
Lecture 6 | Part 1

Convexity

1 / 116



Convexity: Definition
▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between

(𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓.
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Convexity: Formal Definition

▶ A function 𝑓 ∶ ℝ → ℝ is convex if for every
choice of 𝑎, 𝑏 ∈ ℝ and 𝑡 ∈ [0, 1]:

(1 − 𝑡)𝑓(𝑎) + 𝑡𝑓(𝑏) ≥ 𝑓((1 − 𝑡)𝑎 + 𝑡𝑏).
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Another View: Second Derivatives

▶ If 𝑑
2𝑓
𝑑𝑥2 (𝑥) ≥ 0 for all 𝑥, then 𝑓 is convex.

▶ Example: 𝑓(𝑥) = 𝑥4 is convex.

▶ Warning! Only works if 𝑓 is twice differentiable!

4 / 116



Another View: Second Derivatives

▶ “Best” straight line at 𝑥0:
▶ 𝑓1(𝑥) = 𝑓(𝑥0) + 𝑓

′(𝑥0) ⋅ (𝑥 − 𝑥0)

▶ “Best” parabola at 𝑥0:
▶ 𝑓2(𝑥) = 𝑓(𝑥0) + 𝑓

′(𝑥0) ⋅ (𝑥 − 𝑥0) +
1
2
𝑓″(𝑥0) ⋅ (𝑥 − 𝑥0)

2

▶ Possibilities: upward-facing, downward-facing, flat.

5 / 116



Convexity and Parabolas

▶ Convex if for every 𝑥0, parabola is upward-facing
(or flat).
▶ That is, 𝑓″(𝑥0) ≥ 0.
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Careful!

▶ A function can be convex without having a
second derivative.

▶ Example: 𝑓(𝑥) = |𝑥| is convex.
▶ But can’t use the second derivative test to show it.
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Proving Convexity Using Properties
Suppose that 𝑓(𝑥) and 𝑔(𝑥) are convex. Then:

1. 𝑤1𝑓(𝑥) + 𝑤2𝑔(𝑥) is convex, provided 𝑤1, 𝑤2 ≥ 0
▶ Example: 3𝑥2 + |𝑥| is convex

2. 𝑔(𝑓(𝑥)) is convex, provided 𝑔 is non-decreasing.
▶ Example: 𝑒𝑥2 is convex

3. max{𝑓(𝑥), 𝑔(𝑥)} is convex

▶ Example: {
0, x < 0
𝑥, x ≥0

is convex
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Note!

▶ These properties are useful for proving convexity
for functions of one variable.

▶ Some of them will not generalize to higher
dimensions.
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Lecture 6 | Part 2

Convexity in Many Dimensions
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Convexity: Definition
▶ 𝑓( ⃗𝑥) is convex if for every 𝑎⃗, 𝑏⃗ the line segment
between

(𝑎⃗, 𝑓(𝑎⃗)) and (𝑏⃗, 𝑓(𝑏⃗))

does not go below the plot of 𝑓.
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Convexity: Formal Definition

▶ A function 𝑓 ∶ ℝ𝑑 → ℝ is convex if for every
choice of 𝑎⃗, 𝑏⃗ ∈ ℝ𝑑 and 𝑡 ∈ [0, 1]:

(1 − 𝑡)𝑓(𝑎⃗) + 𝑡𝑓(𝑏⃗) ≥ 𝑓((1 − 𝑡)𝑎⃗ + 𝑡𝑏⃗).
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Checking for Convexity

▶ We can usually go back to the definition to check
if a function is convex.

▶ Example: see discussion.

▶ Typically, though, there are easier ways to check.
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The Second Derivative Test

▶ For 1-dimensions functions:
▶ convex if second derivative ≥ 0.

▶ For 𝑑-dimensional functions:
▶ convex if ???
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Second Derivatives in 𝑑-Dimensions

▶ In 2-dimensions, there are 4 second derivatives:
▶ 𝜕𝑓2

𝜕𝑥21
, 𝜕𝑓

2

𝜕𝑥22
, 𝜕𝑓2

𝜕𝑥1𝑥2
, 𝜕𝑓2

𝜕𝑥2𝑥1

▶ In 𝑑-dimensions, there are 𝑑2:
▶ 𝜕𝑓2

𝜕𝑥𝑖𝜕𝑥𝑗
for all 𝑖, 𝑗.

▶ The second derivatives describe the curvature of
second order approximation 𝑓.
▶ Convex if the approximation is always an
upward-facing paraboloid or flat.
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The Hessian Matrix

▶ Create the Hessian matrix of second derivatives:

▶ For 𝑓 ∶ ℝ2 → ℝ:

𝐻( ⃗𝑥) = (

𝜕𝑓2

𝜕𝑥21
( ⃗𝑥) 𝜕𝑓2

𝜕𝑥1𝑥2
( ⃗𝑥)

𝜕𝑓2

𝜕𝑥2𝑥1
( ⃗𝑥) 𝜕𝑓2

𝜕𝑥22
( ⃗𝑥)

)
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In General

▶ If 𝑓 ∶ ℝ𝑑 → ℝ, the Hessian at ⃗𝑥 is:

𝐻( ⃗𝑥) =
⎛⎜⎜⎜

⎝

𝜕𝑓2

𝜕𝑥21
( ⃗𝑥) 𝜕𝑓2

𝜕𝑥1𝑥2
( ⃗𝑥) ⋯ 𝜕𝑓2

𝜕𝑥1𝑥𝑑
( ⃗𝑥)

𝜕𝑓2

𝜕𝑥2𝑥1
( ⃗𝑥) 𝜕𝑓2

𝜕𝑥22
( ⃗𝑥) ⋯ 𝜕𝑓2

𝜕𝑥2𝑥𝑑
( ⃗𝑥)

⋯ ⋯ ⋯ ⋯
𝜕𝑓2

𝜕𝑥𝑑𝑥1
( ⃗𝑥) 𝜕𝑓2

𝜕𝑥2𝑑
( ⃗𝑥) ⋯ 𝜕𝑓2

𝜕𝑥2𝑑
( ⃗𝑥)

⎞⎟⎟⎟

⎠
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Second Derivative Test

▶ A function 𝑓 ∶ ℝ𝑑 → ℝ is convex if for any ⃗𝑥 ∈ ℝ𝑑,
all eigenvalues of the Hessian matrix 𝐻( ⃗𝑥) are
≥ 0.
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For This Class...

▶ You will not need to compute eigenvalues “by
hand”...

▶ Unless the matrix is diagonal.
▶ In which case, the eigenvalues are the diagonal
entries.
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Example

▶ The eigenvalues of this matrix are 5, 2, and 1.

(
5 0 0
0 2 0
0 0 1

)
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Exercise

Is 𝑓(𝑥, 𝑦) = 𝑒𝑥 + 𝑒𝑦 + 𝑥2 − 𝑦2 convex?

𝐻(𝑥, 𝑦) = (
𝜕2𝑓
𝜕𝑥2

𝜕2𝑓
𝜕𝑥𝜕𝑦

𝜕2𝑓
𝜕𝑦𝜕𝑥

𝜕2𝑓
𝜕𝑦2

) = (𝑒
𝑥 + 2 0
0 𝑒𝑦 − 2)
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No
▶ The Hessian at (0,0) has a negative eigenvalue.

2 1 0 1 2

x21012

y
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10.0
12.5
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Exercise

Is 𝑓(𝑤⃗) = ‖𝑤⃗‖2 convex?

‖𝑤⃗‖2 = 𝑤⃗ ⋅ 𝑤⃗ = 𝑤20 + 𝑤
2
1 + ⋯ + 𝑤

2
𝑑

𝐻(𝑤⃗) = (

2 0 ⋯ 0
0 2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 2

)
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Note

▶ The second derivative test only works if 𝑓 is twice
differentiable.

▶ A function can be convex without having a
second derivative.
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Properties

▶ We can often prove convexity using properties.

▶ Two useful properties:
1. Sums of convex functions are convex.
2. Affine compositions of convex functions are convex.
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Sums of Convex Functions

▶ Suppose that 𝑓( ⃗𝑥) and 𝑔( ⃗𝑥) are convex. Then
𝑤1𝑓( ⃗𝑥) + 𝑤2𝑔( ⃗𝑥) is convex, provided 𝑤1, 𝑤2 ≥ 0.
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Affine Composition

▶ Suppose that 𝑓(𝑥) is convex. Let 𝐴 be a matrix,
and ⃗𝑥 and 𝑏⃗ be vectors. Then

𝑔( ⃗𝑥) = 𝑓(𝐴 ⃗𝑥 + 𝑏⃗)

is convex as a function of ⃗𝑥.

▶ Remember: a vector is a matrix with one
column/row.

▶ Useful!
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Exercise

Consider the function

𝑔(𝑤⃗) = ( ⃗𝑥 ⋅ 𝑤⃗ − 𝑦)2

Is this function convex as a function of 𝑤⃗?
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Convex Loss Functions
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Empirical Risk Minimization (ERM)

▶ Step 1: choose a hypothesis class
▶ We’ve chosen linear predictors, 𝐻( ⃗𝑥) = Aug( ⃗𝑥) ⋅ 𝑤⃗.

▶ Step 2: choose a loss function

▶ Step 3: find 𝑤⃗ minimizing empirical risk
▶ Some choices of loss function make this easier.
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Convexity and Gradient Descent

▶ Convex functions are (relatively) easy to
optimize.

▶ Theorem: if 𝑓(𝑥) is convex and “not too steep”1
then (stochastic) (sub)gradient descent
converges to a global optimum of 𝑓 provided
that the step size is small enough2.

1Technically, 𝑐-Lipschitz
2step size related to steepness, should decrease like 1/√step #
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Convex Loss

▶ Recall: sums of convex functions are convex.

▶ Implication: if loss function is convex as a
function of 𝑤⃗, so is the empirical risk, 𝑅(𝑤⃗)

𝑅(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1
ℓ(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗, 𝑦𝑖)

▶ Takeaway: Convex losses make ERM easier.
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Example: Square Loss

▶ Recall the square loss for a linear predictor:

ℓsq(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦) = (Aug( ⃗𝑥) ⋅ 𝑤⃗ − 𝑦)
2

▶ This is convex as a function of 𝑤⃗.

▶ Proof: a few slides ago.
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Example: Absolute Loss

▶ Recall the absolute loss for a linear predictor:

ℓabs(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦) = |Aug( ⃗𝑥) ⋅ 𝑤⃗ − 𝑦|

▶ This is also convex as a function of 𝑤⃗.
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Linear Predictors

▶ It’s also important that we’ve chosen linear
predictors.

▶ A loss that is convex in 𝑤⃗ for linear 𝐻1(𝑥) may be
non-convex for non-linear 𝐻2(𝑥).

▶ Example: square loss.
▶ If 𝐻1(𝑥) = 𝑤0 + 𝑤1𝑥, then (𝑤0 + 𝑤1𝑥 − 𝑦)

2 is convex.
▶ If 𝐻2(𝑥) = 𝑤0𝑒

𝑤1𝑥, then (𝑤0𝑒
𝑤1𝑥 − 𝑦)2 is non-convex.
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Summary

▶ By combining 1) linear predictors and 2) a convex
loss function, we make ERM easier.

▶ Many machine learning algorithms are linear
predictors with convex loss functions.
▶ As we’ll see...
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Appendix: From Theory to Practice
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Gradient Descent

▶ We’ve spent three lectures on gradient descent.

▶ A powerful optimization algorithm.

▶ In practice, we use extensions of (stochastic)
gradient descent.
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Extensions of SGD

▶ Newton’s method
▶ Second order optimization, using the Hessian.
▶ Can converge in fewer steps.
▶ But the Hessian is expensive to compute.

▶ Adagrad, RMSprop, Adam
▶ SGD with adaptive learning rates.
▶ Used heavily in training of deep neural networks.
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Non-Convex Optimization

▶ So far, we’ve only seen convex risks.

▶ But there’s an important class of machine
learning algorithms that have non-convex risks.

▶ Namely: deep neural networks.
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Empirical Risk Minimization (ERM)

▶ Step 1: choose a hypothesis class
▶ Deep neural networks.

▶ Step 2: choose a loss function

▶ Step 3: find 𝑤⃗ minimizing empirical risk
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Deep Learning

▶ A deep neural network is a prediction function
𝐻( ⃗𝑥; 𝑤⃗) composed of many layers.

▶ Typically, 𝐻 is not linear in 𝑤⃗.

▶ The risk becomes highly non-convex.
▶ Even, for example, the square loss.

▶ How do we minimize the empirical risk?
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Answer: SGD

▶ We use stochastic gradient descent (and
extensions).
▶ Even though the empirical risk is non-convex.
▶ The optimization problem becomes much harder.

▶ SGD may not find a global minimum of the risk.

▶ But often finds a “good enough” local minimum.
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Linear Classification
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Classification

▶ We’ve been talking about regression.
▶ Label is a continuous value.

▶ What about classification?
▶ Label is a discrete value.
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Example: Penguins
▶ Given a new penguin’s measurements, predict its
species.
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Looking Back

▶ We know one classification algorithm already.
▶ 𝑘-Nearest Neighbors.

▶ But 𝑘-NN does not “learn”, it “memorizes”.

▶ Can we use linear predictors for classification?

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1(flipper length) + 𝑤2(body mass)

▶ Train by minimizing risk?
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Linear Classifiers

▶ Problem: output of 𝐻( ⃗𝑥) is a real number; we
want the output to be a species.

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1(flipper length) + 𝑤2(body mass)

▶ Idea: turn species into a number.
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Label Encodings
▶ There are two natural ways to encode a label 𝑦
as a number in binary classification.

▶ 𝑦 ∈ {0, 1}:
▶ 𝑦 = 0 for one class, 𝑦 = 1 for the other.
▶ Example: 0 for Adelie, 1 for Gentoo.

▶ 𝑦 ∈ {−1, 1}:
▶ 𝑦 = −1 for one class, 𝑦 = 1 for the other.
▶ Example: -1 for Adelie, 1 for Gentoo.

▶ Unless otherwise specified, we’ll use 𝑦 ∈ {−1, 1}.
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Linear Classifiers

▶ Assume the labels are encoded as 𝑦 ∈ {−1, 1}.

▶ Another problem: 𝐻( ⃗𝑥) can be any real number.
▶ Output is not necessarily −1 or 1.

▶ We need to turn output of 𝐻( ⃗𝑥) into -1 or 1.
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Sign Function

▶ Idea: use the sign function.

sign(𝑧) = {
1 if 𝑧 > 0
−1 if 𝑧 < 0
0 if 𝑧 = 0
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Linear Classifiers

▶ We will still use linear predictors.
▶ 𝐻( ⃗𝑥; 𝑤⃗) = Aug( ⃗𝑥) ⋅ 𝑤⃗.

▶ But our final predicted label will be sign(𝐻( ⃗𝑥; 𝑤⃗)).
▶ If 𝐻( ⃗𝑥) = 0, predict either 1 or -1 (it’s arbitrary).

▶ sign(𝐻( ⃗𝑥; 𝑤⃗)) is called a linear classifier.
▶ Takes in a feature vector and outputs a discrete label.
▶ Sometimes called a linear decision function.
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Interpretation: Weighted Vote

▶ A linear classifier is like a weighted vote.

▶ Each term 𝑤𝑖𝑥𝑖 “votes” on the label.

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

▶ If the sum is:
▶ positive: predict 1.
▶ negative: predict −1.
▶ zero: toss a coin, it’s arbitrary!
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The Prediction Surface
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Gentoo ▶ 𝐻( ⃗𝑥) is a (hyper) plane.

▶ The place where 𝐻( ⃗𝑥) = 0 is
the decision boundary.

▶ On one side, we predict 1.

▶ On the other, we predict −1.
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Decision Boundary

▶ The decision boundary is the place where the
output of 𝐻( ⃗𝑥) switches from “yes” to “no”.

▶ If 𝐻 is a linear predictor and3
▶ ⃗𝑥 ∈ 𝑅1, then the decision boundary is just a number.
▶ ⃗𝑥 ∈ ℝ2, the boundary is a straight line.
▶ ⃗𝑥 ∈ ℝ𝑑, the boundary is a 𝑑 − 1 dimensional (hyper)
plane.

3when plotted in the original feature coordinate space!
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Magnitude of 𝐻
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▶ The magnitude of 𝐻( ⃗𝑥)
is proportional to the
distance from the
decision boundary.
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Exercise

True or False: it’s possible for two different linear
prediction functions 𝐻1( ⃗𝑥) and 𝐻2( ⃗𝑥) to have the
exact same decision boundary.
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True
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Another Useful Fact

▶ 𝑤⃗ controls the orientation of the decision
boundary.
▶ A different 𝑤⃗ gives a different decision boundary.

▶ Let 𝑤⃗′ = (𝑤1, … , 𝑤𝑑).
▶ In other words, it is 𝑤⃗ without the bias term 𝑤0.

▶ Fact: the decision boundary of 𝐻( ⃗𝑥) = Aug( ⃗𝑥) ⋅ 𝑤⃗ is
orthogonal to 𝑤⃗′.
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Finding a Linear Classifier

▶ How do we find a good linear classifier?
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ERM for Classification

▶ Step 1: choose a hypothesis class
▶ We’ve chosen linear classifiers, sign(Aug( ⃗𝑥) ⋅ 𝑤⃗).

▶ Step 2: choose a loss function

▶ Step 3: find 𝐻 minimizing empirical risk
▶ In case of linear predictors, equivalent to finding 𝑤⃗.
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A First Idea

▶ Let’s try using the same, familiar square loss.
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Least Squares Classifiers
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Classification as Regression

▶ We can think of classification as a special case of
regression where the labels are always 1 or -1.

▶ Goal: find a prediction function 𝐻( ⃗𝑥) whose
output is:
▶ close to 1 for points from positive class.
▶ close to -1 for points from negative class.

65 / 116



170 180 190 200 210 220 230
Flipper Length (mm)

3000350040004500500055006000

Body Mass (g)

2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5

H(x)

Adelie
Gentoo

66 / 116



Least Squares Classifier

▶ Idea: least squares regression can be used for
classification, too.

▶ The resulting algorithm is called the least
squares classifier.

67 / 116



Linear Least Squares Classification

▶ To train:
▶ Given training data ( ⃗𝑥1, 𝑦1), … , ( ⃗𝑥𝑛, 𝑦𝑛), with 𝑦𝑖 ∈ {−1, 1}.
1. Construct 𝑛 × (𝑑 + 1) augmented design matrix, 𝑋.
2. Solve the normal equations: 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦.

▶ To predict:
▶ Given a new point ⃗𝑥, predict sign(Aug( ⃗𝑥) ⋅ 𝑤⃗∗).
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Square Loss for Classification

▶ We designed square loss for regression

▶ We can use it for classification.

▶ But it might not be the best choice.
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Exercise

What is the total square
loss of the predictor on
the data?

Assume is class -1 and
is class 1.

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8
𝐻 = 0𝐻 = −1 𝐻 = 1
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Observation

▶ The square loss penalizes points that are far
from the decision boundary.

▶ Even if they are correctly classified!
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Least Squares and Outliers

4

4Bishop, Pattern Recognition and Machine Learning
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Another Loss?

▶ Least squares classifiers can work well in practice.
▶ Easy to implement!

▶ But maybe a loss designed for classification will
work better.
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0-1 Loss
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Empirical Risk Minimization

▶ Step 1: choose a hypothesis class
▶ Let’s assume we’ve chosen linear predictors

▶ Step 2: choose a loss function

▶ Step 3: minimize expected loss (empirical risk)
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Another Loss Function

▶ What about the 0-1 loss?
▶ Loss = 0 if prediction is correct.
▶ Loss = 1 if prediction is incorrect.

▶ More formally:

ℓ0-1(𝐻( ⃗𝑥
(𝑖)), 𝑦𝑖) = {

0 if sign(𝐻( ⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻( ⃗𝑥(𝑖))) ≠ 𝑦𝑖
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Expected 0-1 Loss

▶ The expected 0-1 loss (empirical risk) has a nice
interpretation:

𝑅0-1(𝐻) =
1
𝑛

𝑛

∑
𝑖=1
{
0 if sign(𝐻( ⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻( ⃗𝑥(𝑖))) ≠ 𝑦𝑖

Exercise

What is it?
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Answer

▶ The empirical risk with respect to the 0-1 loss is
the misclassification rate of the classifier.
▶ That is, (1 - the accuracy)

𝑅0-1(𝐻) =
1
𝑛

𝑛

∑
𝑖=1
{
0 if sign(𝐻( ⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻( ⃗𝑥(𝑖))) ≠ 𝑦𝑖

=
# of incorrect predictions

𝑛
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ERM for the 0-1 Loss

▶ Minimizing the empirical risk with respect to the
0-1 loss is equivalent to maximizing the accuracy.

▶ That’s exactly what we want!

▶ But there’s a problem...
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Exercise

What is the gradient of
𝑅0-1(𝐻)with respect to the
current 𝑤⃗?

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8
-
+
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Answer

▶ The gradient of 𝑅0-1 is 0⃗ almost everywhere.

▶ In other words, 𝑅0-1 is flat almost everywhere.

▶ This is a problem because gradient descent
needs slope information to make progress.
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Computationally Difficult

▶ It is not feasible to minimize 0-1 risk in general.

▶ More formally: NP-Hard to optimize expected 0-1
loss in general.5

5It is efficiently doable if the classes are linearly separable by finding
convex hulls of each class. If non-separable, it is difficult.
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Main Idea

It is computationally difficult (NP-Hard) to find a
linear classifier with maximum accuracy, in gen-
eral.
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Lecture 6 | Part 8

Perceptron Loss

84 / 116



Surrogate Loss

▶ We’d like to use the 0-1 loss, but it’s not feasible.

▶ Instead, we use a surrogate loss.

▶ That is, a loss that is similar in spirit, but leads to
easier optimization problems.
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A New Loss

▶ No penalty if point is correctly classified.
▶ Like the 0-1 loss.

▶ A penalty that grows with distance to decision
boundary if point is incorrectly classified.
▶ Unlike the 0-1 loss.
▶ This will give us a non-zero gradient.
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Perceptron Loss

▶ We call this loss the perceptron loss.

ℓtron(𝐻( ⃗𝑥), 𝑦) = {
0, sign(𝐻( ⃗𝑥)) = 𝑦
|𝐻( ⃗𝑥)|, sign(𝐻( ⃗𝑥)) ≠ 𝑦

▶ Remember, |𝐻( ⃗𝑥)| is proportional to distance
from decision boundary.
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Exercise

What is the total percep-
tron loss of the predictor
on the data?

Assume is class -1 and
is class 1.

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8
𝐻 = 0𝐻 = −1 𝐻 = 1
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Convexity?

▶ Is the perceptron loss convex in 𝑤⃗?

▶ Trick:

ℓtron(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦) = {
0, sign(Aug( ⃗𝑥) ⋅ 𝑤⃗) = 𝑦
|Aug( ⃗𝑥) ⋅ 𝑤⃗|, sign(Aug( ⃗𝑥) ⋅ 𝑤⃗) ≠ 𝑦

= max(0, −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗)

▶ Fact: Max of convex functions is convex.
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ERM for the Perceptron

▶ Goal: minimize empirical risk w.r.t. perceptron
loss for a linear predictor 𝐻( ⃗𝑥) = Aug( ⃗𝑥) ⋅ 𝑤⃗.

𝑅tron(𝑤⃗) =
1
𝑛

𝑛

∑
𝑖=1
ℓtron(𝐻( ⃗𝑥

(𝑖)), 𝑦𝑖)

= 1
𝑛

𝑛

∑
𝑖=1
{0, sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) = 𝑦𝑖
|Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗|, sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) ≠ 𝑦𝑖
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Minimizing Perceptron Risk

▶ 𝑅tron is not differentiable.
▶ Because of the absolute value.

▶ But it is convex.
▶ Since ℓtron is convex.

▶ We can minimize using subgradient descent.
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A Subgradient of the Loss
▶ We need a subgradient of ℓtron.

ℓtron(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦) = max(0, −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗)

21012
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A Subgradient of the Loss

▶ We need a subgradient of ℓtron.

ℓtron(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦) = max(0, −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗)

▶ If −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗ > 0, the gradient is −𝑦Aug( ⃗𝑥).

▶ If −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗ < 0, the gradient is 0⃗.

▶ Claim: at −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗ = 0, 0⃗ is a subgradient.
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Subgradient of the Loss
▶ We’ve found:

subgrad ℓtron(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦)

= {
0⃗, if −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗ < 0
−𝑦Aug( ⃗𝑥), if −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗ > 0

▶ Or, equivalently:
subgrad ℓtron(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦)

= {
0⃗, if sign(Aug( ⃗𝑥) ⋅ 𝑤⃗) = 𝑦
−𝑦Aug( ⃗𝑥), if sign(Aug( ⃗𝑥) ⋅ 𝑤⃗) ≠ 𝑦
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Subgradient of the Risk

▶ A subgradient of the risk is then:

subgrad𝑅tron(𝑤⃗) =

1
𝑛

𝑛

∑
𝑖=1
{
0⃗, sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) = 𝑦𝑖
−𝑦𝑖 Aug( ⃗𝑥

(𝑖)), sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) ≠ 𝑦𝑖
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The Perceptron

▶ To train:
▶ Given training data ( ⃗𝑥1, 𝑦1), … , ( ⃗𝑥𝑛, 𝑦𝑛), with 𝑦𝑖 ∈ {−1, 1}.
1. Minimize 𝑅tron(𝑤⃗) with, e.g., subgradient descent:

𝑤⃗(𝑡+1) = 𝑤⃗(𝑡)−𝜂(𝑡)×1
𝑛

𝑛

∑
𝑖=1

{
0⃗, sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) = 𝑦𝑖
−𝑦𝑖 Aug( ⃗𝑥

(𝑖)), sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) ≠ 𝑦𝑖

▶ To predict:
▶ Given a new point ⃗𝑥, predict sign(Aug( ⃗𝑥) ⋅ 𝑤⃗∗).
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Lecture 6 | Part 9

Perceptron Demo: MNIST
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Demo: MNIST

▶ MNIST is a classic machine learning data set.

▶ Many images of handwritten digits, 0-9.

▶ Multiclass classification problem.

▶ But we can make it binary: 3 vs. 7.
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Example MNIST Digit

▶ Grayscale

▶ 28 x 28 pixels
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MNIST Feature Vectors

▶ 28 × 28 = 784 pixels

▶ Each image is a vector in ℝ784

▶ Each feature is intensity of single pixel
▶ black→ 0, white→ 255

▶ A very simple representation.
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Demo: MNIST

▶ Use only images of 3s and 7s.

▶ 4132 training images.

▶ 680 testing images.

▶ Some minor tuning.
▶ Added random noise for robustness.
▶ Picked classification threshold automatically.
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Perceptron Learning

▶ Linear prediction function parameterized by 𝑤⃗.

▶ In this case, we can “reshape” 𝑤⃗ to be same size
as input image.
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Weight Vector

▶ Recall that the prediction is a weighted vote:

𝐻( ⃗𝑥) = sign(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + …𝑤784𝑥784)

▶ Positive→ 7, Negative→ 3

▶ 𝑤𝑖 is the weight of pixel 𝑖
▶ positive: if this pixel is bright, I think this is a 7
▶ negative: if this pixel is bright, I think this is a 3
▶ magnitude: confidence in prediction
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Perceptron Training
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Perceptron Weight Vector
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Perceptron Results

▶ Test accuracy: 97.3%
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Square Loss for Classification

▶ What if we use square loss for classification?

▶ We can, but will it work well?
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Results: Least Squares

▶ Test Accuracy: 96.7% (marginally worse)
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Results: Least Squares

▶ Misclassifications are telling.
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Least Squares Weight Vector

▶ Can visualize weight of each pixel as an image.
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Least Squares Weight Vector
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Some History

▶ Perceptrons were one of the first “machine
learning” models.

▶ The basis of modern neural networks.
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Rosenblatt’s Perceptron
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Next Time

▶ We “solve” linear classification, once and for all.
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