
Lecture 7 | Part 1

Maximum Margin Classifiers

Recall: Perceptrons

▶ Linear classifier fit using loss function:

ℓtron(𝐻(⃗𝑥), 𝑦) = {
0, sign(𝐻(⃗𝑥)) = 𝑦
|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ 𝑦

Exercise

What is the empirical risk with respect to the per-
ceptron loss of 𝐻1? What about 𝐻2?

A Problem with the Perceptron

▶ Recall: the perceptron loss assigns no penalty to
points that are correctly classified.

▶ No matter how close the point is to the
boundary.

▶ Problem: we might learn decision boundary that
is very close to the data (overfitting).

Linear Separability

▶ Data are linearly separable if there exists a linear
classifier which perfectly classifies the data.

Margin

▶ The margin is the smallest distance between the
decision boundary and a training point.

Maximum Margin Classifier

▶ If training data are linearly separable, there are
many classifiers with zero error.

▶ We prefer classifiers with larger margins.
▶ Better generalization performance.

▶ Can we find the maximum margin classifier?
▶ I.e., the classifier with the largest possible margin?

Lecture 7 | Part 2

Hard SVM Optimization Problem

Goal

▶ Write down an optimization problem that,
assuming linear separability, ensures:
1. All points are classified correctly.
2. The margin is as large as possible.

The Exclusion Zone

▶ Define the exclusion zone as the region where
|𝐻(⃗𝑥)| < 1.
▶ That is, between 𝐻(⃗𝑥) = 1 and 𝐻(⃗𝑥) = −1.

H=1

H=0

A=- 1

H+HF1

Maximizing the Margin

▶ The margin and the exclusion zone are related.
▶ Width of exclusion zone ≤ the margin.

▶ Maximizing the margin is equivalent to
maximizing the width of the exclusion zone.

Goal

▶ We want to find a linear predictor 𝐻 that:
1. Classifies all points correctly.
2. Has no training points in the exclusion zone.
3. Has the widest exclusion zone possible.

Claim
▶ The width of the exc. zone is controlled by ‖𝑤⃗‖.

▶ Larger ‖𝑤⃗‖ ⇒ steeper 𝐻 ⇒ narrower exclusion zone.
▶ Smaller ‖𝑤⃗‖ ⇒ shallower 𝐻 ⇒ wider exclusion zone.

170 180 190 200 210 220 230

Flipper Length (mm)
3000

3500
4000

4500
5000

5500
6000

Body Mass (g)

1.5
1.0
0.5

0.0
0.5
1.0
1.5

H(x)

Adelie
Gentoo

170 180 190 200 210 220 230

Flipper Length (mm)
3000

3500
4000

4500
5000

5500
6000

Body Mass (g)
1.5
1.0
0.5

0.0
0.5
1.0
1.5

H(x)

Adelie
Gentoo

a

aSee: http:
//dsc140a.com/static/vis/svm/

http://dsc140a.com/static/vis/svm/
http://dsc140a.com/static/vis/svm/

Goal

▶ We want to find a linear predictor 𝐻 that:
1. Classifies all points correctly.
2. Has no training points in the exclusion zone.
3. Has the widest exclusion zone possible.

▶ That is, has the smallest possible ‖𝑤⃗‖.

▶ Now let’s write down a formal optimization
problem.

Goal

▶ We want to find a linear predictor 𝐻 that:
1. Classifies all points correctly.
2. Has no training points in the exclusion zone.
3. Has the widest exclusion zone possible.

▶ That is, has the smallest possible ‖𝑤⃗‖.

▶ Now let’s write down a formal optimization
problem.

Goal

▶ We want to find a 𝐻(⃗𝑥) = 𝑤⃗ ⋅ Aug(⃗𝑥) that:
1. Classifies all points correctly.

▶ That is, sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖 for all 𝑖.

2. Has no training points in the exclusion zone.
▶ That is, |𝐻(⃗𝑥(𝑖))| ≥ 1 for all 𝑖.

3. Has the widest exclusion zone possible.
▶ That is, has the smallest possible ‖𝑤⃗‖.

Goal

▶ We want to find a 𝐻(⃗𝑥) = 𝑤⃗ ⋅ Aug(⃗𝑥) that:
1. Classifies all points correctly.

▶ That is, sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖 for all 𝑖.

2. Has no training points in the exclusion zone.
▶ That is, |𝐻(⃗𝑥(𝑖))| ≥ 1 for all 𝑖.

3. Has the widest exclusion zone possible.
▶ That is, has the smallest possible ‖𝑤⃗‖.

Goal

▶ We want to find a 𝐻(⃗𝑥) = 𝑤⃗ ⋅ Aug(⃗𝑥) that:
1. Classifies all points correctly.

▶ That is, sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖 for all 𝑖.

2. Has no training points in the exclusion zone.
▶ That is, |𝐻(⃗𝑥(𝑖))| ≥ 1 for all 𝑖.

3. Has the widest exclusion zone possible.
▶ That is, has the smallest possible ‖𝑤⃗‖.

Goal

▶ Out of all 𝑤⃗ satisfying:
1. sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖 for all 𝑖. (all predictions correct)
2. |𝐻(⃗𝑥(𝑖))| ≥ 1 for all 𝑖. (no points in exclusion zone)

▶ Find one with smallest ‖𝑤⃗‖
▶ (Largest exclusion zone)

Hard-SVM Optimization Problem

▶ The Hard Support Vector Machine optimization
problem is:

𝑤⃗∗ = argmin
𝑤⃗

‖𝑤⃗‖

subject to:

sign(𝑤⃗ ⋅ Aug(⃗𝑥(𝑖))) = 𝑦𝑖;

|𝑤⃗ ⋅ Aug(⃗𝑥(𝑖))| ≥ 1
for all 𝑖.

Modifications

▶ The Hard-SVM problem is often stated slightly
differently.

Observation #1

▶ A point is classified correctly when:

{
𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) > 0, if 𝑦𝑖 = 1
𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) < 0, if 𝑦𝑖 = −1

▶ Equivalently, classification is correct if:

𝑦𝑖 𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) > 0

Hard-SVM Optimization Problem

▶ The Hard Support Vector Machine optimization
problem is:

𝑤⃗∗ = argmin
𝑤⃗

‖𝑤⃗‖

subject to:
𝑦𝑖 𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) > 0

|𝑤⃗ ⋅ Aug(⃗𝑥(𝑖))| ≥ 1
for all 𝑖.

Observation #2

▶ Since 𝑦𝑖 = ±1, we can simplify the constraints:

𝑦𝑖 𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) > 0

|𝑤⃗ ⋅ Aug(⃗𝑥(𝑖))| ≥ 1
becomes simply:

𝑦𝑖 𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) ≥ 1

Simpler Constraints

▶ That is, ⃗𝑥(𝑖) is 1) correctly classified and 2) outside
of the exclusion zone if and only if:

𝑦𝑖 𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) ≥ 1

Observation #3

▶ Minimizing ‖𝑤⃗‖2 or ‖𝑤⃗‖ gives same solution.
▶ allows us to use quadratic programming solvers.

Hard-SVM Optimization Problem

▶ The Hard-SVM optimization problem is:

𝑤⃗∗ = argmin
𝑤⃗

‖𝑤⃗‖2

subject to:
𝑦𝑖 𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) ≥ 1

for all 𝑖.

Hard-SVM

▶ This optimization problem is called the Hard
Support Vector Machine classifier problem.

▶ Only makes sense if data are linearly separable.

▶ In a moment, we’ll see the Soft-SVM.

How?

▶ Turn it into a convex quadratic optimization
problem:
▶ Minimize ‖𝑤⃗‖2 subject to 𝑦𝑖𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) ≥ 1 for all 𝑖.

▶ Can be solved efficiently with quadratic
programming.
▶ But there is no exact general formula for the solution

Exercise

Can the below predictor be a solution of the Hard-
SVM?

H+HF1

SVMs are Maximum Margin
Classifiers

▶ Intuition says solutions of Hard-SVM will have
large margins.

▶ Fact: they maximize the margin.
H=1

H=0

A=- 1

Support Vectors

▶ A support vector is a training point ⃗𝑥(𝑖) such that

𝑦𝑖𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) = 1
H=1

H=0

A=- 1

Support Vectors

▶ Fact: the solution to Hard-SVM is always a linear
combination of the support vectors.

▶ That is, let 𝑆 be the set of support vectors. Then

𝑤⃗∗ = ∑
𝑖∈𝑆
𝑦𝑖𝛼𝑖 Aug(⃗𝑥(𝑖))

Example: Irises

▶ 3 classes: iris setosa, iris versicolor, iris virginica

▶ 4 measurements: petal width/height, sepal width/height

Example: Irises
▶ Using only sepal width/petal width
▶ Two classes: versicolor (black), setosa (red)

Lecture 7 | Part 3

Soft-Margin SVMs

Non-Separability

▶ So far we’ve assumed data is linearly separable.

▶ What if it isn’t?

The Problem

▶ Old Goal: Minimize ‖𝑤⃗‖2 subject to
𝑦𝑖𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) ≥ 1 for all 𝑖.

▶ This no longer makes sense.

Cut Some Slack

▶ Idea: allow some classifications to be 𝜉𝑖 wrong,
but not too wrong.

Cut Some Slack

▶ New problem. Fix some number 𝐶 ≥ 0.

min
𝑤⃗∈ℝ𝑑+1, ⃗𝜉∈ℝ𝑛

‖𝑤⃗‖2 + 𝐶
𝑛

∑
𝑖=1
𝜉𝑖

subject to 𝑦𝑖𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) ≥ 1 − 𝜉𝑖 for all 𝑖, 𝜉𝑖 ≥ 0.

The Slack Parameter, C

▶ 𝐶 controls how much slack is given.

min
𝑤⃗∈ℝ𝑑+1, ⃗𝜉∈ℝ𝑛

‖𝑤⃗‖2 + 𝐶
𝑛

∑
𝑖=1
𝜉𝑖

subject to 𝑦𝑖𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) ≥ 1 − 𝜉𝑖 for all 𝑖, ⃗𝜉 ≥ 0.
▶ Large 𝐶: don’t give much slack. Avoid
misclassifications.

▶ Small 𝐶: allow more slack at the cost of
misclassifications.

Example: Small C

Example: Large C

Soft and Hard Margins

▶ Max-margin SVM from before has hard margin.

▶ Now: the soft margin SVM.

▶ As 𝐶 → ∞, the margin hardens.

Lecture 7 | Part 4

Hinge Loss

Loss Functions?

▶ So far, we’ve learned predictors by minimizing
expected loss via ERM.

▶ But this isn’t what we did with Hard-SVM and
Soft-SVM.

▶ It turns out, we can frame Soft-SVM as an ERM
problem.

Recall: Perceptron Loss

ℓtron(𝐻(⃗𝑥), 𝑦) = {
0, sign(𝐻(⃗𝑥)) = 𝑦
|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ 𝑦

Perceptron Loss

▶ Perceptron loss did not penalize correct
classifications.

▶ Even if they were very close to boundary.

▶ Idea: penalize predictions that are close to the
boundary, too.

The Hinge Loss

ℓhinge(𝐻(⃗𝑥), 𝑦) = {
0, 𝑦𝐻(⃗𝑥) ≥ 1,
1 − 𝑦𝐻(⃗𝑥), 𝑦𝐻(⃗𝑥) < 1

The Hinge Loss

ℓhinge(𝐻(⃗𝑥), 𝑦) = max{0, 1 − 𝑦𝐻(⃗𝑥)}

Equivalence

▶ Recall the Soft-SVM problem:

min
𝑤⃗∈ℝ𝑑+1, ⃗𝜉∈ℝ𝑛

‖𝑤⃗‖2 + 𝐶
𝑛

∑
𝑖=1
𝜉𝑖

subject to 𝑦𝑖𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) ≥ 1 − 𝜉𝑖 for all 𝑖, ⃗𝜉 ≥ 0.

▶ Note: if ⃗𝑥(𝑖) is misclassified, then

𝜉𝑖 = 1 − 𝑦𝑖𝑤⃗ ⋅ Aug(⃗𝑥(𝑖))

Equivalence

▶ The Soft-SVM problem is equivalent to finding 𝑤⃗
that minimizes:

𝑅svm(𝑤⃗) = ‖𝑤⃗‖2 + 𝐶
𝑛

∑
𝑖=1
max{0, 1 − 𝑦𝑖𝑤⃗ ⋅ ⃗𝑥(𝑖)}

▶ 𝑅svm is the regularized risk.

▶ 𝐶 is a parameter affecting “softness” of
boundary; chosen by you.

Another Way to Optimize

▶ In practice, SGD is often used to train soft SVMs.

Lecture 7 | Part 5

Demo: Sentiment Analysis

Why use linear predictors?

▶ Linear classifiers look to be very simple.

▶ That can be both good and bad.
▶ Good: the math is tractable, less likely to overfit
▶ Bad: may be too simple, underfit

▶ They can work surprisingly well.

Sentiment Analysis

▶ Given: a piece of text.

▶ Determine: if it is postive or negative in tone

▶ Example: “Needless to say, I wasted my money.”

The Data

▶ Sentences from reviews on Amazon, Yelp, IMDB.

▶ Each labeled (by a human) positive or negative.

▶ Examples:
▶ “Needless to say, I wasted my money.”
▶ “I have to jiggle the plug to get it to line up right.”
▶ “Will order from them again!”
▶ “He was very impressed when going from the original
battery to the extended battery.”

The Plan

▶ We’ll train a soft-margin SVM.

▶ Problem: SVMs take fixed-length vectors as
inputs, not sentences.

Bags of Words

To turn a document into a fixed-length vector:
▶ First, choose a dictionary of words:

▶ E.g.: [”wasted”, ”impressed”, ”great”, ”bad”, ”again”]

▶ Count number of occurrences of each dictionary word in
document.
▶ “It was bad. So bad that I was impressed at how bad
it was.” → (0, 1, 0, 3, 0)𝑇

▶ This is called a bag of words representation.

Choosing the Dictionary

▶ Many ways of choosing the dictionary.

▶ Easiest: take all of the words in the training set.
▶ Perhaps throw out stop words like “the”, “a”, etc.

▶ Resulting dimensionality of feature vectors:
large.

Experiment

▶ Bag of words features with 4500 word dictionary.

▶ 2500 training sentences, 500 test sentences.

▶ Train a soft margin SVM.

Choosing C

▶ We have to choose the slack parameter, 𝐶.

▶ Use cross validation!

Cross Validation

Results

▶ With 𝐶 = 0.32, test error ≈ 15.6%.

