
Lecture 8 | Part 1

Model Complexity and Regularization



Linear Regression, Non-linear Trends▶ We can use least squares regression to fit
non-linear patterns.



Recall: Regression with Basis
Functions▶ We can fit any function of the form:𝐻( ⃗𝑥; �⃗�) = 𝑤0 + 𝑤1𝜙1( ⃗𝑥) + 𝑤2𝜙2( ⃗𝑥) + … + 𝑤𝑘𝜙𝑘( ⃗𝑥)▶ 𝜙𝑖( ⃗𝑥) ∶ ℝ𝑑 → ℝ is called a basis function.



Procedure
1. Define �⃗�( ⃗𝑥) = (𝜙1( ⃗𝑥), 𝜙2( ⃗𝑥), … , 𝜙𝑘( ⃗𝑥))𝑇
2. Form 𝑛 × 𝑘 design matrix:Φ = (Aug(𝜙( ⃗𝑥(1)))Aug(𝜙( ⃗𝑥(2)))⋮ ⋮Aug(𝜙( ⃗𝑥(𝑛))) ) = (𝜙1( ⃗𝑥(1)) 𝜙2( ⃗𝑥(1)) … 𝜙𝑘( ⃗𝑥(1))𝜙1( ⃗𝑥(2)) 𝜙2( ⃗𝑥(2)) … 𝜙𝑘( ⃗𝑥(2))⋮ ⋮ ⋮ ⋮𝜙1( ⃗𝑥(𝑛)) 𝜙2( ⃗𝑥(𝑛)) … 𝜙𝑘( ⃗𝑥(𝑛)))
3. Solve the normal equations:�⃗�∗ = (Φ𝑇Φ)−1Φ𝑇 ⃗𝑦



Example: Polynomial Curve Fitting▶ Fit a function of the form:𝐻(𝑥; �⃗�) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + 𝑤3𝑥3▶ Use basis functions:𝜙0(𝑥) = 1 𝜙1(𝑥) = 𝑥 𝜙2(𝑥) = 𝑥2 𝜙3(𝑥) = 𝑥3



Example: Polynomial Curve Fitting▶ Design matrix becomes:

Φ = ⎛⎜⎜⎜⎜⎝
1 𝑥1 𝑥21 𝑥311 𝑥2 𝑥22 𝑥32… … ⋱ ⋮1 𝑥𝑛 𝑥2𝑛 𝑥3𝑛

⎞⎟⎟⎟⎟⎠



Gaussian Basis Functions▶ Gaussians make for useful basis functions.𝜙𝑖(𝑥) = exp (−(𝑥 − 𝜇𝑖)2𝜎2𝑖 )▶ Must specify1 center 𝜇𝑖 and width 𝜎𝑖 for each
Gaussian basis function.

1You pick these; they are not learned!



Example: 𝑘 = 3▶ A function of the form: 𝐻(𝑥) = 𝑤1𝜙1(𝑥) + 𝑤2𝜙2(𝑥) + 𝑤3𝜙3(𝑥),
using 3 Gaussian basis functions.



Example: 𝑘 = 10▶ The more basis functions, the more complex 𝐻 can be.



Demo: Sinusoidal Data▶ Fit curve to 50 noisy data points.▶ Use 𝑘 = 50 Gaussian basis functions.
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Result▶ Overfitting!



Today’s Problem▶ We sometimes want to fit complex models.▶ Overfitting can occur when model is too
complex.▶ Can decrease complexity by reducing number of
basis functions.▶ Another way: regularization.



Complexity and �⃗�▶ Consider fitting 3 points with 𝑘 = 3:𝑤1𝜙1( ⃗𝑥) + 𝑤2𝜙2( ⃗𝑥) + 𝑤3𝜙3( ⃗𝑥)



Exercise
What will happen to 𝑤1, 𝑤2, 𝑤3 as the middle point
is shifted down towards zero?
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Solution

w = [0.85 0.38 0.85]‖�⃗�‖ = 1.25



Solution

w = [ 1.09 -0.3 1.09]‖�⃗�‖ = 1.57



Solution

w = [ 1.34 -0.98 1.34]‖�⃗�‖ = 2.13



Observations▶ As the middle point moves down, 𝐻 becomes
more “complex”.▶ The weights grow in magnitude: ‖�⃗�‖ increases.▶ Idea: ‖�⃗�‖ measures complexity of 𝐻.▶ Think: the larger ‖�⃗�‖ is, the more complex 𝐻 may be.



Experiment▶ Consider model with 𝑘 = 20 Gaussian basis
functions.▶ Generate 100 random parameter vectors �⃗�.▶ Plot overlapping; observe complexity.
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Conclusion▶ ‖�⃗�‖ is a proxy for model complexity.▶ The larger ‖𝑤‖, the more complex the model may be.▶ Idea: find a model with▶ small risk on the data;▶ but also small ‖�⃗�‖



Lecture 8 | Part 2

Regularized Least Squares



Recall: Least Squares Regression▶ In least squares regression, we minimize the
empirical risk:𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 (𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖)2= 1𝑛 𝑛∑𝑖=1 (�⃗� ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)2▶ Solution: �⃗�∗ = (Φ𝑇Φ)−1Φ𝑇 ⃗𝑦



Regularized Least Squares▶ Idea: penalize large ‖�⃗�‖ to control overfitting.▶ Goal: Minimize the regularized risk:�̃�(�⃗�) = 1𝑛 𝑛∑𝑖=1 (�⃗� ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)2 + 𝜆‖�⃗�‖2⏟
Regularizer▶ 𝜆‖�⃗�‖2 is a regularization term.▶ “Tikhonov regularization”▶ 𝜆 controls “strength” of regularization.



Ridge Regression

�̃�(�⃗�) = 1𝑛 𝑛∑𝑖=1 (�⃗� ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)2 + 𝜆‖�⃗�‖2⏟
Regularizer▶ Least squares with ‖𝑤‖2 regularization is also

known as ridge regression.



Why ‖�⃗�‖2?▶ We consider ‖�⃗�‖2 instead of ‖�⃗�‖ because it will
make the calculations cleaner.



Ridge Regression Solution▶ Remember, with the unregularized problem, the
least squares solution was:�⃗�∗ = (Φ𝑇Φ)−1Φ𝑇 ⃗𝑦▶ Now that we’ve regularized the risk, this is no
longer the solution!



Ridge Regression Solution▶ Goal: Find �⃗�∗ minimizing the regularized risk:�̃�(�⃗�) = 1𝑛 𝑛∑𝑖=1 (�⃗� ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)2 + 𝜆‖�⃗�‖2▶ Recall: 1𝑛 𝑛∑𝑖=1 (�⃗� ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)2 = 1𝑛‖Φ�⃗� − ⃗𝑦‖2▶ So: �̃�(�⃗�) = 1𝑛‖Φ�⃗� − ⃗𝑦‖2 + 𝜆‖�⃗�‖2



Ridge Regression Solution▶ Strategy: calculate 𝑑�̃�/𝑑�⃗�, set to 0⃗, solve.▶ Solution: �⃗�∗ = (Φ𝑇Φ + 𝑛𝜆𝐼)−1Φ𝑇 ⃗𝑦▶ Compare this to solution of unregularized
problem: �⃗�∗ = (Φ𝑇Φ)−1Φ𝑇 ⃗𝑦 (e)



Interpretation

�⃗�∗ = (Φ𝑇Φ + 𝑛𝜆𝐼)−1Φ𝑇 ⃗𝑦
▶ Adds small number 𝜆 to diagonal of Φ𝑇Φ▶ Improves condition number of Φ𝑇Φ + 𝑛𝜆𝐼▶ Helpful when multicollinearity exists



Demo: Sinusoidal Data▶ Fit curve to 50 noisy data points.▶ Use 𝑘 = 50 Gaussian basis functions.



Result: no regularization▶ Overfitting!



Result: regularization



Result: regularization



Result: regularization



Result: regularization



Result: regularization



Result: regularization



Result: regularization



Result: regularization



Result: regularization



Picking 𝜆▶ 𝜆 controls strength of penalty▶ Larger 𝜆: penalize complexity more▶ Smaller 𝜆: allow more complexity▶ To choose, use cross-validation.

~↓



simple complexity complex



Exercise
Shown below are the contours of the unregularized empirical
risk, 𝑅(�⃗�). The dashed lines show places where ‖�⃗�‖2 is 2, 4,6, etc.

Which of the marked points could be a minimizer of the reg-
ularized risk, �̃�(�⃗�) = 𝑅(�⃗�) + 𝜆‖�⃗�‖22, where 𝜆 > 0?
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Main Idea
Regularization trades an increase in risk for a de-
crease in complexity.
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The LASSO



𝑝 norm regularization▶ In the last section, we minimized:�̃�(�⃗�) = 1𝑛 𝑛∑𝑖=1 (�⃗� ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)2 + 𝜆‖�⃗�‖2▶ What is special about ‖�⃗�‖?
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𝑝 norms▶ For any 𝑝 ∈ [0,∞), the 𝑝 norm of a vector �⃗� is
defined as ‖�⃗�‖𝑝 = ( 𝑑∑𝑖=1 |𝑢𝑖|𝑝)1/𝑝

Mille ([i :1)"2



Special Case: 𝑝 = 2▶ When 𝑝 = 2, we have the familiar Euclidean norm:‖�⃗�‖2 = ( 𝑑∑𝑖=1 𝑢2𝑖 )1/2 = ‖�⃗�‖



Special Case: 𝑝 = 1▶ When 𝑝 = 1, we have the “taxicab norm”‖�⃗�‖1 = 𝑑∑𝑖=1 |𝑢𝑖|



Exercise
Draw the “unit circle” for the 1-norm. That is, draw
where ‖�⃗�‖1 = 1.
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1-norm Regularization▶ Consider the 1-norm regularized risk:�̃�(�⃗�) = 1𝑛 𝑛∑𝑖=1 (�⃗� ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)2 + 𝜆‖�⃗�‖1▶ Least squares regression with 1-norm
regularization is called the LASSO.



Solving the LASSO▶ No longer differentiable.▶ No exact solution, unlike ridge regression.2▶ Can solve with subgradient descent.

2Except in special cases, such as orthonormal Φ



1-norm Regularization▶ The 1-norm encourages sparse solutions.▶ That is, solutions where many entries of �⃗� are zero.▶ Interpretation: feature selection.



Example▶ Randomly-generated data:𝑦 = 3𝑥1 + 0.2𝑥2 − 4𝑥3 +N (0, .2)𝑤1 𝑤2 𝑤3
Unreg. 2.33 -0.08 -4.77
2-norm 2.29 -0.10 -4.73
1-norm 2.72 0 -3.76



Why?
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Regularized Risk Minimization



Regularized ERM▶ We have seen regularization in the context of
least squares regression.▶ However, it is generally useful with other risks.▶ E.g., hinge loss + 2-norm regularization =
soft-SVM



General Regularization▶ Let 𝑅(�⃗�) be a risk function.▶ Let 𝜌(�⃗�) be a regularization function.▶ The regularized risk is:�̃�(�⃗�) = 𝑅(�⃗�) + 𝜌(�⃗�)▶ Goal: minimized regularized empirical risk.



Regularized Linear Models

Loss Regularization Name
square 2-norm ridge regression
square 1-norm LASSO
square 1-norm + 2-norm elastic net
hinge 2-norm soft-SVM
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