
Lecture 6 | Part 1

Convexity

1 / 116

Convexity: Definition
▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between

(𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓.

2 / 116

Convexity: Formal Definition

▶ A function 𝑓 ∶ ℝ → ℝ is convex if for every
choice of 𝑎, 𝑏 ∈ ℝ and 𝑡 ∈ [0, 1]:

(1 − 𝑡)𝑓(𝑎) + 𝑡𝑓(𝑏) ≥ 𝑓((1 − 𝑡)𝑎 + 𝑡𝑏).

3 / 116

Another View: Second Derivatives

▶ If 𝑑
2𝑓
𝑑𝑥2 (𝑥) ≥ 0 for all 𝑥, then 𝑓 is convex.

▶ Example: 𝑓(𝑥) = 𝑥4 is convex.

▶ Warning! Only works if 𝑓 is twice differentiable!

4 / 116

Another View: Second Derivatives

▶ “Best” straight line at 𝑥0:
▶ 𝑓1(𝑥) = 𝑓(𝑥0) + 𝑓

′(𝑥0) ⋅ (𝑥 − 𝑥0)

▶ “Best” parabola at 𝑥0:
▶ 𝑓2(𝑥) = 𝑓(𝑥0) + 𝑓

′(𝑥0) ⋅ (𝑥 − 𝑥0) +
1
2
𝑓″(𝑥0) ⋅ (𝑥 − 𝑥0)

2

▶ Possibilities: upward-facing, downward-facing, flat.

5 / 116

Convexity and Parabolas

▶ Convex if for every 𝑥0, parabola is upward-facing
(or flat).
▶ That is, 𝑓″(𝑥0) ≥ 0.

6 / 116

Careful!

▶ A function can be convex without having a
second derivative.

▶ Example: 𝑓(𝑥) = |𝑥| is convex.
▶ But can’t use the second derivative test to show it.

7 / 116

Proving Convexity Using Properties
Suppose that 𝑓(𝑥) and 𝑔(𝑥) are convex. Then:

1. 𝑤1𝑓(𝑥) + 𝑤2𝑔(𝑥) is convex, provided 𝑤1, 𝑤2 ≥ 0
▶ Example: 3𝑥2 + |𝑥| is convex

2. 𝑔(𝑓(𝑥)) is convex, provided 𝑔 is non-decreasing.
▶ Example: 𝑒𝑥2 is convex

3. max{𝑓(𝑥), 𝑔(𝑥)} is convex

▶ Example: {
0, x < 0
𝑥, x ≥0

is convex

8 / 116

Note!

▶ These properties are useful for proving convexity
for functions of one variable.

▶ Some of them will not generalize to higher
dimensions.

9 / 116

Lecture 6 | Part 2

Convexity in Many Dimensions

10 / 116

Convexity: Definition
▶ 𝑓(⃗𝑥) is convex if for every 𝑎⃗, 𝑏⃗ the line segment
between

(𝑎⃗, 𝑓(𝑎⃗)) and (𝑏⃗, 𝑓(𝑏⃗))

does not go below the plot of 𝑓.

11 / 116

Convexity: Formal Definition

▶ A function 𝑓 ∶ ℝ𝑑 → ℝ is convex if for every
choice of 𝑎⃗, 𝑏⃗ ∈ ℝ𝑑 and 𝑡 ∈ [0, 1]:

(1 − 𝑡)𝑓(𝑎⃗) + 𝑡𝑓(𝑏⃗) ≥ 𝑓((1 − 𝑡)𝑎⃗ + 𝑡𝑏⃗).

12 / 116

Checking for Convexity

▶ We can usually go back to the definition to check
if a function is convex.

▶ Example: see discussion.

▶ Typically, though, there are easier ways to check.

13 / 116

The Second Derivative Test

▶ For 1-dimensions functions:
▶ convex if second derivative ≥ 0.

▶ For 𝑑-dimensional functions:
▶ convex if ???

14 / 116

Second Derivatives in 𝑑-Dimensions

▶ In 2-dimensions, there are 4 second derivatives:
▶ 𝜕𝑓2

𝜕𝑥21
, 𝜕𝑓

2

𝜕𝑥22
, 𝜕𝑓2

𝜕𝑥1𝑥2
, 𝜕𝑓2

𝜕𝑥2𝑥1

▶ In 𝑑-dimensions, there are 𝑑2:
▶ 𝜕𝑓2

𝜕𝑥𝑖𝜕𝑥𝑗
for all 𝑖, 𝑗.

▶ The second derivatives describe the curvature of
second order approximation 𝑓.
▶ Convex if the approximation is always an
upward-facing paraboloid or flat.

15 / 116

20 10 0 10 20 30 40 50
x1

10.07.55.02.50.02.55.07.510.0

x2

40000
20000

0
20000
40000
60000

16 / 116

The Hessian Matrix

▶ Create the Hessian matrix of second derivatives:

▶ For 𝑓 ∶ ℝ2 → ℝ:

𝐻(⃗𝑥) = (

𝜕𝑓2

𝜕𝑥21
(⃗𝑥) 𝜕𝑓2

𝜕𝑥1𝑥2
(⃗𝑥)

𝜕𝑓2

𝜕𝑥2𝑥1
(⃗𝑥) 𝜕𝑓2

𝜕𝑥22
(⃗𝑥)

)

17 / 116

In General

▶ If 𝑓 ∶ ℝ𝑑 → ℝ, the Hessian at ⃗𝑥 is:

𝐻(⃗𝑥) =
⎛⎜⎜⎜

⎝

𝜕𝑓2

𝜕𝑥21
(⃗𝑥) 𝜕𝑓2

𝜕𝑥1𝑥2
(⃗𝑥) ⋯ 𝜕𝑓2

𝜕𝑥1𝑥𝑑
(⃗𝑥)

𝜕𝑓2

𝜕𝑥2𝑥1
(⃗𝑥) 𝜕𝑓2

𝜕𝑥22
(⃗𝑥) ⋯ 𝜕𝑓2

𝜕𝑥2𝑥𝑑
(⃗𝑥)

⋯ ⋯ ⋯ ⋯
𝜕𝑓2

𝜕𝑥𝑑𝑥1
(⃗𝑥) 𝜕𝑓2

𝜕𝑥2𝑑
(⃗𝑥) ⋯ 𝜕𝑓2

𝜕𝑥2𝑑
(⃗𝑥)

⎞⎟⎟⎟

⎠

18 / 116

Second Derivative Test

▶ A function 𝑓 ∶ ℝ𝑑 → ℝ is convex if for any ⃗𝑥 ∈ ℝ𝑑,
all eigenvalues of the Hessian matrix 𝐻(⃗𝑥) are
≥ 0.

19 / 116

For This Class...

▶ You will not need to compute eigenvalues “by
hand”...

▶ Unless the matrix is diagonal.
▶ In which case, the eigenvalues are the diagonal
entries.

20 / 116

Example

▶ The eigenvalues of this matrix are 5, 2, and 1.

(
5 0 0
0 2 0
0 0 1

)

21 / 116

Exercise

Is 𝑓(𝑥, 𝑦) = 𝑒𝑥 + 𝑒𝑦 + 𝑥2 − 𝑦2 convex?

𝐻(𝑥, 𝑦) = (
𝜕2𝑓
𝜕𝑥2

𝜕2𝑓
𝜕𝑥𝜕𝑦

𝜕2𝑓
𝜕𝑦𝜕𝑥

𝜕2𝑓
𝜕𝑦2

) = (𝑒
𝑥 + 2 0
0 𝑒𝑦 − 2)

22 / 116

No
▶ The Hessian at (0,0) has a negative eigenvalue.

2 1 0 1 2

x21012

y

2.5
0.0
2.5
5.0
7.5

10.0
12.5

23 / 116

Exercise

Is 𝑓(𝑤⃗) = ‖𝑤⃗‖2 convex?

‖𝑤⃗‖2 = 𝑤⃗ ⋅ 𝑤⃗ = 𝑤20 + 𝑤
2
1 + ⋯ + 𝑤

2
𝑑

𝐻(𝑤⃗) = (

2 0 ⋯ 0
0 2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 2

)

24 / 116

Note

▶ The second derivative test only works if 𝑓 is twice
differentiable.

▶ A function can be convex without having a
second derivative.

25 / 116

Properties

▶ We can often prove convexity using properties.

▶ Two useful properties:
1. Sums of convex functions are convex.
2. Affine compositions of convex functions are convex.

26 / 116

Sums of Convex Functions

▶ Suppose that 𝑓(⃗𝑥) and 𝑔(⃗𝑥) are convex. Then
𝑤1𝑓(⃗𝑥) + 𝑤2𝑔(⃗𝑥) is convex, provided 𝑤1, 𝑤2 ≥ 0.

27 / 116

Affine Composition

▶ Suppose that 𝑓(𝑥) is convex. Let 𝐴 be a matrix,
and ⃗𝑥 and 𝑏⃗ be vectors. Then

𝑔(⃗𝑥) = 𝑓(𝐴 ⃗𝑥 + 𝑏⃗)

is convex as a function of ⃗𝑥.

▶ Remember: a vector is a matrix with one
column/row.

▶ Useful!
28 / 116

Exercise

Consider the function

𝑔(𝑤⃗) = (⃗𝑥 ⋅ 𝑤⃗ − 𝑦)2

Is this function convex as a function of 𝑤⃗?

29 / 116

Lecture 6 | Part 3

Convex Loss Functions

30 / 116

Empirical Risk Minimization (ERM)

▶ Step 1: choose a hypothesis class
▶ We’ve chosen linear predictors, 𝐻(⃗𝑥) = Aug(⃗𝑥) ⋅ 𝑤⃗.

▶ Step 2: choose a loss function

▶ Step 3: find 𝑤⃗ minimizing empirical risk
▶ Some choices of loss function make this easier.

31 / 116

Convexity and Gradient Descent

▶ Convex functions are (relatively) easy to
optimize.

▶ Theorem: if 𝑓(𝑥) is convex and “not too steep”1
then (stochastic) (sub)gradient descent
converges to a global optimum of 𝑓 provided
that the step size is small enough2.

1Technically, 𝑐-Lipschitz
2step size related to steepness, should decrease like 1/√step #

32 / 116

Convex Loss

▶ Recall: sums of convex functions are convex.

▶ Implication: if loss function is convex as a
function of 𝑤⃗, so is the empirical risk, 𝑅(𝑤⃗)

𝑅(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1
ℓ(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗, 𝑦𝑖)

▶ Takeaway: Convex losses make ERM easier.

33 / 116

Example: Square Loss

▶ Recall the square loss for a linear predictor:

ℓsq(Aug(⃗𝑥) ⋅ 𝑤⃗, 𝑦) = (Aug(⃗𝑥) ⋅ 𝑤⃗ − 𝑦)
2

▶ This is convex as a function of 𝑤⃗.

▶ Proof: a few slides ago.

34 / 116

Example: Absolute Loss

▶ Recall the absolute loss for a linear predictor:

ℓabs(Aug(⃗𝑥) ⋅ 𝑤⃗, 𝑦) = |Aug(⃗𝑥) ⋅ 𝑤⃗ − 𝑦|

▶ This is also convex as a function of 𝑤⃗.

35 / 116

Linear Predictors

▶ It’s also important that we’ve chosen linear
predictors.

▶ A loss that is convex in 𝑤⃗ for linear 𝐻1(𝑥) may be
non-convex for non-linear 𝐻2(𝑥).

▶ Example: square loss.
▶ If 𝐻1(𝑥) = 𝑤0 + 𝑤1𝑥, then (𝑤0 + 𝑤1𝑥 − 𝑦)

2 is convex.
▶ If 𝐻2(𝑥) = 𝑤0𝑒

𝑤1𝑥, then (𝑤0𝑒
𝑤1𝑥 − 𝑦)2 is non-convex.

36 / 116

Summary

▶ By combining 1) linear predictors and 2) a convex
loss function, we make ERM easier.

▶ Many machine learning algorithms are linear
predictors with convex loss functions.
▶ As we’ll see...

37 / 116

Lecture 6 | Part 4

Appendix: From Theory to Practice

38 / 116

Gradient Descent

▶ We’ve spent three lectures on gradient descent.

▶ A powerful optimization algorithm.

▶ In practice, we use extensions of (stochastic)
gradient descent.

39 / 116

Extensions of SGD

▶ Newton’s method
▶ Second order optimization, using the Hessian.
▶ Can converge in fewer steps.
▶ But the Hessian is expensive to compute.

▶ Adagrad, RMSprop, Adam
▶ SGD with adaptive learning rates.
▶ Used heavily in training of deep neural networks.

40 / 116

Non-Convex Optimization

▶ So far, we’ve only seen convex risks.

▶ But there’s an important class of machine
learning algorithms that have non-convex risks.

▶ Namely: deep neural networks.

41 / 116

Empirical Risk Minimization (ERM)

▶ Step 1: choose a hypothesis class
▶ Deep neural networks.

▶ Step 2: choose a loss function

▶ Step 3: find 𝑤⃗ minimizing empirical risk

42 / 116

Deep Learning

▶ A deep neural network is a prediction function
𝐻(⃗𝑥; 𝑤⃗) composed of many layers.

▶ Typically, 𝐻 is not linear in 𝑤⃗.

▶ The risk becomes highly non-convex.
▶ Even, for example, the square loss.

▶ How do we minimize the empirical risk?

43 / 116

Answer: SGD

▶ We use stochastic gradient descent (and
extensions).
▶ Even though the empirical risk is non-convex.
▶ The optimization problem becomes much harder.

▶ SGD may not find a global minimum of the risk.

▶ But often finds a “good enough” local minimum.

44 / 116

Lecture 6 | Part 5

Linear Classification

45 / 116

Classification

▶ We’ve been talking about regression.
▶ Label is a continuous value.

▶ What about classification?
▶ Label is a discrete value.

46 / 116

Example: Penguins
▶ Given a new penguin’s measurements, predict its
species.

170 180 190 200 210 220 230
Flipper Length (mm)

3000

3500

4000

4500

5000

5500

6000

Bo
dy

 M
as

s (
g)

Adelie
Gentoo

47 / 116

Looking Back

▶ We know one classification algorithm already.
▶ 𝑘-Nearest Neighbors.

▶ But 𝑘-NN does not “learn”, it “memorizes”.

▶ Can we use linear predictors for classification?

𝐻(⃗𝑥) = 𝑤0 + 𝑤1(flipper length) + 𝑤2(body mass)

▶ Train by minimizing risk?
48 / 116

Linear Classifiers

▶ Problem: output of 𝐻(⃗𝑥) is a real number; we
want the output to be a species.

𝐻(⃗𝑥) = 𝑤0 + 𝑤1(flipper length) + 𝑤2(body mass)

▶ Idea: turn species into a number.

49 / 116

Label Encodings
▶ There are two natural ways to encode a label 𝑦
as a number in binary classification.

▶ 𝑦 ∈ {0, 1}:
▶ 𝑦 = 0 for one class, 𝑦 = 1 for the other.
▶ Example: 0 for Adelie, 1 for Gentoo.

▶ 𝑦 ∈ {−1, 1}:
▶ 𝑦 = −1 for one class, 𝑦 = 1 for the other.
▶ Example: -1 for Adelie, 1 for Gentoo.

▶ Unless otherwise specified, we’ll use 𝑦 ∈ {−1, 1}.
50 / 116

Linear Classifiers

▶ Assume the labels are encoded as 𝑦 ∈ {−1, 1}.

▶ Another problem: 𝐻(⃗𝑥) can be any real number.
▶ Output is not necessarily −1 or 1.

▶ We need to turn output of 𝐻(⃗𝑥) into -1 or 1.

51 / 116

Sign Function

▶ Idea: use the sign function.

sign(𝑧) = {
1 if 𝑧 > 0
−1 if 𝑧 < 0
0 if 𝑧 = 0

52 / 116

Linear Classifiers

▶ We will still use linear predictors.
▶ 𝐻(⃗𝑥; 𝑤⃗) = Aug(⃗𝑥) ⋅ 𝑤⃗.

▶ But our final predicted label will be sign(𝐻(⃗𝑥; 𝑤⃗)).
▶ If 𝐻(⃗𝑥) = 0, predict either 1 or -1 (it’s arbitrary).

▶ sign(𝐻(⃗𝑥; 𝑤⃗)) is called a linear classifier.
▶ Takes in a feature vector and outputs a discrete label.
▶ Sometimes called a linear decision function.

53 / 116

Interpretation: Weighted Vote

▶ A linear classifier is like a weighted vote.

▶ Each term 𝑤𝑖𝑥𝑖 “votes” on the label.

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

▶ If the sum is:
▶ positive: predict 1.
▶ negative: predict −1.
▶ zero: toss a coin, it’s arbitrary!

54 / 116

The Prediction Surface

170 180 190 200 210 220 230
Flipper Length (mm)

3000
3500
4000
4500
5000
5500
6000

Body M
ass (g)

1.51.00.50.00.51.01.5

H(x)

Adelie
Gentoo ▶ 𝐻(⃗𝑥) is a (hyper) plane.

▶ The place where 𝐻(⃗𝑥) = 0 is
the decision boundary.

▶ On one side, we predict 1.

▶ On the other, we predict −1.

55 / 116

Decision Boundary

▶ The decision boundary is the place where the
output of 𝐻(⃗𝑥) switches from “yes” to “no”.

▶ If 𝐻 is a linear predictor and3
▶ ⃗𝑥 ∈ 𝑅1, then the decision boundary is just a number.
▶ ⃗𝑥 ∈ ℝ2, the boundary is a straight line.
▶ ⃗𝑥 ∈ ℝ𝑑, the boundary is a 𝑑 − 1 dimensional (hyper)
plane.

3when plotted in the original feature coordinate space!
56 / 116

Magnitude of 𝐻

170 180 190 200 210 220 230
Flipper Length (mm)

3000
3500
4000
4500
5000
5500
6000

Bo
dy

 M
as

s (
g)

2.01.51.00.50.00.51.01.5

H(x) Adelie
Gentoo

▶ The magnitude of 𝐻(⃗𝑥)
is proportional to the
distance from the
decision boundary.

57 / 116

Exercise

True or False: it’s possible for two different linear
prediction functions 𝐻1(⃗𝑥) and 𝐻2(⃗𝑥) to have the
exact same decision boundary.

58 / 116

True

170 180 190 200 210 220 230

Flipper Length (mm)
3000

3500
4000

4500
5000

5500
6000

Body Mass (g)

2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5

H(x)

Adelie
Gentoo

59 / 116

True

170 180 190 200 210 220 230

Flipper Length (mm)
3000

3500
4000

4500
5000

5500
6000

Body Mass (g)

1.5
1.0
0.5

0.0
0.5
1.0
1.5

H(x)

Adelie
Gentoo

59 / 116

True

170 180 190 200 210 220 230

Flipper Length (mm)
3000

3500
4000

4500
5000

5500
6000

Body Mass (g)

1.5
1.0
0.5

0.0
0.5
1.0
1.5

H(x)

Adelie
Gentoo

59 / 116

Another Useful Fact

▶ 𝑤⃗ controls the orientation of the decision
boundary.
▶ A different 𝑤⃗ gives a different decision boundary.

▶ Let 𝑤⃗′ = (𝑤1, … , 𝑤𝑑).
▶ In other words, it is 𝑤⃗ without the bias term 𝑤0.

▶ Fact: the decision boundary of 𝐻(⃗𝑥) = Aug(⃗𝑥) ⋅ 𝑤⃗ is
orthogonal to 𝑤⃗′.

60 / 116

Finding a Linear Classifier

▶ How do we find a good linear classifier?

61 / 116

ERM for Classification

▶ Step 1: choose a hypothesis class
▶ We’ve chosen linear classifiers, sign(Aug(⃗𝑥) ⋅ 𝑤⃗).

▶ Step 2: choose a loss function

▶ Step 3: find 𝐻 minimizing empirical risk
▶ In case of linear predictors, equivalent to finding 𝑤⃗.

62 / 116

A First Idea

▶ Let’s try using the same, familiar square loss.

63 / 116

Lecture 6 | Part 6

Least Squares Classifiers

64 / 116

Classification as Regression

▶ We can think of classification as a special case of
regression where the labels are always 1 or -1.

▶ Goal: find a prediction function 𝐻(⃗𝑥) whose
output is:
▶ close to 1 for points from positive class.
▶ close to -1 for points from negative class.

65 / 116

170 180 190 200 210 220 230
Flipper Length (mm)

3000350040004500500055006000

Body Mass (g)

2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5

H(x)

Adelie
Gentoo

66 / 116

Least Squares Classifier

▶ Idea: least squares regression can be used for
classification, too.

▶ The resulting algorithm is called the least
squares classifier.

67 / 116

Linear Least Squares Classification

▶ To train:
▶ Given training data (⃗𝑥1, 𝑦1), … , (⃗𝑥𝑛, 𝑦𝑛), with 𝑦𝑖 ∈ {−1, 1}.
1. Construct 𝑛 × (𝑑 + 1) augmented design matrix, 𝑋.
2. Solve the normal equations: 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦.

▶ To predict:
▶ Given a new point ⃗𝑥, predict sign(Aug(⃗𝑥) ⋅ 𝑤⃗∗).

68 / 116

Square Loss for Classification

▶ We designed square loss for regression

▶ We can use it for classification.

▶ But it might not be the best choice.

69 / 116

Exercise

What is the total square
loss of the predictor on
the data?

Assume is class -1 and
is class 1.

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8
𝐻 = 0𝐻 = −1 𝐻 = 1

70 / 116

Observation

▶ The square loss penalizes points that are far
from the decision boundary.

▶ Even if they are correctly classified!

71 / 116

Least Squares and Outliers

4

4Bishop, Pattern Recognition and Machine Learning
72 / 116

Another Loss?

▶ Least squares classifiers can work well in practice.
▶ Easy to implement!

▶ But maybe a loss designed for classification will
work better.

73 / 116

Lecture 6 | Part 7

0-1 Loss

74 / 116

Empirical Risk Minimization

▶ Step 1: choose a hypothesis class
▶ Let’s assume we’ve chosen linear predictors

▶ Step 2: choose a loss function

▶ Step 3: minimize expected loss (empirical risk)

75 / 116

Another Loss Function

▶ What about the 0-1 loss?
▶ Loss = 0 if prediction is correct.
▶ Loss = 1 if prediction is incorrect.

▶ More formally:

ℓ0-1(𝐻(⃗𝑥
(𝑖)), 𝑦𝑖) = {

0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖

76 / 116

Expected 0-1 Loss

▶ The expected 0-1 loss (empirical risk) has a nice
interpretation:

𝑅0-1(𝐻) =
1
𝑛

𝑛

∑
𝑖=1
{
0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖

Exercise

What is it?

77 / 116

Answer

▶ The empirical risk with respect to the 0-1 loss is
the misclassification rate of the classifier.
▶ That is, (1 - the accuracy)

𝑅0-1(𝐻) =
1
𝑛

𝑛

∑
𝑖=1
{
0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖

=
of incorrect predictions

𝑛

78 / 116

ERM for the 0-1 Loss

▶ Minimizing the empirical risk with respect to the
0-1 loss is equivalent to maximizing the accuracy.

▶ That’s exactly what we want!

▶ But there’s a problem...

79 / 116

Exercise

What is the gradient of
𝑅0-1(𝐻)with respect to the
current 𝑤⃗?

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8
-
+

80 / 116

Answer

▶ The gradient of 𝑅0-1 is 0⃗ almost everywhere.

▶ In other words, 𝑅0-1 is flat almost everywhere.

▶ This is a problem because gradient descent
needs slope information to make progress.

81 / 116

Computationally Difficult

▶ It is not feasible to minimize 0-1 risk in general.

▶ More formally: NP-Hard to optimize expected 0-1
loss in general.5

5It is efficiently doable if the classes are linearly separable by finding
convex hulls of each class. If non-separable, it is difficult.

82 / 116

Main Idea

It is computationally difficult (NP-Hard) to find a
linear classifier with maximum accuracy, in gen-
eral.

83 / 116

Lecture 6 | Part 8

Perceptron Loss

84 / 116

Surrogate Loss

▶ We’d like to use the 0-1 loss, but it’s not feasible.

▶ Instead, we use a surrogate loss.

▶ That is, a loss that is similar in spirit, but leads to
easier optimization problems.

85 / 116

A New Loss

▶ No penalty if point is correctly classified.
▶ Like the 0-1 loss.

▶ A penalty that grows with distance to decision
boundary if point is incorrectly classified.
▶ Unlike the 0-1 loss.
▶ This will give us a non-zero gradient.

86 / 116

Perceptron Loss

▶ We call this loss the perceptron loss.

ℓtron(𝐻(⃗𝑥), 𝑦) = {
0, sign(𝐻(⃗𝑥)) = 𝑦
|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ 𝑦

▶ Remember, |𝐻(⃗𝑥)| is proportional to distance
from decision boundary.

87 / 116

Exercise

What is the total percep-
tron loss of the predictor
on the data?

Assume is class -1 and
is class 1.

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8
𝐻 = 0𝐻 = −1 𝐻 = 1

88 / 116

Convexity?

▶ Is the perceptron loss convex in 𝑤⃗?

▶ Trick:

ℓtron(Aug(⃗𝑥) ⋅ 𝑤⃗, 𝑦) = {
0, sign(Aug(⃗𝑥) ⋅ 𝑤⃗) = 𝑦
|Aug(⃗𝑥) ⋅ 𝑤⃗|, sign(Aug(⃗𝑥) ⋅ 𝑤⃗) ≠ 𝑦

= max(0, −𝑦Aug(⃗𝑥) ⋅ 𝑤⃗)

▶ Fact: Max of convex functions is convex.
89 / 116

ERM for the Perceptron

▶ Goal: minimize empirical risk w.r.t. perceptron
loss for a linear predictor 𝐻(⃗𝑥) = Aug(⃗𝑥) ⋅ 𝑤⃗.

𝑅tron(𝑤⃗) =
1
𝑛

𝑛

∑
𝑖=1
ℓtron(𝐻(⃗𝑥

(𝑖)), 𝑦𝑖)

= 1
𝑛

𝑛

∑
𝑖=1
{0, sign(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗) = 𝑦𝑖
|Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗|, sign(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗) ≠ 𝑦𝑖

90 / 116

Minimizing Perceptron Risk

▶ 𝑅tron is not differentiable.
▶ Because of the absolute value.

▶ But it is convex.
▶ Since ℓtron is convex.

▶ We can minimize using subgradient descent.

91 / 116

A Subgradient of the Loss
▶ We need a subgradient of ℓtron.

ℓtron(Aug(⃗𝑥) ⋅ 𝑤⃗, 𝑦) = max(0, −𝑦Aug(⃗𝑥) ⋅ 𝑤⃗)

21012
w1

21
0
1

2

w
2

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

tron

92 / 116

A Subgradient of the Loss

▶ We need a subgradient of ℓtron.

ℓtron(Aug(⃗𝑥) ⋅ 𝑤⃗, 𝑦) = max(0, −𝑦Aug(⃗𝑥) ⋅ 𝑤⃗)

▶ If −𝑦Aug(⃗𝑥) ⋅ 𝑤⃗ > 0, the gradient is −𝑦Aug(⃗𝑥).

▶ If −𝑦Aug(⃗𝑥) ⋅ 𝑤⃗ < 0, the gradient is 0⃗.

▶ Claim: at −𝑦Aug(⃗𝑥) ⋅ 𝑤⃗ = 0, 0⃗ is a subgradient.

93 / 116

Subgradient of the Loss
▶ We’ve found:

subgrad ℓtron(Aug(⃗𝑥) ⋅ 𝑤⃗, 𝑦)

= {
0⃗, if −𝑦Aug(⃗𝑥) ⋅ 𝑤⃗ < 0
−𝑦Aug(⃗𝑥), if −𝑦Aug(⃗𝑥) ⋅ 𝑤⃗ > 0

▶ Or, equivalently:
subgrad ℓtron(Aug(⃗𝑥) ⋅ 𝑤⃗, 𝑦)

= {
0⃗, if sign(Aug(⃗𝑥) ⋅ 𝑤⃗) = 𝑦
−𝑦Aug(⃗𝑥), if sign(Aug(⃗𝑥) ⋅ 𝑤⃗) ≠ 𝑦

94 / 116

Subgradient of the Risk

▶ A subgradient of the risk is then:

subgrad𝑅tron(𝑤⃗) =

1
𝑛

𝑛

∑
𝑖=1
{
0⃗, sign(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗) = 𝑦𝑖
−𝑦𝑖 Aug(⃗𝑥

(𝑖)), sign(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗) ≠ 𝑦𝑖

95 / 116

The Perceptron

▶ To train:
▶ Given training data (⃗𝑥1, 𝑦1), … , (⃗𝑥𝑛, 𝑦𝑛), with 𝑦𝑖 ∈ {−1, 1}.
1. Minimize 𝑅tron(𝑤⃗) with, e.g., subgradient descent:

𝑤⃗(𝑡+1) = 𝑤⃗(𝑡)−𝜂(𝑡)×1
𝑛

𝑛

∑
𝑖=1

{
0⃗, sign(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗) = 𝑦𝑖
−𝑦𝑖 Aug(⃗𝑥

(𝑖)), sign(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗) ≠ 𝑦𝑖

▶ To predict:
▶ Given a new point ⃗𝑥, predict sign(Aug(⃗𝑥) ⋅ 𝑤⃗∗).

96 / 116

Lecture 6 | Part 9

Perceptron Demo: MNIST

98 / 116

Demo: MNIST

▶ MNIST is a classic machine learning data set.

▶ Many images of handwritten digits, 0-9.

▶ Multiclass classification problem.

▶ But we can make it binary: 3 vs. 7.

99 / 116

Example MNIST Digit

▶ Grayscale

▶ 28 x 28 pixels

100 / 116

MNIST Feature Vectors

▶ 28 × 28 = 784 pixels

▶ Each image is a vector in ℝ784

▶ Each feature is intensity of single pixel
▶ black→ 0, white→ 255

▶ A very simple representation.

101 / 116

Demo: MNIST

▶ Use only images of 3s and 7s.

▶ 4132 training images.

▶ 680 testing images.

▶ Some minor tuning.
▶ Added random noise for robustness.
▶ Picked classification threshold automatically.

102 / 116

Perceptron Learning

▶ Linear prediction function parameterized by 𝑤⃗.

▶ In this case, we can “reshape” 𝑤⃗ to be same size
as input image.

103 / 116

Weight Vector

▶ Recall that the prediction is a weighted vote:

𝐻(⃗𝑥) = sign(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + …𝑤784𝑥784)

▶ Positive→ 7, Negative→ 3

▶ 𝑤𝑖 is the weight of pixel 𝑖
▶ positive: if this pixel is bright, I think this is a 7
▶ negative: if this pixel is bright, I think this is a 3
▶ magnitude: confidence in prediction

104 / 116

Perceptron Training

105 / 116

Perceptron Weight Vector

106 / 116

Perceptron Results

▶ Test accuracy: 97.3%

107 / 116

Square Loss for Classification

▶ What if we use square loss for classification?

▶ We can, but will it work well?

108 / 116

Results: Least Squares

▶ Test Accuracy: 96.7% (marginally worse)

109 / 116

Results: Least Squares

▶ Misclassifications are telling.

110 / 116

Least Squares Weight Vector

▶ Can visualize weight of each pixel as an image.

111 / 116

Least Squares Weight Vector

112 / 116

Some History

▶ Perceptrons were one of the first “machine
learning” models.

▶ The basis of modern neural networks.

113 / 116

Rosenblatt’s Perceptron

114 / 116

115 / 116

Next Time

▶ We “solve” linear classification, once and for all.

116 / 116

