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Introduction



Empirical Risk Minimization (ERM)

▶ Step 1: choose a hypothesis class▶ We’ve chosen linear predictors.▶ Step 2: choose a loss function▶ Step 3: find 𝐻 minimizing empirical risk▶ In case of linear predictors, equivalent to finding �⃗�.



Minimizing Empirical Risk▶ We want to minimize the empirical risk:𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 ℓ(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)= 1𝑛 𝑛∑𝑖=1 ℓ(Aug( ⃗𝑥(𝑖)) ⋅ �⃗�, 𝑦𝑖)



Minimizing Empirical Risk▶ For some losses there’s a formula for the best �⃗�.▶ Example: square loss.▶ But it might be too costly to use!▶ For others, there isn’t.▶ Example: absolute loss, Huber loss.▶ In either case, we might use gradient descent.

w+- (x+y)+Xiy



Two Issues with Gradient Descent
1. Can be expensive to compute the exact gradient.▶ Especially when we have a large data set.▶ Solution: stochastic gradient descent.

2. Doesn’t work as-is if risk is not differentiable.▶ Such as with the absolute loss.▶ Solution: subgradient descent.



Today▶ Answer two remaining questions:

1. How do we minimize the risk with respect to
non-differentiable losses, like the absolute loss?

2. When is gradient descent guaranteed to work?
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Subgradient Descent



Gradient Descent?▶ Question: can we use gradient descent if the risk
is not differentiable?▶ Answer: yes, with a slight modification.



Differentiability▶ A function 𝑓(𝑧) is differentiable if the derivative
exists at every point.▶ That is, it has a well-defined slope at every point.



Exercise
Where is the derivative not defined?

𝑓(𝑧) = {−4𝑧 − 7 if 𝑧 < −3−𝑧 + 2 if − 3 ≤ 𝑧 < 00.5𝑧 + 2 if 0 ≤ 𝑧 < 23𝑧/2 if 𝑧 ≥ 2
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Differentiability▶ A function 𝑓( ⃗𝑧) is differentiable if the gradient
exists at every point.▶ In other words, all of the slopes are well-defined:▶ 𝜕𝑓/𝜕𝑧1, 𝜕𝑓/𝜕𝑧2, …



Example▶ 𝑓(𝑧1, 𝑧2) = {−5𝑧1 + 𝑧2 if 𝑧1 ≤ 0−2𝑧1 + 𝑧2 if 𝑧1 > 0



Exercise
What is the gradient at (-1, -1)? (1, -1)? (0, 1)?

𝑓(𝑧1, 𝑧2) = {−5𝑧1 + 𝑧2 if 𝑧1 ≤ 0−2𝑧1 + 𝑧2 if 𝑧1 > 0
Idrefined

= (i) (i)
-



Answer

▶ ∇⃗𝑓( ⃗𝑧) is defined everywhere
except along 𝑧1 = 0.▶ If 𝑧1 < 0, 𝑓( ⃗𝑧) = −5𝑧1 + 𝑧2.▶ gradient is (−5, 1)𝑇 here▶ If 𝑧1 > 0, 𝑓( ⃗𝑧) = −2𝑧1 + 𝑧2.▶ gradient is (−2, 1)𝑇 here



Answer

𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧) = {(−5, 1)𝑇, if 𝑧1 < 0,(−2, 1)𝑇, if 𝑧1 > 0,
undefined, if 𝑧1 = 0.



Problem

▶ We can try running gradient
descent.▶ But what do we do if we reach
a point where the gradient is
not defined?▶ We need a replacement for
the gradient that tells us
where to go.



Idea▶ Slope is undefined at 𝑧1 = −3.▶ To the left, slope is -4▶ To the right, slope is -1

𝑓(𝑧) = {−4𝑧 − 7 if 𝑧 < −3−𝑧 + 2 if − 3 ≤ 𝑧 < 00.5𝑧 + 2 if 0 ≤ 𝑧 < 23𝑧/2 if 𝑧 ≥ 2
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Idea▶ Slope is undefined at 𝑧1 = −3.▶ To the left, slope is -4▶ To the right, slope is -1

𝑓(𝑧) = {−4𝑧 − 7 if 𝑧 < −3−𝑧 + 2 if − 3 ≤ 𝑧 < 00.5𝑧 + 2 if 0 ≤ 𝑧 < 23𝑧/2 if 𝑧 ≥ 2



Idea▶ Any number between -4 and -1 adequately
describes the behavior of 𝑓 at 𝑧 = −3.

𝑓(𝑧) = {−4𝑧 − 7 if 𝑧 < −3−𝑧 + 2 if − 3 ≤ 𝑧 < 00.5𝑧 + 2 if 0 ≤ 𝑧 < 23𝑧/2 if 𝑧 ≥ 2



Idea▶ Any number between -4 and -1 is a subderivative
of 𝑓 at 𝑧 = −3.

𝑓(𝑧) = {−4𝑧 − 7 if 𝑧 < −3−𝑧 + 2 if − 3 ≤ 𝑧 < 00.5𝑧 + 2 if 0 ≤ 𝑧 < 23𝑧/2 if 𝑧 ≥ 2
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Exercise
What are the valid subderivatives of 𝑓 at 𝑧 = 2?

𝑓(𝑧) = {−4𝑧 − 7 if 𝑧 < −3−𝑧 + 2 if − 3 ≤ 𝑧 < 00.5𝑧 + 2 if 0 ≤ 𝑧 < 23𝑧/2 if 𝑧 ≥ 2
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Subderivatives▶ Any valid subderivative defines a line that lies
below the function.



Subderivatives▶ Any valid subderivative defines a line that lies
below the function.



Subderivatives▶ Any valid subderivative defines a line that lies
below the function.



Subderivatives▶ The equation of this line is:𝑓𝑠(𝑧) = 𝑓(𝑧0) + 𝑠(𝑧 − 𝑧0)-
- fs(z)

:



Subderivatives▶ A number 𝑠 is a subderivative of 𝑓 at 𝑧0 if:𝑓(𝑧) ≥ 𝑓𝑠(𝑧) for all 𝑧▶ That is, if: 𝑓(𝑧) ≥ 𝑓(𝑧0) + 𝑠(𝑧 − 𝑧0)blue red



Exercise
Is 0 a valid subderivative of 𝑓 at 𝑧 = 2?⑭

fs(z) f(z)
52f(z)

# fs(z) =f(z))+$(z-z()
=

f(-3)
= 5



Intuition▶ The subderivative tells us how the function
changes when the slope doesn’t exist.▶ We can sometimes use it in place of a derivative.



Subgradient▶ In higher dimensions, we have multiple slopes to
worry about.▶ We can use a subgradient to generalize the
concept of a subderivative.



Example▶ There’s no well-defined gradient at 𝑧1 = (0, 0).▶ The slope in the 𝑧1 direction is undefined▶ Between -5 and -2?▶ The slope in the 𝑧2 direction is 1
𝑓(𝑧1, 𝑧2) = {−5𝑧1 + 𝑧2 if 𝑧1 ≤ 0−2𝑧1 + 𝑧2 if 𝑧1 > 0

·



Example▶ We will call any vector (𝑠1, 1) with −5 ≤ 𝑠1 ≤ −2 a
subgradient at (0, 0).

𝑓(𝑧1, 𝑧2) = {−5𝑧1 + 𝑧2 if 𝑧1 ≤ 0−2𝑧1 + 𝑧2 if 𝑧1 > 0



Subgradient▶ A vector ⃗𝑠 defines a plane:▶ Example: (−5, 1)𝑇



Subgradient▶ A vector ⃗𝑠 defines a plane:▶ Example: (−2, 1)𝑇



Subgradient▶ A vector ⃗𝑠 defines a plane:▶ Example: (−3, 1)𝑇



Subgradient▶ A vector ⃗𝑠 is a valid subgradient at ⃗𝑧(0) if the
plane it defines lies at or below the function 𝑓.▶ Example: (−3, 1)𝑇



Subgradient▶ The equation of the plane defined by ⃗𝑠 at ⃗𝑧(0) is:𝑓𝑠( ⃗𝑧) = 𝑓( ⃗𝑧(0)) + ⃗𝑠 ⋅ ( ⃗𝑧 − ⃗𝑧(0))
&

fs(E)



Subgradients▶ ⃗𝑠 is a subgradient of 𝑓( ⃗𝑧) at ⃗𝑧(0) if:𝑓( ⃗𝑧) ≥ 𝑓𝑠( ⃗𝑧) for all ⃗𝑧▶ That is, if: 𝑓( ⃗𝑧) ≥ 𝑓( ⃗𝑧(0)) + ⃗𝑠 ⋅ ( ⃗𝑧 − ⃗𝑧(0))



Finding Subgradients▶ Here are two suggested ways to check that ⃗𝑠 is a
valid subgradient.▶ 1) Visualize it.▶ 2) Check if the inequality holds.



Example
𝑓(𝑧1, 𝑧2) = {−5𝑧1 + 𝑧2 if 𝑧1 ≤ 0−2𝑧1 + 𝑧2 if 𝑧1 > 0▶ Is (−5, 0)𝑇 a valid subgradient?

⑩!

3 at 10 ,0) ?



Example

𝑓(𝑧1, 𝑧2) = {−5𝑧1 + 𝑧2 if 𝑧1 ≤ 0−2𝑧1 + 𝑧2 if 𝑧1 > 0▶ Is (−5, 0)𝑇 a valid subgradient at the point (0,0)?▶ Is 𝑓(0, 0) + (−5, 0)𝑇 ⋅ ((𝑧1, 𝑧2) − (0, 0)𝑇) ≤ 𝑓(𝑧1, 𝑧2) for all 𝑧1, 𝑧2?

Try z ,

= 0
, Ze= -3

-5z, f(0.-3)
↓
02-3
↓
No

(e)
N-bz, f(z

,+)



Tip▶ If the slope is defined in a direction, the
corresponding entry of the subgradient must be
that slope.



Intuition▶ A subgradient tells us where to go when the
gradient is undefined.▶ We can use it instead of the gradient in gradient
descent.



Example

▶ 𝑓(𝑧1, 𝑧2) = 𝑧21 + |𝑧2|▶ A subgradient:

⃗𝑠(𝑧1, 𝑧2) = {(2𝑧1, 1)𝑇 , if 𝑧2 > 0,(2𝑧1, −1)𝑇 , if 𝑧2 < 0,(2𝑧1, 0)𝑇 , if 𝑧2 = 0.



Example▶ Subgradient descent on 𝑓(𝑧1, 𝑧2) = 𝑧21 + |𝑧2|▶ Starting point: (1/2, 1/2)𝑇▶ Learning rate: 𝜂 = 0.1.





Problem▶ Does not converge! Why?▶ If 𝑓 is differentiable, gradient gets smaller as we
approach the minimum.▶ Naturally take smaller steps.▶ Not true if the function is not differentiable!▶ Steps may stay the same size (too large).

~



Fix▶ Decrease learning rate with each iteration.▶ That is, choose a decreasing learning rate
schedule 𝜂(𝑡) > 0.▶ Theory: choose 𝜂(𝑡) = 𝑐/√𝑡, where 𝑡 is iteration #,𝑐 is a positive constant.





Subgradient Descent
To minimize 𝑓( ⃗𝑧):▶ Pick arbitrary starting point ⃗𝑧(0), a decreasing learning rate

schedule 𝜂(𝑡) > 0.▶ Until convergence, repeat:▶ Compute a subgradient ⃗𝑠 of 𝑓 at ⃗𝑧(𝑖).▶ Update ⃗𝑧(𝑡+1) = ⃗𝑧(𝑡) − 𝜂(𝑡) ⃗𝑠▶ When converged, return ⃗𝑧(𝑡).
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Minimizing Risk w.r.t. Absolute Loss



Absolute Loss▶ The absolute loss is a natural first choice for
regression.▶ The empirical risk becomes:𝑅abs(�⃗�) = 1𝑛 𝑛∑𝑖=1 |𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖|= 1𝑛 𝑛∑𝑖=1 |�⃗� ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖|



Minimizing the Risk

𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 |�⃗� ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖|▶ We might try computing the gradient, setting to
zero, and solving.▶ But the risk is not differentiable.



Risk for the Absolute Loss



Regression with Absolute Loss▶ We were stuck before.▶ This risk is not differentiable.▶ Now: we can minimize the risk with respect to
the absolute loss using subgradient descent.



Subgradient of Empirical Risk▶ We need a subgradient of the empirical risk with
respect to the absolute loss.▶ Useful fact: the subgradient of a sum is the sum
of the subgradients.1▶ So it suffices to find a subgradient of the loss
function:subgrad𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 subgrad ℓ(�⃗�; ⃗𝑥(𝑖), 𝑦𝑖)

1At least, for convex functions.



Subgradient of the Absolute Loss▶ We need a subgradient of the absolute loss.ℓabs(�⃗� ⋅ Aug( ⃗𝑥(𝑖)), 𝑦𝑖) = |�⃗� ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖|▶ An equivalent piecewise definition:ℓabs(�⃗� ⋅Aug( ⃗𝑥(𝑖)), 𝑦𝑖) = {�⃗� ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖, if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) > 𝑦𝑖,𝑦𝑖 − �⃗� ⋅ Aug( ⃗𝑥(𝑖)), if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) < 𝑦𝑖,0, if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) = 𝑦𝑖.

itispati



The Absolute Loss▶ Gradient exists except at �⃗� ⋅ Aug( ⃗𝑥(𝑖)) = 𝑦𝑖.▶ Here, we need a subgradient.

5 : 8



Exercise

What is the gradient when �⃗� ⋅ Aug( ⃗𝑥(𝑖)) > 𝑦𝑖? What
about when �⃗� ⋅ Aug( ⃗𝑥(𝑖)) < 𝑦𝑖?

ℓabs(�⃗� ⋅ Aug( ⃗𝑥(𝑖)), 𝑦𝑖) = {�⃗� ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖, if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) > 𝑦𝑖,𝑦𝑖 − �⃗� ⋅ Aug( ⃗𝑥(𝑖)), if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) < 𝑦𝑖,0, if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) = 𝑦𝑖.

Ang()
-A)



Subgradient of the Absolute Loss

ℓabs(�⃗� ⋅ Aug( ⃗𝑥(𝑖)), 𝑦𝑖) = |�⃗� ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖|
If �⃗� ⋅ Aug( ⃗𝑥(𝑖)) > 𝑦𝑖:▶ Loss is �⃗� ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖.▶ Gradient is Aug( ⃗𝑥(𝑖)). If �⃗� ⋅ Aug( ⃗𝑥(𝑖)) < 𝑦𝑖:▶ Loss is 𝑦𝑖 − �⃗� ⋅ Aug( ⃗𝑥(𝑖)).▶ Gradient is −Aug( ⃗𝑥(𝑖)).



Subgradient of the Absolute Loss▶ The zero vector works as a subgradient.



Subgradient of the Absolute Loss▶ Our subgradient of the absolute loss:

𝑠(�⃗�; ⃗𝑥(𝑖), 𝑦𝑖) = {Aug( ⃗𝑥(𝑖)), if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) > 𝑦𝑖,−Aug( ⃗𝑥(𝑖)), if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) < 𝑦𝑖,0⃗, if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) = 𝑦𝑖.



Minimizing the Absolute Loss▶ The subgradient of the empirical risk is the
average of the subgradients of the loss:

subgrad. of 𝑅(�⃗�)= 1𝑛 𝑛∑𝑖=1 𝑠(�⃗�, ⃗𝑥(𝑖), 𝑦𝑖)= 1𝑛 𝑛∑𝑖=1 {Aug( ⃗𝑥(𝑖)), if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) > 𝑦𝑖,−Aug( ⃗𝑥(𝑖)), if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) < 𝑦𝑖,0⃗, if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) = 𝑦𝑖.



Subgradient Descent▶ We minimize the empirical risk with respect to
the absolute loss using subgradient descent.▶ Pick an initial �⃗�(0), a decreasing learning rate
schedule 𝜂(𝑡) > 0.▶ Until convergence, repeat:▶ Update�⃗�(𝑡+1) = �⃗�(𝑡)−𝜂(𝑡)× 1𝑛 𝑛∑𝑖=1 {Aug( ⃗𝑥(𝑖)), if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) > 𝑦𝑖,−Aug( ⃗𝑥(𝑖)), if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) < 𝑦𝑖,0⃗, if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) = 𝑦𝑖.

E



Example



Example



Example



Example



Example



Example



Example



Example



In Practice▶ We’ve minimized the risk with respect to the
absolute loss.▶ This approach has different names:▶ Quantile regression, median regression▶ Minimum Absolute Deviations (MAD)▶ Solvable by (S)GD, or as a linear program.
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Convexity



Question▶ When is gradient descent guaranteed to work?



Not here...



Convex Functions

Convex Non-convex



Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓.
+



Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓.
-



Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
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-



Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓.

--



Other Terms▶ If a function is not convex, it is non-convex.▶ Strictly convex: the line lies strictly above curve.▶ Concave: the line lies on or below curve.



Exercise
True or False: a convex function must have a
unique global minimum.

True or False: a local minimum of a convex func-
tion is always a global minimum.

True or False: a strictly convex function must have
a unique global minimum.

/

②

O

O

-



Convexity: Formal Definition▶ A function 𝑓 ∶ ℝ → ℝ is convex if for every
choice of 𝑎, 𝑏 ∈ ℝ and 𝑡 ∈ [0, 1]:(1 − 𝑡)𝑓(𝑎) + 𝑡𝑓(𝑏) ≥ 𝑓((1 − 𝑡)𝑎 + 𝑡𝑏).



Exercise
Using the definition, is 𝑓(𝑥) = |𝑥| convex?



Another View: Second Derivatives▶ If 𝑑2𝑓𝑑𝑥2 (𝑥) ≥ 0 for all 𝑥, then 𝑓 is convex.▶ Example: 𝑓(𝑥) = 𝑥4 is convex.▶ Warning! Only works if 𝑓 is twice differentiable!



Another View: Second Derivatives▶ “Best” straight line at 𝑥0:▶ 𝑓1(𝑥) = 𝑓(𝑥0) + 𝑓′(𝑥0) ⋅ (𝑥 − 𝑥0)▶ “Best” parabola at 𝑥0:▶ 𝑓2(𝑥) = 𝑓(𝑥0) + 𝑓′(𝑥0) ⋅ (𝑥 − 𝑥0) + 12𝑓″(𝑥0) ⋅ (𝑥 − 𝑥0)2▶ Possibilities: upward-facing, downward-facing, flat.



Convexity and Parabolas▶ Convex if for every 𝑥0, parabola is upward-facing
(or flat).▶ That is, 𝑓″(𝑥0) ≥ 0.



Proving Convexity Using Properties
Suppose that 𝑓(𝑥) and 𝑔(𝑥) are convex. Then:▶ 𝑤1𝑓(𝑥) + 𝑤2𝑔(𝑥) is convex, provided 𝑤1, 𝑤2 ≥ 0▶ Example: 3𝑥2 + |𝑥| is convex▶ 𝑔(𝑓(𝑥)) is convex, provided 𝑔 is non-decreasing.▶ Example: 𝑒𝑥2 is convex▶ max{𝑓(𝑥), 𝑔(𝑥)} is convex▶ Example: {0, x < 0𝑥, x ≥0 is convex



Note!▶ These properties are useful for proving convexity
for functions of one variable.▶ Some of them will not generalize to higher
dimensions.



Convexity and Gradient Descent▶ Convex functions are (relatively) easy to
optimize.▶ Theorem: if 𝑓(𝑥) is convex and “not too steep”2
then (stochastic) (sub)gradient descent
converges to a global optimum of 𝑓 provided
that the step size is small enough3

2Technically, 𝑐-Lipschitz
3step size related to steepness, should decrease like 1/√step #.
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Convexity in Many Dimensions



Convexity: Definition▶ 𝑓( ⃗𝑥) is convex if for every �⃗�, �⃗� the line segment
between (�⃗�, 𝑓(�⃗�)) and (�⃗�, 𝑓(�⃗�))
does not go below the plot of 𝑓.



Convexity: Formal Definition▶ A function 𝑓 ∶ ℝ𝑑 → ℝ is convex if for every
choice of �⃗�, �⃗� ∈ ℝ𝑑 and 𝑡 ∈ [0, 1]:(1 − 𝑡)𝑓(�⃗�) + 𝑡𝑓(�⃗�) ≥ 𝑓((1 − 𝑡)�⃗� + 𝑡�⃗�).



The Second Derivative Test▶ For 1-dimensions functions:▶ convex if second derivative ≥ 0.▶ For 𝑑-dimensional functions:▶ convex if ???



Second Derivatives in 𝑑-Dimensions▶ In 2-dimensions, there are 4 second derivatives:▶ 𝜕𝑓2𝜕𝑥21 , 𝜕𝑓2𝜕𝑥22 , 𝜕𝑓2𝜕𝑥1𝑥2 , 𝜕𝑓2𝜕𝑥2𝑥1▶ In 𝑑-dimensions, there are 𝑑2:▶ 𝜕𝑓2𝜕𝑥𝑖𝜕𝑥𝑗 for all 𝑖, 𝑗.▶ The second derivatives describe the curvature of
a paraboloid approximating 𝑓.









The Hessian Matrix▶ Create the Hessian matrix of second derivatives:▶ For 𝑓 ∶ ℝ2 → ℝ:
𝐻( ⃗𝑥) = ( 𝜕𝑓2𝜕𝑥21 ( ⃗𝑥) 𝜕𝑓2𝜕𝑥1𝑥2 ( ⃗𝑥)𝜕𝑓2𝜕𝑥2𝑥1 ( ⃗𝑥) 𝜕𝑓2𝜕𝑥22 ( ⃗𝑥) )



In General▶ If 𝑓 ∶ ℝ𝑑 → ℝ, the Hessian at ⃗𝑥 is:
𝐻( ⃗𝑥) = ⎛⎜⎜⎜⎝

𝜕𝑓2𝜕𝑥21 ( ⃗𝑥) 𝜕𝑓2𝜕𝑥1𝑥2 ( ⃗𝑥) ⋯ 𝜕𝑓2𝜕𝑥1𝑥𝑑 ( ⃗𝑥)𝜕𝑓2𝜕𝑥2𝑥1 ( ⃗𝑥) 𝜕𝑓2𝜕𝑥22 ( ⃗𝑥) ⋯ 𝜕𝑓2𝜕𝑥2𝑥𝑑 ( ⃗𝑥)⋯ ⋯ ⋯ ⋯𝜕𝑓2𝜕𝑥𝑑𝑥1 ( ⃗𝑥) 𝜕𝑓2𝜕𝑥2𝑑 ( ⃗𝑥) ⋯ 𝜕𝑓2𝜕𝑥2𝑑 ( ⃗𝑥)
⎞⎟⎟⎟⎠



Second Derivative Test▶ A function 𝑓 ∶ ℝ𝑑 → ℝ is convex if for any ⃗𝑥 ∈ ℝ𝑑,
all eigenvalues of the Hessian matrix 𝐻( ⃗𝑥) are≥ 0.



For This Class...▶ You will not need to compute eigenvalues “by
hand”...▶ Unless the matrix is diagonal.▶ In which case, the eigenvalues are the diagonal

entries.



Example▶ The eigenvalues of this matrix are 5, 2, and 1.(5 0 00 2 00 0 1)



Exercise
Is 𝑓(𝑥, 𝑦) = 𝑒𝑥 + 𝑒𝑦 + 𝑥2 − 𝑦2 convex?



No▶ The Hessian at (0,0) has a negative eigenvalue.



No▶ The Hessian at (0,0) has a negative eigenvalue.



Exercise
Is 𝑓(�⃗�) = ‖�⃗�‖2 convex?



Note▶ The second derivative test only works if 𝑓 is twice
differentiable.▶ A function can be convex without having a
second derivative.



Properties▶ We can often prove convexity using properties.▶ Two useful properties:▶ Sums of convex functions are convex.▶ Affine compositions of convex functions are convex.



Sums of Convex Functions▶ Suppose that 𝑓( ⃗𝑥) and 𝑔( ⃗𝑥) are convex. Then𝑤1𝑓( ⃗𝑥) + 𝑤2𝑔( ⃗𝑥) is convex, provided 𝑤1, 𝑤2 ≥ 0.



Affine Composition▶ Suppose that 𝑓(𝑥) is convex. Let 𝐴 be a matrix,
and ⃗𝑥 and �⃗� be vectors. Then𝑔( ⃗𝑥) = 𝑓(𝐴 ⃗𝑥 + �⃗�)
is convex as a function of ⃗𝑥.▶ Remember: a vector is a matrix with one
column/row.▶ Useful!



Exercise
Consider the function𝑓(�⃗�) = ( ⃗𝑥 ⋅ �⃗� − 𝑦)2
Is this function convex as a function of �⃗�?
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Convex Loss Functions



Empirical Risk Minimization (ERM)

▶ Step 1: choose a hypothesis class▶ We’ve chosen linear predictors, 𝐻( ⃗𝑥) = Aug( ⃗𝑥) ⋅ �⃗�.▶ Step 2: choose a loss function▶ Step 3: find �⃗� minimizing empirical risk▶ Some choices of loss function make this easier.



Convexity and Gradient Descent▶ Convex functions are (relatively) easy to
optimize.▶ Theorem: if 𝑓(𝑥) is convex and “not too steep”4
then (stochastic) (sub)gradient descent
converges to a global optimum of 𝑓 provided
that the step size is small enough5.

4Technically, 𝑐-Lipschitz
5step size related to steepness, should decrease like 1/√step #



Convex Loss▶ Recall: sums of convex functions are convex.▶ Implication: if loss function is convex as a
function of �⃗�, so is the empirical risk, 𝑅(�⃗�)𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 ℓ(Aug( ⃗𝑥(𝑖)) ⋅ �⃗�, 𝑦𝑖)▶ Takeaway: Convex losses make ERM easier.



Example: Square Loss▶ Recall the square loss for a linear predictor:ℓsq(Aug( ⃗𝑥) ⋅ �⃗�, 𝑦) = (Aug( ⃗𝑥) ⋅ �⃗� − 𝑦)2▶ This is convex as a function of �⃗�.▶ Proof: a few slides ago.



Example: Absolute Loss▶ Recall the absolute loss for a linear predictor:ℓabs(Aug( ⃗𝑥) ⋅ �⃗�, 𝑦) = |Aug( ⃗𝑥) ⋅ �⃗� − 𝑦|▶ This is convex as a function of �⃗�.



Linear Predictors▶ It’s also important that we’ve chosen linear
predictors.▶ A loss that is convex in �⃗� for linear 𝐻1(𝑥) may be
non-convex for non-linear 𝐻2(𝑥).▶ Example: square loss.▶ If 𝐻1(𝑥) = 𝑤0 + 𝑤1𝑥, then (𝑤0 + 𝑤1𝑥 − 𝑦)2 is convex.▶ If 𝐻2(𝑥) = 𝑤0𝑒𝑤1𝑥, then (𝑤0𝑒𝑤1𝑥 − 𝑦)2 is non-convex.



Summary▶ By combining 1) linear predictors and 2) a convex
loss function, we make ERM easier.▶ Many machine learning algorithms are linear
predictors with convex loss functions.▶ As we’ll see...
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Appendix: From Theory to Practice



Gradient Descent▶ We’ve spent three lectures on gradient descent.▶ A powerful optimization algorithm.▶ In practice, we use extensions of (stochastic)
gradient descent.



Extensions of SGD▶ Newton’s method▶ Second order optimization, using the Hessian.▶ Can converge in fewer steps.▶ But the Hessian is expensive to compute.▶ Adagrad, RMSprop, Adam▶ SGD with adaptive learning rates.▶ Used heavily in training of deep neural networks.



Non-Convex Optimization▶ So far, we’ve only seen convex risks.▶ But there’s an important class of machine
learning algorithms that have non-convex risks.▶ Namely: deep neural networks.



Empirical Risk Minimization (ERM)

▶ Step 1: choose a hypothesis class▶ Deep neural networks.▶ Step 2: choose a loss function▶ Step 3: find �⃗� minimizing empirical risk



Deep Learning▶ A deep neural network is a prediction function𝐻( ⃗𝑥; �⃗�) composed of many layers.▶ Typically, 𝐻 is not linear in �⃗�.▶ The risk becomes highly non-convex.▶ Even, for example, the square loss.▶ How do we minimize the empirical risk?



Answer: SGD▶ We use stochastic gradient descent (and
extensions).▶ Even though the empirical risk is non-convex.▶ The optimization problem becomes much harder.▶ SGD may not find a global minimum of the risk.▶ But often finds a “good enough” local minimum.



Next Time▶ Linear classification.


