
Lecture 8 | Part 1

Feature Maps



Problem

▶ Patterns in real world data are often non-linear.

▶ But we only know how to train linear predictors.



Example: Regression
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Example: Classification

x1 = time of day

x 2
 =
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Found Parking
No Parking



Today

▶ Solution: non-linear feature maps.

▶ Will allow us to:
▶ fit complex, non-linear patterns;
▶ while still using linear models (least squares, SVM, ...)

▶ But we’ll need to be careful about overfitting.



Feature Map

▶ A feature map 𝜙⃗ ∶ ℝ𝑑 → ℝ𝑘 is a function that
takes in a 𝑑-dimensional vector and outputs a
𝑘-dimensional feature vector.

▶ I.e., it creates new features from the old ones.
▶ Maybe in a non-linear way.



Example

▶ Define 𝜙⃗ ∶ ℝ2 → ℝ5 as:

𝜙⃗(𝑥1, 𝑥2) = (𝑥1, 𝑥2, 𝑥21 , 𝑥22 , 𝑥1𝑥2)𝑇

▶ If ⃗𝑥 = (2, 3)𝑇, then:

𝜙⃗( ⃗𝑥) = (2, 3, 22, 32, 2 × 3)𝑇

= (2, 3, 4, 9, 6)𝑇



Basis Functions

▶ A basis function is a function 𝜙𝑖 ∶ ℝ𝑑 → ℝ.

▶ It takes in an old feature vector and outputs a
single new feature.

▶ We can think of a feature map 𝜙⃗ ∶ ℝ𝑑 → ℝ𝑘 as
being made up of 𝑘 basis functions.

𝜙⃗( ⃗𝑥) = (𝜙1( ⃗𝑥), 𝜙2( ⃗𝑥), … , 𝜙𝑘( ⃗𝑥))𝑇



Example

▶ Let 𝜙⃗ ∶ ℝ2 → ℝ5 be defined as:

𝜙⃗(𝑥1, 𝑥2) = (𝑥1, 𝑥2, 𝑥21 , 𝑥22 , 𝑥1𝑥2)𝑇

▶ The corresponding basis functions are:

𝜙1(𝑥1, 𝑥2) = 𝑥1 𝜙2(𝑥1, 𝑥2) = 𝑥2
𝜙3(𝑥1, 𝑥2) = 𝑥21 𝜙4(𝑥1, 𝑥2) = 𝑥22
𝜙5(𝑥1, 𝑥2) = 𝑥1𝑥2



A New Data Set

▶ Say we have a training set with 𝑑 features:

( ⃗𝑥(1), 𝑦1), … , ( ⃗𝑥(𝑛), 𝑦𝑛)

▶ A feature map 𝜙⃗ ∶ ℝ𝑑 → ℝ𝑘 gives us a new
training set with 𝑘 features:

(𝜙⃗( ⃗𝑥(1)), 𝑦1), … , (𝜙⃗( ⃗𝑥(𝑛)), 𝑦𝑛)



Why?

▶ A (good) feature map can turn non-linear
patterns in the old data into linear patterns in
the new data.



Example: Parking Classification

x1 = time of day

x 2
 =
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Found Parking
No Parking ▶ Original features:

⃗𝑥 = (time, temp.)𝑇

▶ Feature map:

𝜙⃗( ⃗𝑥) = (|time − Noon|, |temp. − 70|)𝑇



Example: Parking Classification

Input Space
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Exercise

(Approximately) where do ⃗𝑥(1), ⃗𝑥(2), and ⃗𝑥(3) get
mapped to in feature space?
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Solution

x1 = time of day
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Idea

▶ Feature maps turned non-linear patterns in
input space into linear patterns in feature space.

▶ Idea: train a linear model in feature space.



Procedure: Learning with Feature Maps
▶ First, pick a feature map 𝜙⃗ ∶ ℝ𝑑 → ℝ𝑘.
▶ To train:

▶ Given training set ( ⃗𝑥(1), 𝑦1), … , ( ⃗𝑥(𝑛), 𝑦𝑛).
1. Map each ⃗𝑥(𝑖) to feature space, creating a new data
set (𝜙⃗( ⃗𝑥(1)), 𝑦1), … , (𝜙⃗( ⃗𝑥(𝑛)), 𝑦𝑛).

2. Train linear model (least squares, SVM, perceptron...)
on the new data in feature space to get 𝑤⃗∗.

▶ To predict:
▶ Given new input ⃗𝑥.
1. Map ⃗𝑥 to feature space: 𝜙⃗( ⃗𝑥).
2. Predict 𝐻( ⃗𝑥; 𝑤⃗∗) = 𝑤⃗∗ ⋅ Aug(𝜙⃗( ⃗𝑥)).



Exercise

Suppose the original feature vectors are in ℝ2 and
the feature map is defined as

𝜙⃗(𝑥1, 𝑥2) = (𝑥1, 𝑥2, 𝑥21 , 𝑥22 , 𝑥1𝑥2)𝑇

We train an SVM in feature space. What is the di-
mensionality of 𝑤⃗∗?



Example: Least Squares
▶ Let’s train a least squares classifier using a
feature map.
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Step 1: Pick a Feature Map

▶ In the input space, we have features (𝑥1, 𝑥2).

𝑥1 = time, 𝑥2 = temperature.

▶ We’ll use the same feature map as before:

𝜙⃗(𝑥1, 𝑥2) = (|𝑥1 − 12|, |𝑥2 − 70|)𝑇



Step 2(a): Map to Feature Space

▶ Map every data point to feature space.
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Step 2(b): Train in Feature Space
▶ Recall: we train a least squares classifier in input
space by computing:

𝑤⃗∗ = ( ⃗𝑋𝑇 ⃗𝑋)−1 ⃗𝑋𝑇 ⃗𝑦

▶ Here, 𝑋 is the (augmented) (𝑛 × 𝑑) design matrix:

𝑋 = (

Aug( ⃗𝑥(1))𝑇 ⟶
Aug( ⃗𝑥(2))𝑇 ⟶

⋮
Aug( ⃗𝑥(𝑛))𝑇 ⟶

) = (

1 𝑥(1)1 𝑥(1)2
1 𝑥(2)1 𝑥(2)2
⋮ ⋮ ⋮
1 𝑥(𝑛)1 𝑥(𝑛)2

)



Step 2(b): Train in Feature Space

▶ In feature space, our feature vectors are
𝜙⃗( ⃗𝑥(1)), … , 𝜙⃗( ⃗𝑥(𝑛)).

▶ So the design matrix becomes the (𝑛 × 𝑘) matrix:

Φ = (

𝜙⃗( ⃗𝑥(1))𝑇 ⟶
𝜙⃗( ⃗𝑥(2))𝑇 ⟶

⋮
𝜙⃗( ⃗𝑥(𝑛))𝑇 ⟶

) = (

1 |𝑥(1)1 − 12| |𝑥(1)2 − 70|
1 |𝑥(2)1 − 12| |𝑥(2)2 − 70|
⋮ ⋮ ⋮
1 |𝑥(𝑛)1 − 12| |𝑥(𝑛)2 − 70|

)



Step 2(b): Train in Feature Space

▶ The least squares solution in feature space is:

𝑤⃗∗ = (Φ𝑇Φ)−1Φ𝑇 ⃗𝑦



Solution in Feature Space
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Step 3: Predict
▶ Given a new example ⃗𝑥 in input space:

1. Map ⃗𝑥 to feature space: 𝜙⃗( ⃗𝑥).
2. Predict sign(𝑤⃗∗ ⋅ Aug(𝜙⃗( ⃗𝑥))).
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Exercise

Let 𝜙⃗(𝑥1, 𝑥2) = (|𝑥1 − 12|, |𝑥2 − 70|)𝑇. Suppose we
train a least squares classifier in feature space and
find 𝑤⃗∗ = (3, −1, 2)𝑇.

Given a new point ⃗𝑥 = (10, 65)𝑇 in input space, what
is the prediction, 𝐻( ⃗𝑥)?



The Prediction Function(s)

▶ There are, in a sense, two prediction functions to
consider.

▶ First, the prediction function in feature space:

𝐻𝜙( ⃗𝑧) = 𝑤⃗ ⋅ Aug( ⃗𝑧)
= 𝑤0 + 𝑤1𝑧1 + 𝑤2𝑧2 + … + 𝑤𝑘𝑧𝑘

▶ This function takes in a vector ⃗𝑧 that is already in
feature space.



𝐻𝜙 in Feature Space
𝐻𝜙( ⃗𝑧) = 𝑤0 + 𝑤1𝑧1 + 𝑤2𝑧2
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The Prediction Function

▶ There is also the prediction function 𝐻( ⃗𝑥) that
takes in vectors in input space.

𝐻( ⃗𝑥) = 𝐻𝜙(𝜙⃗( ⃗𝑥))

= 𝑤⃗ ⋅ Aug(𝜙⃗( ⃗𝑥))
= 𝑤0 + 𝑤1𝜙1( ⃗𝑥) + 𝑤2𝜙2( ⃗𝑥) + … + 𝑤𝑘𝜙𝑘( ⃗𝑥)

▶ When plotted, this function will look non-linear.



𝐻 in Input Space

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1|𝑥1 − 12| + 𝑤2|𝑥2 − 70|
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Exercise

Let 𝜙⃗(𝑥1, 𝑥2) = (|𝑥1 − 12|, |𝑥2 − 70|)𝑇. Suppose we
train a least squares classifier in feature space and
find 𝑤⃗∗ = (3, −1, 2)𝑇.

Given a new point ⃗𝑥 = (10, 65)𝑇 in input space, what
is the prediction, 𝐻( ⃗𝑥)? This time, compute the an-
swer without explicitly computing 𝜙⃗( ⃗𝑥).
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Example: Non-Linear Regression



Non-Linear Regression

▶ With a feature map 𝜙⃗( ⃗𝑥) = (𝜙1( ⃗𝑥), … , 𝜙𝑘( ⃗𝑥))𝑇, our
prediction function becomes:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜙1( ⃗𝑥) + 𝑤2𝜙2( ⃗𝑥) + … + 𝑤𝑘𝜙𝑘( ⃗𝑥)

▶ In other words, we’re not constrained to only
fitting straight lines/planes:

𝐻(𝑥) = 𝑤0 + 𝑤1𝑥



Example: Parking Regression
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▶ Data looks like a quadratic
function.

▶ Idea: fit a function of the form:

𝐻(𝑡) = 𝑤0 + 𝑤1𝑡 + 𝑤2𝑡2



Exercise

Suppose we wish to fit a function of the form 𝐻(𝑡) =
𝑤0 + 𝑤1𝑡 + 𝑤2𝑡2 to the data.

What feature map 𝜙⃗ should we use to get this form
of prediction function?



Answer

▶ Use 𝜙⃗(𝑡) = (𝑡, 𝑡2)𝑇.

▶ Then the prediction function is:

𝐻(𝑡) = 𝑤⃗ ⋅ Aug(𝜙⃗(𝑡))
= (𝑤0, 𝑤1, 𝑤2) ⋅ (1, 𝑡, 𝑡2)𝑇

= 𝑤0 + 𝑤1𝑡 + 𝑤2𝑡2



Example: Parking Regression
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▶ Original features:

⃗𝑥 = (time)𝑇

▶ Feature map:

𝜙⃗( ⃗𝑥) = (time, time2)𝑇



Example: Parking Regression

Input Space
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Least Squares

▶ After mapping to feature space, we fit a plane
with least squares.

▶ The design matrix becomes:

Φ = (

Aug(𝑡(1))𝑇 ⟶
Aug(𝑡(2))𝑇 ⟶

⋮
Aug(𝑡(𝑛))𝑇 ⟶

) = (

1 𝑡(1) (𝑡(1))2
1 𝑡(2) (𝑡(2))2
⋮ ⋮ ⋮
1 𝑡(𝑛) (𝑡(𝑛))2

)



Example: Parking Regression

Input Space
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ERM with Feature Maps



Learning with Feature Maps

▶ We’ve developed a procedure for fitting
non-linear patterns with linear models.
▶ Map to feature space, learn there.

▶ Is this the “best” approach?



Empirical Risk Minimization

▶ Step 1: choose a hypothesis class
▶ Functions of the form 𝐻( ⃗𝑥) = 𝑤⃗ ⋅ Aug(𝜙⃗( ⃗𝑥)).

▶ Step 2: choose a loss function
▶ Square loss, perceptron loss, hinge loss, etc.

▶ Step 3: find 𝐻 minimizing empirical risk
▶ Do we get the same 𝐻 if we train in feature space?



Example: Parking Regression

Input Space
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Feature Space
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Yes

▶ The 𝐻𝜙 that minimizes risk in feature space is the
same as the 𝐻 that minimizes risk in input space.
▶ As long as 𝐻 is a linear function of the parameters.



Argument

▶ Take, for example, square loss.

▶ The risk is:

𝑅(𝑤⃗) = 1𝑛

𝑛

∑
𝑖=1
(𝑦𝑖 − 𝑤⃗ ⋅ Aug(𝜙⃗( ⃗𝑥(𝑖))))2

▶ Minimizer is 𝑤⃗∗ = (Φ𝑇Φ)−1Φ𝑇 ⃗𝑦.



In General

▶ Assume prediction function is of the form:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜙1( ⃗𝑥) + 𝑤2𝜙2( ⃗𝑥) + … + 𝑤𝑘𝜙𝑘( ⃗𝑥)

▶ To find 𝑤⃗ that minimizes risk:
▶ Map data to feature space;
▶ Train a linear model in feature space.

▶ Works for least squares, perceptron, SVM, etc.



Takeaway

▶ The “linear” in “linear prediction function” refers
to the parameters, not the features!

▶ We can fit any function of the form:

𝐻(𝑥) = 𝑤1𝜙1(𝑥) + 𝑤2𝜙2(𝑥) + … + 𝑤𝑘𝜙𝑘(𝑥)
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Gaussian Radial Basis Functions



General Basis Functions

▶ We can fit any function of the form:

𝐻(𝑥) = 𝑤1𝜙1(𝑥) + 𝑤2𝜙2(𝑥) + … + 𝑤𝑘𝜙𝑘(𝑥)

▶ Before: we chose 𝜙𝑖 carefully based on the
problem.

▶ Is there an easier way?
▶ Are there basis functions that work well for many
problems?



Example
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▶ Suppose we want to fit a
function 𝐻 to this data.

▶ Locally, each part of the
curve looks like a “bump”.

▶ Idea: let 𝐻 be a sum of
bumps.



A Sum of Bumps

𝐻(𝑥) = 𝑤1bump1(𝑥) + 𝑤2bump2(𝑥) + 𝑤3bump3(𝑥)
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Gaussian Basis Functions

▶ One way to make a bump: a Gaussian

𝜙𝑖(𝑥) = exp (−
(𝑥 − 𝜇𝑖)2

𝜎2𝑖
)

▶ Must specify1 center 𝜇𝑖 and width 𝜎𝑖 for each
Gaussian basis function.

1You pick these; they are not learned!



Exercise

Suppose we have a Gaussian of the form:

𝜙(𝑥) = exp (−(𝑥 − 2)
2

3 )

What is the value of 𝜙(2)? What is the value of
𝜙(100), approximately?



Example: 𝑘 = 3
▶ A function of the form: 𝐻(𝑥) = 𝑤1𝜙1(𝑥) + 𝑤2𝜙2(𝑥) + 𝑤3𝜙3(𝑥),
using 3 Gaussian basis functions.
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Example: 𝑘 = 10
▶ The more basis functions, the more complex 𝐻 can be.
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Learning with Gaussian Basis
Functions

▶ Gaussians make for very general basis functions.

▶ By adjusting 𝑤1, … , 𝑤𝑘, we can fit complex
patterns.

https://dsc140a.com/static/vis/
gaussian-basis-functions-1d

https://dsc140a.com/static/vis/gaussian-basis-functions-1d
https://dsc140a.com/static/vis/gaussian-basis-functions-1d


Procedure: Learning with Gaussian
Basis Functions

1. Pick number and location of Gaussians.
▶ 𝜇1, … , 𝜇𝑘 and 𝜎1, … , 𝜎𝑘.

2. Make 𝑘 basis functions:
▶ 𝜙𝑖(𝑥) = exp (−

(𝑥−𝜇𝑖)2

𝜎2𝑖
).

3. Map data to feature space and train a linear
model as before.



Demo: Sinusoidal Data
▶ Fit curve to 50 noisy data points.
▶ Use 𝑘 = 4 Gaussian basis functions.
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Demo: Sinusoidal Data
▶ Fit curve to 50 noisy data points.
▶ Use 𝑘 = 50 Gaussian basis functions.
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Next Time

▶ How to control overfitting.


