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Maximum Margin Classifiers



Recall: Perceptrons

▶ Linear classifier fit using loss function:

ℓtron(𝐻( ⃗𝑥), 𝑦) = {
0, sign(𝐻( ⃗𝑥)) = 𝑦
|𝐻( ⃗𝑥)|, sign(𝐻( ⃗𝑥)) ≠ 𝑦



Exercise

What is the empirical risk with respect to the per-
ceptron loss of 𝐻1? What about 𝐻2?



A Problem with the Perceptron

▶ Recall: the perceptron loss assigns no penalty to
points that are correctly classified.

▶ No matter how close the point is to the
boundary.

▶ Problem: we might learn decision boundary that
is very close to the data (overfitting).



Linear Separability

▶ Data are linearly separable if there exists a linear
classifier which perfectly classifies the data.



Margin

▶ The margin is the smallest distance between the
decision boundary and a training point.



Maximum Margin Classifier

▶ If training data are linearly separable, there are
many classifiers with zero error.

▶ We prefer classifiers with larger margins.
▶ Better generalization performance.

▶ Can we find the maximum margin classifier?
▶ I.e., the classifier with the largest possible margin?
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Hard SVM Optimization Problem



Goal

▶ Write down an optimization problem that,
assuming linear separability, ensures:
1. All points are classified correctly.
2. The margin is as large as possible.



The Exclusion Zone

▶ Define the exclusion zone as the region where
|𝐻( ⃗𝑥)| < 1.
▶ That is, between 𝐻( ⃗𝑥) = 1 and 𝐻( ⃗𝑥) = −1.

H=1

H=0

A=- 1

H+HF1



Maximizing the Margin

▶ The margin and the exclusion zone are related.
▶ Width of exclusion zone ≤ the margin.

▶ Maximizing the margin is equivalent to
maximizing the width of the exclusion zone.



Goal

▶ We want to find a linear predictor 𝐻 that:
1. Classifies all points correctly.
2. Has no training points in the exclusion zone.
3. Has the widest exclusion zone possible.



Claim
▶ The width of the exc. zone is controlled by ‖𝑤⃗‖.

▶ Larger ‖𝑤⃗‖ ⇒ steeper 𝐻 ⇒ narrower exclusion zone.
▶ Smaller ‖𝑤⃗‖ ⇒ shallower 𝐻 ⇒ wider exclusion zone.
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Goal

▶ We want to find a linear predictor 𝐻 that:
1. Classifies all points correctly.
2. Has no training points in the exclusion zone.
3. Has the widest exclusion zone possible.

▶ That is, has the smallest possible ‖𝑤⃗‖.

▶ Now let’s write down a formal optimization
problem.
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Goal

▶ Out of all 𝑤⃗ satisfying:
1. sign(𝐻( ⃗𝑥(𝑖))) = 𝑦𝑖 for all 𝑖. (all predictions correct)
2. |𝐻( ⃗𝑥(𝑖))| ≥ 1 for all 𝑖. (no points in exclusion zone)

▶ Find one with smallest ‖𝑤⃗‖
▶ (Largest exclusion zone)



Hard-SVM Optimization Problem

▶ The Hard Support Vector Machine optimization
problem is:

𝑤⃗∗ = argmin
𝑤⃗

‖𝑤⃗‖

subject to:

sign(𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖))) = 𝑦𝑖;

|𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖))| ≥ 1
for all 𝑖.



Modifications

▶ The Hard-SVM problem is often stated slightly
differently.



Observation #1

▶ A point is classified correctly when:

{
𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) > 0, if 𝑦𝑖 = 1
𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) < 0, if 𝑦𝑖 = −1

▶ Equivalently, classification is correct if:

𝑦𝑖 𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) > 0



Hard-SVM Optimization Problem

▶ The Hard Support Vector Machine optimization
problem is:

𝑤⃗∗ = argmin
𝑤⃗

‖𝑤⃗‖

subject to:
𝑦𝑖 𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) > 0

|𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖))| ≥ 1
for all 𝑖.



Observation #2

▶ Since 𝑦𝑖 = ±1, we can simplify the constraints:

𝑦𝑖 𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) > 0

|𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖))| ≥ 1
becomes simply:

𝑦𝑖 𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1



Simpler Constraints

▶ That is, ⃗𝑥(𝑖) is 1) correctly classified and 2) outside
of the exclusion zone if and only if:

𝑦𝑖 𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1



Observation #3

▶ Minimizing ‖𝑤⃗‖2 or ‖𝑤⃗‖ gives same solution.
▶ allows us to use quadratic programming solvers.



Hard-SVM Optimization Problem

▶ The Hard-SVM optimization problem is:

𝑤⃗∗ = argmin
𝑤⃗

‖𝑤⃗‖2

subject to:
𝑦𝑖 𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1

for all 𝑖.



Hard-SVM

▶ This optimization problem is called the Hard
Support Vector Machine classifier problem.

▶ Only makes sense if data are linearly separable.

▶ In a moment, we’ll see the Soft-SVM.



How?

▶ Turn it into a convex quadratic optimization
problem:
▶ Minimize ‖𝑤⃗‖2 subject to 𝑦𝑖𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 for all 𝑖.

▶ Can be solved efficiently with quadratic
programming.
▶ But there is no exact general formula for the solution



Exercise

Can the below predictor be a solution of the Hard-
SVM?

H+HF1



SVMs are Maximum Margin
Classifiers

▶ Intuition says solutions of Hard-SVM will have
large margins.

▶ Fact: they maximize the margin.
H=1

H=0

A=- 1



Support Vectors

▶ A support vector is a training point ⃗𝑥(𝑖) such that

𝑦𝑖𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) = 1
H=1

H=0

A=- 1



Support Vectors

▶ Fact: the solution to Hard-SVM is always a linear
combination of the support vectors.

▶ That is, let 𝑆 be the set of support vectors. Then

𝑤⃗∗ = ∑
𝑖∈𝑆
𝑦𝑖𝛼𝑖 Aug( ⃗𝑥(𝑖))



Example: Irises

▶ 3 classes: iris setosa, iris versicolor, iris virginica

▶ 4 measurements: petal width/height, sepal width/height



Example: Irises
▶ Using only sepal width/petal width
▶ Two classes: versicolor (black), setosa (red)
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Soft-Margin SVMs



Non-Separability

▶ So far we’ve assumed data is linearly separable.

▶ What if it isn’t?



The Problem

▶ Old Goal: Minimize ‖𝑤⃗‖2 subject to
𝑦𝑖𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 for all 𝑖.

▶ This no longer makes sense.



Cut Some Slack

▶ Idea: allow some classifications to be 𝜉𝑖 wrong,
but not too wrong.



Cut Some Slack

▶ New problem. Fix some number 𝐶 ≥ 0.

min
𝑤⃗∈ℝ𝑑+1, ⃗𝜉∈ℝ𝑛

‖𝑤⃗‖2 + 𝐶
𝑛

∑
𝑖=1
𝜉𝑖

subject to 𝑦𝑖𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 − 𝜉𝑖 for all 𝑖, 𝜉𝑖 ≥ 0.



The Slack Parameter, C

▶ 𝐶 controls how much slack is given.

min
𝑤⃗∈ℝ𝑑+1, ⃗𝜉∈ℝ𝑛

‖𝑤⃗‖2 + 𝐶
𝑛

∑
𝑖=1
𝜉𝑖

subject to 𝑦𝑖𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 − 𝜉𝑖 for all 𝑖, ⃗𝜉 ≥ 0.
▶ Large 𝐶: don’t give much slack. Avoid
misclassifications.

▶ Small 𝐶: allow more slack at the cost of
misclassifications.



Example: Small C



Example: Large C



Soft and Hard Margins

▶ Max-margin SVM from before has hard margin.

▶ Now: the soft margin SVM.

▶ As 𝐶 → ∞, the margin hardens.
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Hinge Loss



Loss Functions?

▶ So far, we’ve learned predictors by minimizing
expected loss via ERM.

▶ But this isn’t what we did with Hard-SVM and
Soft-SVM.

▶ It turns out, we can frame Soft-SVM as an ERM
problem.



Recall: Perceptron Loss

ℓtron(𝐻( ⃗𝑥), 𝑦) = {
0, sign(𝐻( ⃗𝑥)) = 𝑦
|𝐻( ⃗𝑥)|, sign(𝐻( ⃗𝑥)) ≠ 𝑦



Perceptron Loss

▶ Perceptron loss did not penalize correct
classifications.

▶ Even if they were very close to boundary.

▶ Idea: penalize predictions that are close to the
boundary, too.



The Hinge Loss

ℓhinge(𝐻( ⃗𝑥), 𝑦) = {
0, 𝑦𝐻( ⃗𝑥) ≥ 1,
1 − 𝑦𝐻( ⃗𝑥), 𝑦𝐻( ⃗𝑥) < 1



The Hinge Loss

ℓhinge(𝐻( ⃗𝑥), 𝑦) = max{0, 1 − 𝑦𝐻( ⃗𝑥)}



Equivalence

▶ Recall the Soft-SVM problem:

min
𝑤⃗∈ℝ𝑑+1, ⃗𝜉∈ℝ𝑛

‖𝑤⃗‖2 + 𝐶
𝑛

∑
𝑖=1
𝜉𝑖

subject to 𝑦𝑖𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 − 𝜉𝑖 for all 𝑖, ⃗𝜉 ≥ 0.

▶ Note: if ⃗𝑥(𝑖) is misclassified, then

𝜉𝑖 = 1 − 𝑦𝑖𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖))



Equivalence

▶ The Soft-SVM problem is equivalent to finding 𝑤⃗
that minimizes:

𝑅svm(𝑤⃗) = ‖𝑤⃗‖2 + 𝐶
𝑛

∑
𝑖=1
max{0, 1 − 𝑦𝑖𝑤⃗ ⋅ ⃗𝑥(𝑖)}

▶ 𝑅svm is the regularized risk.

▶ 𝐶 is a parameter affecting “softness” of
boundary; chosen by you.



Another Way to Optimize

▶ In practice, SGD is often used to train soft SVMs.
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Demo: Sentiment Analysis



Why use linear predictors?

▶ Linear classifiers look to be very simple.

▶ That can be both good and bad.
▶ Good: the math is tractable, less likely to overfit
▶ Bad: may be too simple, underfit

▶ They can work surprisingly well.



Sentiment Analysis

▶ Given: a piece of text.

▶ Determine: if it is postive or negative in tone

▶ Example: “Needless to say, I wasted my money.”



The Data

▶ Sentences from reviews on Amazon, Yelp, IMDB.

▶ Each labeled (by a human) positive or negative.

▶ Examples:
▶ “Needless to say, I wasted my money.”
▶ “I have to jiggle the plug to get it to line up right.”
▶ “Will order from them again!”
▶ “He was very impressed when going from the original
battery to the extended battery.”



The Plan

▶ We’ll train a soft-margin SVM.

▶ Problem: SVMs take fixed-length vectors as
inputs, not sentences.



Bags of Words

To turn a document into a fixed-length vector:
▶ First, choose a dictionary of words:

▶ E.g.: [”wasted”, ”impressed”, ”great”, ”bad”, ”again”]

▶ Count number of occurrences of each dictionary word in
document.
▶ “It was bad. So bad that I was impressed at how bad
it was.” → (0, 1, 0, 3, 0)𝑇

▶ This is called a bag of words representation.



Choosing the Dictionary

▶ Many ways of choosing the dictionary.

▶ Easiest: take all of the words in the training set.
▶ Perhaps throw out stop words like “the”, “a”, etc.

▶ Resulting dimensionality of feature vectors:
large.



Experiment

▶ Bag of words features with 4500 word dictionary.

▶ 2500 training sentences, 500 test sentences.

▶ Train a soft margin SVM.



Choosing C

▶ We have to choose the slack parameter, 𝐶.

▶ Use cross validation!



Cross Validation



Results

▶ With 𝐶 = 0.32, test error ≈ 15.6%.




