleright \lambda \|\vec{w}\|^2$ is a regularization term.
 - "Tikhonov regularization"
 - λ controls "strength" of regularization.

Ridge Regression

$$\tilde{R}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(\vec{w} \cdot \phi(\vec{x}^{(i)}) - y_i \right)^2 + \underbrace{\lambda \|\vec{w}\|^2}_{\text{Regularized}}$$

Least squares with $||w||^2$ regularization is also known as ridge regression.

Why ∥*ŵ* ∥²?

make the calculations cleaner.

► We consider $\|\vec{w}\|^2$ instead of $\|\vec{w}\|$ because it will

Ridge Regression Solution

Remember, with the unregularized problem, the least squares solution was:

$$\vec{w}^* = (\Phi^T \Phi)^{-1} \Phi^T \vec{y}$$

Now that we've regularized the risk, this is no longer the solution!

Ridge Regression Solution

▶ **Goal:** Find \vec{w}^* minimizing the regularized risk:

$$\tilde{R}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (\vec{w} \cdot \phi(\vec{x}^{(i)}) - y_i)^2 + \lambda ||\vec{w}||^2$$

► Recall:

$$\frac{1}{n} \sum_{i=1}^{n} \left(\vec{w} \cdot \phi(\vec{x}^{(i)}) - y_i \right)^2 = \frac{1}{n} \| \Phi \vec{w} - \vec{y} \|^2$$

$$\tilde{R}(\vec{w}) = \frac{1}{n} \| \Phi \vec{w} - \vec{y} \|^2 + \lambda \| \vec{w} \|^2$$

Ridge Regression Solution

- Strategy: calculate $d\tilde{R}/d\vec{w}$, set to $\vec{0}$, solve. $\begin{pmatrix} n \\ n \\ n \end{pmatrix}$
- ► Solution: $\vec{w}^* = (\Phi^T \Phi + n\lambda I)^{-1} \Phi^T \vec{y}$
- Compare this to solution of unregularized problem: $\vec{\mathbf{w}}^* = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \vec{\mathbf{v}}$

Interpretation

$$\vec{w}^* = (\Phi^T \Phi + n \lambda I)^{-1} \Phi^T \vec{y}$$

- Adds small number λ to diagonal of Φ^T Φ
- ► Improves condition number of $Φ^TΦ + nλI$
 - Helpful when multicollinearity exists

Demo: Sinusoidal Data

- Fit curve to 50 noisy data points.
- ▶ Use k = 50 Gaussian basis functions.

Overfitting!

Picking λ

- \triangleright λ controls strength of penalty
 - Larger λ: penalize complexity more
 - Smaller λ: allow more complexity
- ► To choose, use **cross-validation**.

Exercise

Shown below are the contours of the unregularized empirical risk, $R(\vec{w})$. The dashed lines show places where $\|\vec{w}\|_2$ is 2, 4, 6, etc.

Which of the marked points could be a minimizer of the regularized risk, $\tilde{R}(\vec{w}) = R(\vec{w}) + \lambda ||\vec{w}||_2^2$, where $\lambda > 0$?

Main Idea

Regularization trades an **increase** in risk for a **decrease** in complexity.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 8 | Part 3

The LASSO

p norm regularization

In the last section, we minimized:

$$\tilde{R}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (\vec{w} \cdot \phi(\vec{x}^{(i)}) - y_i)^2 + \lambda ||\vec{w}||^2$$

► What is special about || w ||?

p norms

For any $p \in [0, \infty)$, the p norm of a vector \vec{u} is defined as

$$\|\vec{u}\|_{p} = \left(\sum_{i=1}^{d} |u_{i}|^{p}\right)^{1/p}$$

$$\|\vec{u}\|_{2} \quad \left(\sum_{i=1}^{d} |u_{i}|^{2}\right)^{1/2}$$

Special Case: p = 2

▶ When p = 2, we have the familiar **Euclidean norm**:

$$\|\vec{u}\|_{2} = \left(\sum_{i=1}^{d} u_{i}^{2}\right)^{1/2} = \|\vec{u}\|$$

Special Case: p = 1

▶ When p = 1, we have the "taxicab norm"

$$\|\vec{u}\|_1 = \sum_{i=1}^d |u_i|$$

Exercise

Draw the "unit circle" for the 1-norm. That is, draw where $\|\vec{w}\|_1 = 1$.

1-norm Regularization

Consider the 1-norm regularized risk:

$$\tilde{R}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (\vec{w} \cdot \phi(\vec{x}^{(i)}) - y_i)^2 + \lambda ||\vec{w}||_1$$

Least squares regression with 1-norm regularization is called the LASSO.

Solving the LASSO

- ► No longer differentiable.
- ► No exact solution, unlike ridge regression.²
- Can solve with subgradient descent.

²Except in special cases, such as orthonormal Φ

1-norm Regularization

- ► The 1-norm encourages **sparse** solutions.
 - That is, solutions where many entries of \vec{w} are zero.
- Interpretation: feature selection.

Example

Randomly-generated data:

$$y = 3x_1 + 0.2x_2 - 4x_3 + \mathcal{N}(0, .2)$$

	w ₁	w ₂	W ₃
Unreg.			-4.77
2-norm	l	-0.10	-4.73
1-norm	2.72	0	-3.76

Why?

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 8 | Part 4

Regularized Risk Minimization

Regularized ERM

- We have seen regularization in the context of least squares regression.
- ► However, it is generally useful with other risks.
- E.g., hinge loss + 2-norm regularization = soft-SVM

General Regularization

- Let $R(\vec{w})$ be a risk function.
- Let $\rho(\vec{w})$ be a regularization function.
- ► The regularized risk is:

$$\tilde{R}(\vec{w}) = R(\vec{w}) + \rho(\vec{w})$$

► **Goal:** minimized regularized empirical risk.

$$R(\vec{\omega}) + \lambda_1 ||\vec{\omega}||_2^2 + \lambda_2 ||\vec{\omega}||_1$$

Regularized Linear Models

Loss	Regularization	Name
square	2-norm	ridge regression
square	1-norm	LASSO
square	1-norm + 2-norm	elastic net
hinge	2-norm	soft-SVM

 z_1