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Feature Maps



Problem
Patterns in real world data are often non-linear.

But we only know how to train linear predictors.
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Today
Solution: non-linear feature maps.

Will allow us to:
fit complex, non-linear patterns;
while still using linear models (least squares, SVM, ...)

But we'll need to be careful about overfitting.



Feature Map

A feature map 43 : RY = RFis a function that
takes in a d-dimensional vector and outputs a
k-dimensional feature vector.

l.e., it creates new features from the old ones.
Maybe in a non-linear way.



Example

Define ¢ : R2 - RS as:
(I’(thz) = (X9, X1 X3, X3, X9 %)
If X = (2,3), then:

$(X) = (2, 3,22, 3% 2x3)7

(2,3,4,9,6)



Basis Functions
A basis function is a function ¢; : R - R,

It takes in an old feature vector and outputs a
single new feature.

We can think of a feature map (f) : RY > Rk as
being made up of k basis functions.

B(X) = (d1(X), §5(X), ..., $o (X))



Example

Let § : R?2 - RS be defined as:
DX, %) = (Xq, X, X3, X5, X1 X5)T
The corresponding basis functions are:

b1(x4, %) = X4 b5(x1, X3) = X,
b3(xq,X;) = X3 b4(x1,%5) = X3
bs(Xq, X3) = X1 X%,



A New Data Set

Say we have a training set with d features:

()?(1),)/1 )v eeey ()?(n)iyn)

A feature map ¢ : RY — R gives us a new
training set with k features:

((ED), y1), ey (E™), y,)



Why?

A (good) feature map can turn non-linear
patterns in the old data into linear patterns in
the new data.
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Original features:

X = (time, temp.)"

Feature map:

43(7() = (|time - Noon|, [temp. - 70|)"
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temperature

Xy =

(Approximately) where do XV, @, and X©® get
mapped to in feature space?
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Idea

Feature maps turned non-linear patterns in
input space into linear patterns in feature space.

Idea: train a linear model in feature space.



Procedure: Learning with Feature Maps

First, pick a feature map ¢ : RY —» Rk.

To train:
Given training set (X, y,), ..., (X", y,).
Map each X to feature space, creating a new data
set (¢()_€(1))t y1 )r ey (¢()'Z(n))' yn)
Train linear model (least squares, SVM, perceptron...)
on the new data in feature space to get w*.

To predict:
Given new input X.

Map X to feature space: ¢(X).
Predict H(X; W*) = w* - Aug(¢p(X)).



Suppose the original feature vectors are in R? and
the feature map is defined as

¢(X1' XZ) = (X1, X5, X%, X%, X4 XZ)T

We train an SVM in feature space. What is the di-
mensionality of w*?




Example: Least Squares

Let’s train a least squares classifier using a

feature map.
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Step 1: Pick a Feature Map

In the input space, we have features (x, X,).

X, =time, x, =temperature.

We'll use the same feature map as before:

$(x1 %) = (1%, - 12], |x, - 70])7



temperature

Xy =

Step 2(a): Map to Feature Space

Map every data point to feature space.
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Step 2(b): Train in Feature Space

Recall: we train a least squares classifier in input
space by computing:

Here, X is the (augmented) (n x d) design matrix:

Aug(XM)T —\ (1 XD X
X Aug()?z) — | _ 1 X%z) X(%z)

AugE)T — | \1 X



Step 2(b): Train in Feature Space

In feature Space, our feature vectors are

(xM), ..., p(xM).

So the design matrix becomes the (n x R) matrix:

dMT —\ (1 xV-12] | -70]
EANT — | [1 X =121 1% - 70

¢(x<n>) —/ 1 A" -12) XM - 70



Step 2(b): Train in Feature Space

The least squares solution in feature space is:

W* = (CDTCD)_1 cDTV



Solution in Feature Space
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Step 3: Predict

Given a new example X in input space:
Map X to feature space: ¢(X).
Predict sign(w* - Aug(¢(X))).
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Let <I;(X1,X2) = (|x, - 12|,|x, - 70])". Suppose we
train a least squares classifier in feature space and
find w* = (3,-1,2)".

Given a new point X = (10, 65)" in input space, what
is the prediction, H(X)?




The Prediction Function(s)

There are, in a sense, two prediction functions to
consider.

First, the prediction function in feature space:
Hy(Z) = W - Aug(2)

= WO + W1 21 + szz + oo + Wka

This function takes in a vector Z that is already in
feature space.



H, in Feature Space

Hy(2) = o + w, 2,
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The Prediction Function

There is also the prediction function H(X) that
takes in vectors in input space.

H(X) = Hy((X))
= W - Aug($(X))
= Wo + W @q(X) + W5 (X) + .. + Wy dp(X)

When plotted, this function will look non-linear.



H in Input Space

H(X) = wg + wq | X, - 12]
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Let (X, X,) = (|X; - 12[,]X, - 70|)". Suppose we
train a least squares classifier in feature space and
find w* = (3,-1,2)".

Given a new point X = (10, 65)" in input space, what
is the prediction, H(X)? This time, compute the an-
swer without explicitly computing ¢(X).
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Example: Non-Linear Regression



Non-Linear Regression

With a feature map ¢(X) = (941(X), ..., PR(X))T, our
prediction function becomes:

H(X) = wg + WP (X) + Wy, (X) + ... + WP (X)

In other words, we're not constrained to only
fitting straight lines/planes:

H(x) = wy + w; X



vailable

Number of parking spots a

Example: Parking Regression

Data looks like a quadratic
function.

Idea: fit a function of the form:

H(t) = wy + w,t + w,t?



Suppose we wish to fit a function of the form H(t) =
w, + w,t + w,t* to the data.

What feature map 43 should we use to get this form
of prediction function?




Answer
Use ¢(t) = (t, t2)".

Then the prediction function is:

H(t) = i - Aug((t))
= (Wq, Wy, W,) - (1, ¢, t2)"

_ 2
= Wy + Wt +w,t



Example: Parking Regression

Original features:

X = (time)’

Feature map:

(time, time?)”
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Number of parking spots available

Example: Parking Regression

Input Space
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Least Squares

After mapping to feature space, we fit a plane
with least squares.

The design matrix becomes:

Aug(tT —s 1t (tM)?

© - Aug(t(z))T—> [ () (t(2))2

Aug(tiM)T —s 1t ()2
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ERM with Feature Maps



Learning with Feature Maps

We've developed a procedure for fitting

non-linear patterns with linear models.
Map to feature space, learn there.

Is this the “best” approach?



Empirical Risk Minimization

Step 1: choose a hypothesis class
Functions of the form H(X) = W - Aug(¢(X)).

Step 2: choose a loss function
Square loss, perceptron loss, hinge loss, etc.

Step 3: find H minimizing empirical risk
Do we get the same H if we train in feature space?
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Yes

The Hy that minimizes risk in feature space is the

same as the H that minimizes risk in input space.
As long as H is a linear function of the parameters.



Argument
Take, for example, square loss.

The risk is:

R(T) = = > (v, - W - Aug(@(R))?
i=1

Minimizer is W* = (®'d) 'dTy.



In General
Assume prediction function is of the form:
H(X) = wg + WP (X) + Wy, (X) + ... + WP (X)

To find w that minimizes risk:
Map data to feature space;
Train a linear model in feature space.

Works for least squares, perceptron, SVM, etc.



Takeaway

The “linear” in “linear prediction function” refers
to the parameters, not the features!

We can fit any function of the form:

H(x) = W¢(X) + Wyy(X) + ... + Wy (X)
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Gaussian Radial Basis Functions



General Basis Functions

We can fit any function of the form:
H(X) = Wy (X) + Wop(X) + .. + Wy, Pp(X)

Before: we chose ¢, carefully based on the
problem.

Is there an easier way?

Are there basis functions that work well for many
problems?



1.04

0.54

0.0

—0.51

-1.01

Example

Suppose we want to fit a
function H to this data.

Locally, each part of the
curve looks like a “bump”.

Idea: let H be a sum of
bumps.



A Sum of Bumps

H(x) = w,bump_(x) + w, + Wy
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0.51
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-0.5




Gaussian Basis Functions

One way to make a bump: a Gaussian

—_ . 2
$(x) = exp (M)

i

Must specify' center p; and width g; for each
Gaussian basis function.

"You pick these; they are not learned!



Suppose we have a Gaussian of the form:

00 = exp -2

What is the value of ¢(2)? What is the value of
¢$(100), approximately?




Example: k = 3

A function of the form: H(x) = w,¢,(x) + w,$,(x) + w;¢;(x),
using 3 Gaussian basis functions.

2.0 4

1.5

1.0 A

0.5 1

0.0

—0.51




Example: k =10

The more basis functions, the more complex H can be.
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Learning with Gaussian Basis
Functions

Gaussians make for very general basis functions.

By adjusting wy, ..., W, we can fit complex
patterns.

https://dscl40a.com/static/vis/
gaussian-basis-functions-1d


https://dsc140a.com/static/vis/gaussian-basis-functions-1d
https://dsc140a.com/static/vis/gaussian-basis-functions-1d

Procedure: Learning with Gaussian
Basis Functions

Pick number and location of Gaussians.
Uqyeeey Hp @Nd Oy, ..., Op.

Make R basis functions:
#/(x) = exp (-2 ).

Map data to feature space and train a linear
model as before.



Demo: Sinusoidal Data

Fit curve to 50 noisy data points.
Use kR = 4 Gaussian basis functions.
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Demo: Sinusoidal Data

Fit curve to 50 noisy data points.
Use k = 50 Gaussian basis functions.
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Next Time

How to control overfitting.



