
Lecture 4 | Part 1

Introduction

1 / 40

Empirical Risk Minimization (ERM)

▶ Step 1: choose a hypothesis class
▶ We’ve chosen linear predictors.

▶ Step 2: choose a loss function

▶ Step 3: find 𝐻 minimizing empirical risk

2 / 40

Minimizing Empirical Risk

▶ We want to minimize the empirical risk:

𝑅(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1
ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

= 1
𝑛

𝑛

∑
𝑖=1
ℓ(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗, 𝑦𝑖)

▶ For some choices of loss function, we can find a
formula for the minimizer.

3 / 40

Example: Least Squares

▶ With the square loss, risk becomes:

𝑅(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1
(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)

2

▶ Setting gradient to zero, solving for 𝑤⃗ gives:

𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

4 / 40

Gradient Descent

▶ But sometimes we can’t solve for 𝑤⃗ directly.
▶ It’s too costly.
▶ There’s no closed-form solution.

▶ Idea: use gradient descent to iteratively
minimize risk.

5 / 40

Gradient Descent

▶ Starting from an initial guess 𝑤⃗(0), iteratively
update:

𝑤⃗(𝑡+1) = 𝑤⃗(𝑡) − 𝜂𝑑𝑅
𝑑𝑤⃗

(𝑤⃗(𝑡))

6 / 40

Today

We’ll address two issues with gradient descent.

1. Can be expensive to compute the exact gradient.
▶ Especially when we have a large data set.
▶ Solution: stochastic gradient descent.

2. Doesn’t work as-is if risk is not differentiable.
▶ Such as with the absolute loss.
▶ Solution: subgradient descent.

7 / 40

Lecture 4 | Part 2

Motivation: Large Scale Learning

8 / 40

Example

▶ Suppose you’re doing least squares regression
on a medium-to-large data set.

▶ Say, 𝑛 = 200,000 examples, 𝑑 = 5,000 features.

▶ Encoded as 64 bit floats, 𝑋 is 8 GB.
▶ Fits in your laptop’s memory, but barely.

▶ Example: predict sentiment from text.

9 / 40

Attempt 0: Normal Equations

▶ You start by solving the normal equations:
np.linalg.solve(X.T @ X, X.T @ y)

▶ Time: 30.7 seconds.

▶ Mean Squared Error: 7.2 × 10−7.

▶ Can we speed this up?

10 / 40

Attempt 1: Gradient Descent
▶ Recall1 that the gradient of the MSE is:

𝑑𝑅
𝑑𝑤⃗

(𝑤⃗) = 2
𝑛

𝑛

∑
𝑖=1

(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)Aug(⃗𝑥
(𝑖))

= 1
𝑛
(2𝑋𝑇𝑋𝑤⃗ − 2𝑋𝑇 ⃗𝑦)

▶ You code up a function:2

def gradient(w):
n = len(y)
return (2/n) * X.T @ (X @ w - y)

1From Lecture 02, where we derived this.
2There’s a good and a bad way to do this.

11 / 40

Attempt 1: Gradient Descent

▶ You plug this into gradient_descent from last
lecture, run it, and...

▶ Time: 8.6 seconds total
▶ 14 iterations
▶ ≈ 0.6 seconds per iteration

▶ Mean Squared Error: 9.4 × 10−7.

12 / 40

Trivia: why is it faster?

▶ Solving normal equations takes Θ(𝑛𝑑2 + 𝑑3) time.
▶ Θ(𝑛𝑑2) time to compute 𝑋𝑇𝑋.
▶ Θ(𝑑3) time to solve the system.

▶ Gradient descent takes Θ(𝑛𝑑) time per iteration.
▶ Θ(𝑛𝑑) time to compute 𝑋𝑤⃗.
▶ Θ(𝑛𝑑) time to compute 𝑋𝑇(𝑋𝑤⃗ − ⃗𝑦).

13 / 40

Looking Ahead

▶ What if you had a larger data set?

▶ Say, 𝑛 = 10,000,000 examples, 𝑑 = 5,000 features.

▶ Encoded as 64 bit floats, 𝑋 is 400 GB.
▶ Doesn’t fit in your laptop’s memory!
▶ Barely fits on your hard drive.

14 / 40

Approach 0: Normal Equations

▶ You can try solving the normal equations:
np.linalg.solve(X.T @ X, X.T @ y)

▶ One of three things will happen:
1. You will receive an out of memory error.
2. The process will be killed (or your OS will freeze).
3. It will run, but take a very long time (paging).

15 / 40

Approach 1: Gradient Descent

▶ We can’t store the data in memory all at once.

▶ But we can still compute the gradient, 𝑑𝑅𝑑𝑤⃗ .
▶ Read a little bit of data at once.
▶ Or, distribute the computation to several machines.

▶ Computing gradient involves a loop over data:

𝑑𝑅
𝑑𝑤⃗

(𝑤⃗) = 2
𝑛

𝑛

∑
𝑖=1
(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)Aug(⃗𝑥

(𝑖))

16 / 40

Problem

𝑑𝑅
𝑑𝑤⃗

(𝑤⃗) = 2
𝑛

𝑛

∑
𝑖=1
(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)Aug(⃗𝑥

(𝑖))

▶ In machine learning, the number of training
points 𝑛 can be very large.

▶ Computing the gradient can be expensive when
𝑛 is large.
▶ So each step of gradient descent is expensive.

17 / 40

Idea

▶ Don’t worry about computing the exact gradient.

▶ An approximation will do.

18 / 40

Lecture 4 | Part 3

Stochastic Gradient Descent

19 / 40

Gradient Descent for Minimizing Risk

▶ In ML, we often want to minimize a risk function:

𝑅(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1
ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

20 / 40

Observation

▶ The gradient of the risk is the average of the
gradient of the losses:

𝑑
𝑑𝑤⃗

𝑅(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1

𝑑
𝑑𝑤⃗

ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

▶ The averaging is over all training points.

▶ This can take a long time when 𝑛 is large.3

3Trivia: this usually takes Θ(𝑛𝑑) time.
21 / 40

Idea
▶ The (full) gradient of the risk uses all of the
training data:

𝑑
𝑑𝑤⃗

𝑅(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1

𝑑
𝑑𝑤⃗

ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

▶ Idea: instead of using all 𝑛 training points,
randomly choose a smaller set, 𝐵:

𝑑
𝑑𝑤⃗

𝑅(𝑤⃗) ≈ 1
|𝐵|∑𝑖∈𝐵

𝑑
𝑑𝑤⃗

ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

22 / 40

Stochastic Gradient

▶ The smaller set 𝐵 is called a mini-batch.

▶ We now compute a stochastic gradient:

𝑑
𝑑𝑤⃗

𝑅(𝑤⃗) ≈ 1
|𝐵|∑𝑖∈𝐵

𝑑
𝑑𝑤⃗

ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

▶ “Stochastic,” because it is a random.

23 / 40

Stochastic Gradient

𝑑
𝑑𝑤⃗

𝑅(𝑤⃗) ≈ 1
|𝐵|∑𝑖∈𝐵

𝑑
𝑑𝑤⃗

ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

▶ The stochastic gradient is an approximation of
the full gradient.

▶ When |𝐵| ≪ 𝑛, it is much faster to compute.

▶ But the approximation is noisy.
24 / 40

Stochastic Gradient Descent for ERM

To minimize empirical risk 𝑅(𝑤⃗):

▶ Pick starting weights 𝑤⃗(0), learning rate 𝜂 > 0, batch size 𝑚.
▶ Until convergence, repeat:

▶ Randomly sample a batch 𝐵 of 𝑚 training data points.
▶ Compute stochastic gradient:

𝑔⃗ = 1
|𝐵| ∑𝑖∈𝐵

𝑑
𝑑𝑤⃗

ℓ(𝐻(⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)

▶ Update: 𝑤⃗(𝑡+1) = 𝑤⃗(𝑡) − 𝜂𝑔⃗
▶ When converged, return 𝑤⃗(𝑡).

25 / 40

Note

▶ A new batch should be randomly sampled on
each iteration!

▶ This way, the entire training set is used over time.

▶ Size of batch should be small compared to 𝑛.
▶ Think: 𝑚 = 64, 𝑚 = 32, or even 𝑚 = 1.

26 / 40

Example: Least Squares

▶ We can use SGD to perform least squares
regression.

▶ Need to compute the gradient of the square loss:

ℓsq(𝐻(⃗𝑥
(𝑖); 𝑤⃗), 𝑦𝑖) = (Aug(⃗𝑥

(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)
2

27 / 40

Exercise

What is the gradient of the square loss of a linear
predictor? That is, what is 𝑑

𝑑𝑤⃗
(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)

2?

28 / 40

Example: Least Squares

▶ The gradient of the square loss of a linear
predictor is:

𝑑
𝑑𝑤⃗

ℓsq(𝐻(⃗𝑥
(𝑖); 𝑤⃗), 𝑦𝑖)

= 𝑑
𝑑𝑤⃗

(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)
2

= 2 (Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)
𝑑
𝑑𝑤⃗

(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)

= 2 (Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)Aug(⃗𝑥
(𝑖))

29 / 40

Example: Least Squares

▶ Therefore, on each step we compute the
stochastic gradient:

𝑔⃗ = 2
𝑚∑

𝑖∈𝐵
(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)Aug(⃗𝑥

(𝑖))

▶ The update rule is:

𝑤⃗(𝑡+1) = 𝑤⃗(𝑡) − 𝜂𝑔⃗

30 / 40

Example: Least Squares

▶ We can write in matrix-vector form, too:
▶ Let 𝑋𝐵 be the design matrix using only the examples
in batch 𝐵.

▶ Let 𝑦𝐵 be the corresponding vector of labels.

▶ Then:
𝑔⃗ = 2

𝑚
𝑋𝑇𝐵(𝑋𝐵𝑤⃗ − 𝑦𝐵)

31 / 40

Example: SGD

42024

w0

20
2

4
6

8
w1

0

20

40

60

80

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

4

2

0

2

4

6

8

10

y

32 / 40

SGD vs. GD

4 2 0 2 4
w0

2

0

2

4

6

8

w
1

33 / 40

Tradeoffs

▶ In each step of GD, move in the “best” direction.
▶ But slowly!

▶ In each step of SGD, move in a “good” direction.
▶ But quickly!

▶ SGD may take more steps to converge, but can be
faster overall.

34 / 40

Example

▶ Suppose you’re doing least squares regression
on a medium-to-large data set.

▶ Say, 𝑛 = 200,000 examples, 𝑑 = 5,000 features.

▶ Encoded as 64 bit floats, 𝑋 is 8 GB.
▶ Fits in your laptop’s memory, but barely.

▶ Example: predict sentiment from text.

35 / 40

We saw...

▶ Solving the normal equations took 30.7 seconds.

▶ Gradient descent took 8.6 seconds.
▶ 14 iterations, ≈ 0.6 seconds per iteration.

▶ Stochastic gradient descent takes 3 seconds.
▶ Batch size 𝑚 = 16.
▶ 13,900 iterations, ≈ 0.0002 seconds per iteration.

36 / 40

Aside: Terminology

▶ Some people say “stochastic gradient descent”
only when batch size is 1.

▶ They say “mini-batch gradient descent” for larger
batch sizes.

▶ In this class: we’ll use “SGD” for any batch size,
as long as it’s chosen randomly.

37 / 40

Aside: A Popular Variant

▶ One variant of SGD uses epochs.

▶ During each epoch, we:
▶ Randomly shuffle the training data.
▶ Divide the training data into 𝑛/𝑚 mini-batches.
▶ Perform one step for each mini-batch.

38 / 40

Usefulness of SGD

▶ SGD enables learning on massive data sets.
▶ Billions of training examples, or more.

▶ Useful even when exact solutions available.
▶ E.g., least squares regression / classification.

39 / 40

History: ADALINE

40 / 40

