
Lecture 8 | Part 1

Model Complexity and Regularization



Linear Regression, Non-linear Trends▶ We can use least squares regression to fit
non-linear patterns.



Recall: Regression with Basis
Functions▶ We can fit any function of the form:𝐻( ⃗𝑥; 𝑤⃗) = 𝑤0 + 𝑤1𝜙1( ⃗𝑥) + 𝑤2𝜙2( ⃗𝑥) + … + 𝑤𝑘𝜙𝑘( ⃗𝑥)▶ 𝜙𝑖( ⃗𝑥) ∶ ℝ𝑑 → ℝ is called a basis function.



Procedure
1. Define 𝜙⃗( ⃗𝑥) = (𝜙1( ⃗𝑥), 𝜙2( ⃗𝑥), … , 𝜙𝑘( ⃗𝑥))𝑇
2. Form 𝑛 × 𝑘 design matrix:Φ = (Aug(𝜙( ⃗𝑥(1)))Aug(𝜙( ⃗𝑥(2)))⋮ ⋮Aug(𝜙( ⃗𝑥(𝑛))) ) = (𝜙1( ⃗𝑥(1)) 𝜙2( ⃗𝑥(1)) … 𝜙𝑘( ⃗𝑥(1))𝜙1( ⃗𝑥(2)) 𝜙2( ⃗𝑥(2)) … 𝜙𝑘( ⃗𝑥(2))⋮ ⋮ ⋮ ⋮𝜙1( ⃗𝑥(𝑛)) 𝜙2( ⃗𝑥(𝑛)) … 𝜙𝑘( ⃗𝑥(𝑛)))
3. Solve the normal equations:𝑤⃗∗ = (Φ𝑇Φ)−1Φ𝑇 ⃗𝑦



Example: Polynomial Curve Fitting▶ Fit a function of the form:𝐻(𝑥; 𝑤⃗) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + 𝑤3𝑥3▶ Use basis functions:𝜙0(𝑥) = 1 𝜙1(𝑥) = 𝑥 𝜙2(𝑥) = 𝑥2 𝜙3(𝑥) = 𝑥3



Example: Polynomial Curve Fitting▶ Design matrix becomes:

Φ = ⎛⎜⎜⎜⎜⎝
1 𝑥1 𝑥21 𝑥311 𝑥2 𝑥22 𝑥32… … ⋱ ⋮1 𝑥𝑛 𝑥2𝑛 𝑥3𝑛

⎞⎟⎟⎟⎟⎠



Gaussian Basis Functions▶ Gaussians make for useful basis functions.𝜙𝑖(𝑥) = exp (−(𝑥 − 𝜇𝑖)2𝜎2𝑖 )▶ Must specify1 center 𝜇𝑖 and width 𝜎𝑖 for each
Gaussian basis function.

1You pick these; they are not learned!



Example: 𝑘 = 3▶ A function of the form: 𝐻(𝑥) = 𝑤1𝜙1(𝑥) + 𝑤2𝜙2(𝑥) + 𝑤3𝜙3(𝑥),
using 3 Gaussian basis functions.



Example: 𝑘 = 10▶ The more basis functions, the more complex 𝐻 can be.



Demo: Sinusoidal Data▶ Fit curve to 50 noisy data points.▶ Use 𝑘 = 50 Gaussian basis functions.
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Result▶ Overfitting!



Today’s Problem▶ We sometimes want to fit complex models.▶ Overfitting can occur when model is too
complex.▶ Can decrease complexity by reducing number of
basis functions.▶ Another way: regularization.



Complexity and 𝑤⃗▶ Consider fitting 3 points with 𝑘 = 3:𝑤1𝜙1( ⃗𝑥) + 𝑤2𝜙2( ⃗𝑥) + 𝑤3𝜙3( ⃗𝑥)



Exercise
What will happen to 𝑤1, 𝑤2, 𝑤3 as the middle point
is shifted down towards zero?
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Solution

w = [0.85 0.38 0.85]‖𝑤⃗‖ = 1.25



Solution

w = [ 1.09 -0.3 1.09]‖𝑤⃗‖ = 1.57



Solution

w = [ 1.34 -0.98 1.34]‖𝑤⃗‖ = 2.13



Observations▶ As the middle point moves down, 𝐻 becomes
more “complex”.▶ The weights grow in magnitude: ‖𝑤⃗‖ increases.▶ Idea: ‖𝑤⃗‖ measures complexity of 𝐻.▶ Think: the larger ‖𝑤⃗‖ is, the more complex 𝐻 may be.



Experiment▶ Consider model with 𝑘 = 20 Gaussian basis
functions.▶ Generate 100 random parameter vectors 𝑤⃗.▶ Plot overlapping; observe complexity.
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Conclusion▶ ‖𝑤⃗‖ is a proxy for model complexity.▶ The larger ‖𝑤‖, the more complex the model may be.▶ Idea: find a model with▶ small risk on the data;▶ but also small ‖𝑤⃗‖
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Regularized Least Squares



Recall: Least Squares Regression▶ In least squares regression, we minimize the
empirical risk:𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 (𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖)2= 1𝑛 𝑛∑𝑖=1 (𝑤⃗ ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)2▶ Solution: 𝑤⃗∗ = (Φ𝑇Φ)−1Φ𝑇 ⃗𝑦



Regularized Least Squares▶ Idea: penalize large ‖𝑤⃗‖ to control overfitting.▶ Goal: Minimize the regularized risk:𝑅̃(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 (𝑤⃗ ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)2 + 𝜆‖𝑤⃗‖2⏟
Regularizer▶ 𝜆‖𝑤⃗‖2 is a regularization term.▶ “Tikhonov regularization”▶ 𝜆 controls “strength” of regularization.



Ridge Regression

𝑅̃(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 (𝑤⃗ ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)2 + 𝜆‖𝑤⃗‖2⏟
Regularizer▶ Least squares with ‖𝑤‖2 regularization is also

known as ridge regression.



Why ‖𝑤⃗‖2?▶ We consider ‖𝑤⃗‖2 instead of ‖𝑤⃗‖ because it will
make the calculations cleaner.



Ridge Regression Solution▶ Remember, with the unregularized problem, the
least squares solution was:𝑤⃗∗ = (Φ𝑇Φ)−1Φ𝑇 ⃗𝑦▶ Now that we’ve regularized the risk, this is no
longer the solution!



Ridge Regression Solution▶ Goal: Find 𝑤⃗∗ minimizing the regularized risk:𝑅̃(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 (𝑤⃗ ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)2 + 𝜆‖𝑤⃗‖2▶ Recall: 1𝑛 𝑛∑𝑖=1 (𝑤⃗ ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)2 = 1𝑛‖Φ𝑤⃗ − ⃗𝑦‖2▶ So: 𝑅̃(𝑤⃗) = 1𝑛‖Φ𝑤⃗ − ⃗𝑦‖2 + 𝜆‖𝑤⃗‖2



Ridge Regression Solution▶ Strategy: calculate 𝑑𝑅̃/𝑑𝑤⃗, set to 0⃗, solve.▶ Solution: 𝑤⃗∗ = (Φ𝑇Φ + 𝑛𝜆𝐼)−1Φ𝑇 ⃗𝑦▶ Compare this to solution of unregularized
problem: 𝑤⃗∗ = (Φ𝑇Φ)−1Φ𝑇 ⃗𝑦 (e)



Interpretation

𝑤⃗∗ = (Φ𝑇Φ + 𝑛𝜆𝐼)−1Φ𝑇 ⃗𝑦
▶ Adds small number 𝜆 to diagonal of Φ𝑇Φ▶ Improves condition number of Φ𝑇Φ + 𝑛𝜆𝐼▶ Helpful when multicollinearity exists



Demo: Sinusoidal Data▶ Fit curve to 50 noisy data points.▶ Use 𝑘 = 50 Gaussian basis functions.



Result: no regularization▶ Overfitting!



Result: regularization



Result: regularization
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Result: regularization
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Result: regularization



Result: regularization



Result: regularization



Picking 𝜆▶ 𝜆 controls strength of penalty▶ Larger 𝜆: penalize complexity more▶ Smaller 𝜆: allow more complexity▶ To choose, use cross-validation.

~↓



simple complexity complex



Exercise
Shown below are the contours of the unregularized empirical
risk, 𝑅(𝑤⃗). The dashed lines show places where ‖𝑤⃗‖2 is 2, 4,6, etc.

Which of the marked points could be a minimizer of the reg-
ularized risk, 𝑅̃(𝑤⃗) = 𝑅(𝑤⃗) + 𝜆‖𝑤⃗‖22, where 𝜆 > 0?
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Main Idea
Regularization trades an increase in risk for a de-
crease in complexity.
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The LASSO



𝑝 norm regularization▶ In the last section, we minimized:𝑅̃(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 (𝑤⃗ ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)2 + 𝜆‖𝑤⃗‖2▶ What is special about ‖𝑤⃗‖?

Mtw + -- + wa



𝑝 norms▶ For any 𝑝 ∈ [0,∞), the 𝑝 norm of a vector 𝑢⃗ is
defined as ‖𝑢⃗‖𝑝 = ( 𝑑∑𝑖=1 |𝑢𝑖|𝑝)1/𝑝

Mille ([i :1)"2



Special Case: 𝑝 = 2▶ When 𝑝 = 2, we have the familiar Euclidean norm:‖𝑢⃗‖2 = ( 𝑑∑𝑖=1 𝑢2𝑖 )1/2 = ‖𝑢⃗‖



Special Case: 𝑝 = 1▶ When 𝑝 = 1, we have the “taxicab norm”‖𝑢⃗‖1 = 𝑑∑𝑖=1 |𝑢𝑖|



Exercise
Draw the “unit circle” for the 1-norm. That is, draw
where ‖𝑤⃗‖1 = 1.
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1-norm Regularization▶ Consider the 1-norm regularized risk:𝑅̃(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 (𝑤⃗ ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)2 + 𝜆‖𝑤⃗‖1▶ Least squares regression with 1-norm
regularization is called the LASSO.



Solving the LASSO▶ No longer differentiable.▶ No exact solution, unlike ridge regression.2▶ Can solve with subgradient descent.

2Except in special cases, such as orthonormal Φ



1-norm Regularization▶ The 1-norm encourages sparse solutions.▶ That is, solutions where many entries of 𝑤⃗ are zero.▶ Interpretation: feature selection.



Example▶ Randomly-generated data:𝑦 = 3𝑥1 + 0.2𝑥2 − 4𝑥3 +N (0, .2)𝑤1 𝑤2 𝑤3
Unreg. 2.33 -0.08 -4.77
2-norm 2.29 -0.10 -4.73
1-norm 2.72 0 -3.76



Why?
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Regularized Risk Minimization



Regularized ERM▶ We have seen regularization in the context of
least squares regression.▶ However, it is generally useful with other risks.▶ E.g., hinge loss + 2-norm regularization =
soft-SVM



General Regularization▶ Let 𝑅(𝑤⃗) be a risk function.▶ Let 𝜌(𝑤⃗) be a regularization function.▶ The regularized risk is:𝑅̃(𝑤⃗) = 𝑅(𝑤⃗) + 𝜌(𝑤⃗)▶ Goal: minimized regularized empirical risk.



Regularized Linear Models

Loss Regularization Name
square 2-norm ridge regression
square 1-norm LASSO
square 1-norm + 2-norm elastic net
hinge 2-norm soft-SVM

R(n) + X
,
1) will? +X I wil

,



Example
IS

Early Stopping

·


