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Convexity



Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓.
-
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Convexity: Formal Definition▶ A function 𝑓 ∶ ℝ → ℝ is convex if for every
choice of 𝑎, 𝑏 ∈ ℝ and 𝑡 ∈ [0, 1]:(1 − 𝑡)𝑓(𝑎) + 𝑡𝑓(𝑏) ≥ 𝑓((1 − 𝑡)𝑎 + 𝑡𝑏).
-



Another View: Second Derivatives▶ If 𝑑2𝑓𝑑𝑥2 (𝑥) ≥ 0 for all 𝑥, then 𝑓 is convex.▶ Example: 𝑓(𝑥) = 𝑥4 is convex.▶ Warning! Only works if 𝑓 is twice differentiable!=4 = 12x2



Another View: Second Derivatives▶ “Best” straight line at 𝑥0:▶ 𝑓1(𝑥) = 𝑓(𝑥0) + 𝑓′(𝑥0) ⋅ (𝑥 − 𝑥0)▶ “Best” parabola at 𝑥0:▶ 𝑓2(𝑥) = 𝑓(𝑥0) + 𝑓′(𝑥0) ⋅ (𝑥 − 𝑥0) + 12𝑓″(𝑥0) ⋅ (𝑥 − 𝑥0)2▶ Possibilities: upward-facing, downward-facing, flat.



Convexity and Parabolas▶ Convex if for every 𝑥0, parabola is upward-facing
(or flat).▶ That is, 𝑓″(𝑥0) ≥ 0.

V
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Careful!▶ A function can be convex without having a
second derivative.▶ Example: 𝑓(𝑥) = |𝑥| is convex.▶ But can’t use the second derivative test to show it.

*



Proving Convexity Using Properties
Suppose that 𝑓(𝑥) and 𝑔(𝑥) are convex. Then:
1. 𝑤1𝑓(𝑥) + 𝑤2𝑔(𝑥) is convex, provided 𝑤1, 𝑤2 ≥ 0▶ Example: 3𝑥2 + |𝑥| is convex
2. 𝑔(𝑓(𝑥)) is convex, provided 𝑔 is non-decreasing.▶ Example: 𝑒𝑥2 is convex
3. max{𝑓(𝑥), 𝑔(𝑥)} is convex▶ Example: {0, x < 0𝑥, x ≥0 is convexemax



Note!▶ These properties are useful for proving convexity
for functions of one variable.▶ Some of them will not generalize to higher
dimensions.
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Convexity in Many Dimensions



Convexity: Definition▶ 𝑓( ⃗𝑥) is convex if for every 𝑎⃗, 𝑏⃗ the line segment
between (𝑎⃗, 𝑓(𝑎⃗)) and (𝑏⃗, 𝑓(𝑏⃗))
does not go below the plot of 𝑓.
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Convexity: Formal Definition▶ A function 𝑓 ∶ ℝ𝑑 → ℝ is convex if for every
choice of 𝑎⃗, 𝑏⃗ ∈ ℝ𝑑 and 𝑡 ∈ [0, 1]:(1 − 𝑡)𝑓(𝑎⃗) + 𝑡𝑓(𝑏⃗) ≥ 𝑓((1 − 𝑡)𝑎⃗ + 𝑡𝑏⃗).



Checking for Convexity▶ We can usually go back to the definition to check
if a function is convex.▶ Example: see discussion.▶ Typically, though, there are easier ways to check.



The Second Derivative Test▶ For 1-dimensions functions:▶ convex if second derivative ≥ 0.▶ For 𝑑-dimensional functions:▶ convex if ???



Second Derivatives in 𝑑-Dimensions▶ In 2-dimensions, there are 4 second derivatives:▶ 𝜕𝑓2𝜕𝑥21 , 𝜕𝑓2𝜕𝑥22 , 𝜕𝑓2𝜕𝑥1𝑥2 , 𝜕𝑓2𝜕𝑥2𝑥1▶ In 𝑑-dimensions, there are 𝑑2:▶ 𝜕𝑓2𝜕𝑥𝑖𝜕𝑥𝑗 for all 𝑖, 𝑗.▶ The second derivatives describe the curvature of
second order approximation 𝑓.▶ Convex if the approximation is always an

upward-facing paraboloid or flat.

f(x, Xz)









The Hessian Matrix▶ Create the Hessian matrix of second derivatives:▶ For 𝑓 ∶ ℝ2 → ℝ:
𝐻( ⃗𝑥) = ( 𝜕𝑓2𝜕𝑥21 ( ⃗𝑥) 𝜕𝑓2𝜕𝑥1𝑥2 ( ⃗𝑥)𝜕𝑓2𝜕𝑥2𝑥1 ( ⃗𝑥) 𝜕𝑓2𝜕𝑥22 ( ⃗𝑥) )

Hij=xi



In General▶ If 𝑓 ∶ ℝ𝑑 → ℝ, the Hessian at ⃗𝑥 is:
𝐻( ⃗𝑥) = ⎛⎜⎜⎜⎝

𝜕𝑓2𝜕𝑥21 ( ⃗𝑥) 𝜕𝑓2𝜕𝑥1𝑥2 ( ⃗𝑥) ⋯ 𝜕𝑓2𝜕𝑥1𝑥𝑑 ( ⃗𝑥)𝜕𝑓2𝜕𝑥2𝑥1 ( ⃗𝑥) 𝜕𝑓2𝜕𝑥22 ( ⃗𝑥) ⋯ 𝜕𝑓2𝜕𝑥2𝑥𝑑 ( ⃗𝑥)⋯ ⋯ ⋯ ⋯𝜕𝑓2𝜕𝑥𝑑𝑥1 ( ⃗𝑥) 𝜕𝑓2𝜕𝑥2𝑑 ( ⃗𝑥) ⋯ 𝜕𝑓2𝜕𝑥2𝑑 ( ⃗𝑥)
⎞⎟⎟⎟⎠



Second Derivative Test▶ A function 𝑓 ∶ ℝ𝑑 → ℝ is convex if for any ⃗𝑥 ∈ ℝ𝑑,
all eigenvalues of the Hessian matrix 𝐻( ⃗𝑥) are≥ 0.



For This Class...▶ You will not need to compute eigenvalues “by
hand”...▶ Unless the matrix is diagonal.▶ In which case, the eigenvalues are the diagonal

entries.



Example▶ The eigenvalues of this matrix are 5, 2, and 1.(5 0 00 2 00 0 1)



Exercise
Is 𝑓(𝑥, 𝑦) = 𝑒𝑥 + 𝑒𝑦 + 𝑥2 − 𝑦2 convex?
𝐻(𝑥, 𝑦) = ( 𝜕2𝑓𝜕𝑥2 𝜕2𝑓𝜕𝑥𝜕𝑦𝜕2𝑓𝜕𝑦𝜕𝑥 𝜕2𝑓𝜕𝑦2 ) = (𝑒𝑥 + 2 00 𝑒𝑦 − 2)

No



No▶ The Hessian at (0,0) has a negative eigenvalue.



No▶ The Hessian at (0,0) has a negative eigenvalue.



Exercise
Is 𝑓(𝑤⃗) = ‖𝑤⃗‖2 convex?

‖𝑤⃗‖2 = 𝑤⃗ ⋅ 𝑤⃗ = 𝑤20 + 𝑤21 + ⋯ + 𝑤2𝑑
𝐻(𝑤⃗) = (2 0 ⋯ 00 2 ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ 2)

⑭

wo



Note▶ The second derivative test only works if 𝑓 is twice
differentiable.▶ A function can be convex without having a
second derivative.



Properties▶ We can often prove convexity using properties.▶ Two useful properties:
1. Sums of convex functions are convex.
2. Affine compositions of convex functions are convex.



Sums of Convex Functions▶ Suppose that 𝑓( ⃗𝑥) and 𝑔( ⃗𝑥) are convex. Then𝑤1𝑓( ⃗𝑥) + 𝑤2𝑔( ⃗𝑥) is convex, provided 𝑤1, 𝑤2 ≥ 0.



Affine Composition▶ Suppose that 𝑓(𝑥) is convex. Let 𝐴 be a matrix,
and ⃗𝑥 and 𝑏⃗ be vectors. Then𝑔( ⃗𝑥) = 𝑓(𝐴 ⃗𝑥 + 𝑏⃗)
is convex as a function of ⃗𝑥.▶ Remember: a vector is a matrix with one
column/row.▶ Useful!



Exercise
Consider the function𝑔(𝑤⃗) = ( ⃗𝑥 ⋅ 𝑤⃗ − 𝑦)2
Is this function convex as a function of 𝑤⃗?

f(z) = z2

-

-
X :W-y looks like AI + I
-



Lecture 6 | Part 3

Convex Loss Functions



Empirical Risk Minimization (ERM)

▶ Step 1: choose a hypothesis class▶ We’ve chosen linear predictors, 𝐻( ⃗𝑥) = Aug( ⃗𝑥) ⋅ 𝑤⃗.▶ Step 2: choose a loss function▶ Step 3: find 𝑤⃗ minimizing empirical risk▶ Some choices of loss function make this easier.



Convexity and Gradient Descent▶ Convex functions are (relatively) easy to
optimize.▶ Theorem: if 𝑓(𝑥) is convex and “not too steep”1
then (stochastic) (sub)gradient descent
converges to a global optimum of 𝑓 provided
that the step size is small enough2.

1Technically, 𝑐-Lipschitz
2step size related to steepness, should decrease like 1/√step #



Convex Loss▶ Recall: sums of convex functions are convex.▶ Implication: if loss function is convex as a
function of 𝑤⃗, so is the empirical risk, 𝑅(𝑤⃗)𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 ℓ(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗, 𝑦𝑖)▶ Takeaway: Convex losses make ERM easier.



Example: Square Loss▶ Recall the square loss for a linear predictor:ℓsq(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦) = (Aug( ⃗𝑥) ⋅ 𝑤⃗ − 𝑦)2▶ This is convex as a function of 𝑤⃗.▶ Proof: a few slides ago.



Example: Absolute Loss▶ Recall the absolute loss for a linear predictor:ℓabs(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦) = |Aug( ⃗𝑥) ⋅ 𝑤⃗ − 𝑦|▶ This is also convex as a function of 𝑤⃗.



Linear Predictors▶ It’s also important that we’ve chosen linear
predictors.▶ A loss that is convex in 𝑤⃗ for linear 𝐻1(𝑥) may be
non-convex for non-linear 𝐻2(𝑥).▶ Example: square loss.▶ If 𝐻1(𝑥) = 𝑤0 + 𝑤1𝑥, then (𝑤0 + 𝑤1𝑥 − 𝑦)2 is convex.▶ If 𝐻2(𝑥) = 𝑤0𝑒𝑤1𝑥, then (𝑤0𝑒𝑤1𝑥 − 𝑦)2 is non-convex.



Summary▶ By combining 1) linear predictors and 2) a convex
loss function, we make ERM easier.▶ Many machine learning algorithms are linear
predictors with convex loss functions.▶ As we’ll see...
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Appendix: From Theory to Practice



Gradient Descent▶ We’ve spent three lectures on gradient descent.▶ A powerful optimization algorithm.▶ In practice, we use extensions of (stochastic)
gradient descent.



Extensions of SGD▶ Newton’s method▶ Second order optimization, using the Hessian.▶ Can converge in fewer steps.▶ But the Hessian is expensive to compute.▶ Adagrad, RMSprop, Adam▶ SGD with adaptive learning rates.▶ Used heavily in training of deep neural networks.



Non-Convex Optimization▶ So far, we’ve only seen convex risks.▶ But there’s an important class of machine
learning algorithms that have non-convex risks.▶ Namely: deep neural networks.



Empirical Risk Minimization (ERM)

▶ Step 1: choose a hypothesis class▶ Deep neural networks.▶ Step 2: choose a loss function▶ Step 3: find 𝑤⃗ minimizing empirical risk



Deep Learning▶ A deep neural network is a prediction function𝐻( ⃗𝑥; 𝑤⃗) composed of many layers.▶ Typically, 𝐻 is not linear in 𝑤⃗.▶ The risk becomes highly non-convex.▶ Even, for example, the square loss.▶ How do we minimize the empirical risk?



Answer: SGD▶ We use stochastic gradient descent (and
extensions).▶ Even though the empirical risk is non-convex.▶ The optimization problem becomes much harder.▶ SGD may not find a global minimum of the risk.▶ But often finds a “good enough” local minimum.

um
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Linear Classification



Classification▶ We’ve been talking about regression.▶ Label is a continuous value.▶ What about classification?▶ Label is a discrete value.



Example: Penguins▶ Given a new penguin’s measurements, predict its
species.



Looking Back▶ We know one classification algorithm already.▶ 𝑘-Nearest Neighbors.▶ But 𝑘-NN does not “learn”, it “memorizes”.▶ Can we use linear predictors for classification?𝐻( ⃗𝑥) = 𝑤0 + 𝑤1(flipper length) + 𝑤2(body mass)▶ Train by minimizing risk?



Linear Classifiers▶ Problem: output of 𝐻( ⃗𝑥) is a real number; we
want the output to be a species.𝐻( ⃗𝑥) = 𝑤0 + 𝑤1(flipper length) + 𝑤2(body mass)▶ Idea: turn species into a number.



Label Encodings▶ There are two natural ways to encode a label 𝑦
as a number in binary classification.▶ 𝑦 ∈ {0, 1}:▶ 𝑦 = 0 for one class, 𝑦 = 1 for the other.▶ Example: 0 for Adelie, 1 for Gentoo.▶ 𝑦 ∈ {−1, 1}:▶ 𝑦 = −1 for one class, 𝑦 = 1 for the other.▶ Example: -1 for Adelie, 1 for Gentoo.▶ Unless otherwise specified, we’ll use 𝑦 ∈ {−1, 1}.



Linear Classifiers▶ Assume the labels are encoded as 𝑦 ∈ {−1, 1}.▶ Another problem: 𝐻( ⃗𝑥) can be any real number.▶ Output is not necessarily −1 or 1.▶ We need to turn output of 𝐻( ⃗𝑥) into -1 or 1.



Sign Function▶ Idea: use the sign function.

sign(𝑧) = {1 if 𝑧 > 0−1 if 𝑧 < 00 if 𝑧 = 0



Linear Classifiers▶ We will still use linear predictors.▶ 𝐻( ⃗𝑥; 𝑤⃗) = Aug( ⃗𝑥) ⋅ 𝑤⃗.▶ But our final predicted label will be sign(𝐻( ⃗𝑥; 𝑤⃗)).▶ If 𝐻( ⃗𝑥) = 0, predict either 1 or -1 (it’s arbitrary).▶ sign(𝐻( ⃗𝑥; 𝑤⃗)) is called a linear classifier.▶ Takes in a feature vector and outputs a discrete label.▶ Sometimes called a linear decision function.



Interpretation: Weighted Vote▶ A linear classifier is like a weighted vote.▶ Each term 𝑤𝑖𝑥𝑖 “votes” on the label.𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑▶ If the sum is:▶ positive: predict 1.▶ negative: predict −1.▶ zero: toss a coin, it’s arbitrary!



The Prediction Surface

▶ 𝐻( ⃗𝑥) is a (hyper) plane.▶ The place where 𝐻( ⃗𝑥) = 0 is
the decision boundary.▶ On one side, we predict 1.▶ On the other, we predict −1.
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Decision Boundary▶ The decision boundary is the place where the
output of 𝐻( ⃗𝑥) switches from “yes” to “no”.▶ If 𝐻 is a linear predictor and3▶ ⃗𝑥 ∈ 𝑅1, then the decision boundary is just a number.▶ ⃗𝑥 ∈ ℝ2, the boundary is a straight line.▶ ⃗𝑥 ∈ ℝ𝑑, the boundary is a 𝑑 − 1 dimensional (hyper)

plane.

3when plotted in the original feature coordinate space!



Magnitude of 𝐻
▶ The magnitude of 𝐻( ⃗𝑥)
is proportional to the
distance from the
decision boundary.

(H(x))

Ho

I



Magnitude of 𝐻
▶ The magnitude of 𝐻( ⃗𝑥)
is proportional to the
distance from the
decision boundary.

-w



Exercise
True or False: it’s possible for two different linear
prediction functions 𝐻1( ⃗𝑥) and 𝐻2( ⃗𝑥) to have the
exact same decision boundary.

O



True



True



True



Another Useful Fact▶ 𝑤⃗ controls the orientation of the decision
boundary.▶ A different 𝑤⃗ gives a different decision boundary.▶ Let 𝑤⃗′ = (𝑤1, … , 𝑤𝑑).▶ In other words, it is 𝑤⃗ without the bias term 𝑤0.▶ Fact: the decision boundary of 𝐻( ⃗𝑥) = Aug( ⃗𝑥) ⋅ 𝑤⃗ is
orthogonal to 𝑤⃗′.



Finding a Linear Classifier▶ How do we find a good linear classifier?



ERM for Classification

▶ Step 1: choose a hypothesis class▶ We’ve chosen linear classifiers, sign(Aug( ⃗𝑥) ⋅ 𝑤⃗).▶ Step 2: choose a loss function▶ Step 3: find 𝐻 minimizing empirical risk▶ In case of linear predictors, equivalent to finding 𝑤⃗.



A First Idea▶ Let’s try using the same, familiar square loss.
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Least Squares Classifiers



Classification as Regression▶ We can think of classification as a special case of
regression where the labels are always 1 or -1.▶ Goal: find a prediction function 𝐻( ⃗𝑥) whose
output is:▶ close to 1 for points from positive class.▶ close to -1 for points from negative class.





Least Squares Classifier▶ Idea: least squares regression can be used for
classification, too.▶ The resulting algorithm is called the least
squares classifier.



Linear Least Squares Classification▶ To train:▶ Given training data ( ⃗𝑥1, 𝑦1), … , ( ⃗𝑥𝑛, 𝑦𝑛), with 𝑦𝑖 ∈ {−1, 1}.
1. Construct 𝑛 × (𝑑 + 1) augmented design matrix, 𝑋.
2. Solve the normal equations: 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦.▶ To predict:▶ Given a new point ⃗𝑥, predict sign(Aug( ⃗𝑥) ⋅ 𝑤⃗∗).



Square Loss for Classification▶ We designed square loss for regression▶ We can use it for classification.▶ But it might not be the best choice.



Exercise
What is the total square
loss of the predictor on
the data?

Assume is class -1 and
is class 1.

𝑥1

𝑥2
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loss = (H(x) -

y :3 ⑭
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(2-1) H=+ (2-D=y
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Observation▶ The square loss penalizes points that are far
from the decision boundary.▶ Even if they are correctly classified!



Least Squares and Outliers

4

4Bishop, Pattern Recognition and Machine Learning



Another Loss?▶ Least squares classifiers can work well in practice.▶ Easy to implement!▶ But maybe a loss designed for classification will
work better.



Lecture 6 | Part 7

0-1 Loss



Empirical Risk Minimization▶ Step 1: choose a hypothesis class▶ Let’s assume we’ve chosen linear predictors▶ Step 2: choose a loss function▶ Step 3: minimize expected loss (empirical risk)



Another Loss Function▶ What about the 0-1 loss?▶ Loss = 0 if prediction is correct.▶ Loss = 1 if prediction is incorrect.▶ More formally:ℓ0-1(𝐻( ⃗𝑥(𝑖)), 𝑦𝑖) = {0 if sign(𝐻( ⃗𝑥(𝑖))) = 𝑦𝑖1 if sign(𝐻( ⃗𝑥(𝑖))) ≠ 𝑦𝑖



Expected 0-1 Loss▶ The expected 0-1 loss (empirical risk) has a nice
interpretation:𝑅0-1(𝐻) = 1𝑛 𝑛∑𝑖=1 {0 if sign(𝐻( ⃗𝑥(𝑖))) = 𝑦𝑖1 if sign(𝐻( ⃗𝑥(𝑖))) ≠ 𝑦𝑖
Exercise
What is it?



Answer▶ The empirical risk with respect to the 0-1 loss is
the misclassification rate of the classifier.▶ That is, (1 - the accuracy)

𝑅0-1(𝐻) = 1𝑛 𝑛∑𝑖=1 {0 if sign(𝐻( ⃗𝑥(𝑖))) = 𝑦𝑖1 if sign(𝐻( ⃗𝑥(𝑖))) ≠ 𝑦𝑖= # of incorrect predictions𝑛



ERM for the 0-1 Loss▶ Minimizing the empirical risk with respect to the
0-1 loss is equivalent to maximizing the accuracy.▶ That’s exactly what we want!▶ But there’s a problem...



Exercise
What is the gradient of𝑅0-1(𝐻)with respect to the
current 𝑤⃗?
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Answer▶ The gradient of 𝑅0-1 is 0⃗ almost everywhere.▶ In other words, 𝑅0-1 is flat almost everywhere.▶ This is a problem because gradient descent
needs slope information to make progress.



Computationally Difficult▶ It is not feasible to minimize 0-1 risk in general.▶ More formally: NP-Hard to optimize expected 0-1
loss in general.5

5It is efficiently doable if the classes are linearly separable by finding
convex hulls of each class. If non-separable, it is difficult.



Main Idea
It is computationally difficult (NP-Hard) to find a
linear classifier with maximum accuracy, in gen-
eral.
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Perceptron Loss



Surrogate Loss▶ We’d like to use the 0-1 loss, but it’s not feasible.▶ Instead, we use a surrogate loss.▶ That is, a loss that is similar in spirit, but leads to
easier optimization problems.



A New Loss▶ No penalty if point is correctly classified.▶ Like the 0-1 loss.▶ A penalty that grows with distance to decision
boundary if point is incorrectly classified.▶ Unlike the 0-1 loss.▶ This will give us a non-zero gradient.



Perceptron Loss▶ We call this loss the perceptron loss.ℓtron(𝐻( ⃗𝑥), 𝑦) = {0, sign(𝐻( ⃗𝑥)) = 𝑦|𝐻( ⃗𝑥)|, sign(𝐻( ⃗𝑥)) ≠ 𝑦▶ Remember, |𝐻( ⃗𝑥)| is proportional to distance
from decision boundary.



Exercise
What is the total percep-
tron loss of the predictor
on the data?

Assume is class -1 and
is class 1.
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Convexity?▶ Is the perceptron loss convex in 𝑤⃗?▶ Trick:ℓtron(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦) = {0, sign(Aug( ⃗𝑥) ⋅ 𝑤⃗) = 𝑦|Aug( ⃗𝑥) ⋅ 𝑤⃗|, sign(Aug( ⃗𝑥) ⋅ 𝑤⃗) ≠ 𝑦= max(0, −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗)▶ Fact: Max of convex functions is convex.



ERM for the Perceptron▶ Goal: minimize empirical risk w.r.t. perceptron
loss for a linear predictor 𝐻( ⃗𝑥) = Aug( ⃗𝑥) ⋅ 𝑤⃗.
𝑅tron(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 ℓtron(𝐻( ⃗𝑥(𝑖)), 𝑦𝑖)= 1𝑛 𝑛∑𝑖=1 {0, sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) = 𝑦𝑖|Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗|, sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) ≠ 𝑦𝑖



Minimizing Perceptron Risk▶ 𝑅tron is not differentiable.▶ Because of the absolute value.▶ But it is convex.▶ Since ℓtron is convex.▶ We can minimize using subgradient descent.



A Subgradient of the Loss▶ We need a subgradient of ℓtron.ℓtron(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦) = max(0, −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗)



A Subgradient of the Loss▶ We need a subgradient of ℓtron.ℓtron(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦) = max(0, −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗)▶ If −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗ > 0, the gradient is −𝑦Aug( ⃗𝑥).▶ If −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗ < 0, the gradient is 0⃗.▶ Claim: at −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗ = 0, 0⃗ is a subgradient.



Subgradient of the Loss▶ We’ve found:subgrad ℓtron(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦)= {0⃗, if −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗ < 0−𝑦Aug( ⃗𝑥), if −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗ > 0▶ Or, equivalently:subgrad ℓtron(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦)= {0⃗, if sign(Aug( ⃗𝑥) ⋅ 𝑤⃗) = 𝑦−𝑦Aug( ⃗𝑥), if sign(Aug( ⃗𝑥) ⋅ 𝑤⃗) ≠ 𝑦



Subgradient of the Risk▶ A subgradient of the risk is then:subgrad𝑅tron(𝑤⃗) =1𝑛 𝑛∑𝑖=1 {0⃗, sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) = 𝑦𝑖−𝑦𝑖 Aug( ⃗𝑥(𝑖)), sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) ≠ 𝑦𝑖



The Perceptron▶ To train:▶ Given training data ( ⃗𝑥1, 𝑦1), … , ( ⃗𝑥𝑛, 𝑦𝑛), with 𝑦𝑖 ∈ {−1, 1}.
1. Minimize 𝑅tron(𝑤⃗) with, e.g., subgradient descent:𝑤⃗(𝑡+1) = 𝑤⃗(𝑡)−𝜂(𝑡)×1𝑛 𝑛∑𝑖=1 {0⃗, sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) = 𝑦𝑖−𝑦𝑖 Aug( ⃗𝑥(𝑖)), sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) ≠ 𝑦𝑖▶ To predict:▶ Given a new point ⃗𝑥, predict sign(Aug( ⃗𝑥) ⋅ 𝑤⃗∗).
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Perceptron Demo: MNIST



Demo: MNIST▶ MNIST is a classic machine learning data set.▶ Many images of handwritten digits, 0-9.▶ Multiclass classification problem.▶ But we can make it binary: 3 vs. 7.



Example MNIST Digit

▶ Grayscale▶ 28 x 28 pixels



MNIST Feature Vectors▶ 28 × 28 = 784 pixels▶ Each image is a vector in ℝ784▶ Each feature is intensity of single pixel▶ black→ 0, white→ 255▶ A very simple representation.



Demo: MNIST▶ Use only images of 3s and 7s.▶ 4132 training images.▶ 680 testing images.▶ Some minor tuning.▶ Added random noise for robustness.▶ Picked classification threshold automatically.



Perceptron Learning▶ Linear prediction function parameterized by 𝑤⃗.▶ In this case, we can “reshape” 𝑤⃗ to be same size
as input image.



Weight Vector▶ Recall that the prediction is a weighted vote:𝐻( ⃗𝑥) = sign(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + …𝑤784𝑥784)▶ Positive→ 7, Negative→ 3▶ 𝑤𝑖 is the weight of pixel 𝑖▶ positive: if this pixel is bright, I think this is a 7▶ negative: if this pixel is bright, I think this is a 3▶ magnitude: confidence in prediction



Perceptron Training



Perceptron Training



Perceptron Training



Perceptron Training



Perceptron Training



Perceptron Training



Perceptron Weight Vector



Perceptron Results▶ Test accuracy: 97.3%



Square Loss for Classification▶ What if we use square loss for classification?▶ We can, but will it work well?



Results: Least Squares▶ Test Accuracy: 96.7% (marginally worse)



Results: Least Squares▶ Misclassifications are telling.



Least Squares Weight Vector▶ Can visualize weight of each pixel as an image.



Least Squares Weight Vector



Some History▶ Perceptrons were one of the first “machine
learning” models.▶ The basis of modern neural networks.



Rosenblatt’s Perceptron





Next Time▶ We “solve” linear classification, once and for all.


