Ds<C /40A

P/bb&é}ﬂ’sﬁt Modlj)? ¢ MA(J%M éarmhg,

Lecture 4 Part1

Introduction

1/40

Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
We've chosen linear predictors.

Step 2: choose a loss function

Step 3: find H minimizing empirical risk

2/40

Minimizing Empirical Risk

We want to minimize the empirical risk:

Z p(Aug(xD) - W, y;)

For some choices of loss function, we can find a
formula for the minimizer.

3/40

Example: Least Squares

With the square loss, risk becomes:

_)

ZAug)?)W - y,)

_1
n i=1

Setting gradient to zero, solving for w gives:

- (XTX)_1XT)7

4] 40

Gradient Descent

But sometimes we can’t solve for w directly.
It's too costly.
There's no closed-form solution.

Idea: use gradient descent to iteratively
minimize risk.

5/40

Gradient Descent

Starting from an initial guess W%, iteratively

update: iR

dw

t+1)

W(= VT/(t) -n— (W)

6/ 40

Today
We'll address two issues with gradient descent.

Can be expensive to compute the exact gradient.
Especially when we have a large data set.
Solution: stochastic gradient descent.

Doesn’t work as-is if risk is not differentiable.
Such as with the absolute loss.
Solution: subgradient descent.

7/ 40

Dsc /40A

P/bbabﬂ'sv‘fc Modlji? ¢ Maehine ;&armhg,

Lecture 4 Part?2

Motivation: Large Scale Learning

8/40

Example

Suppose you're doing least squares regression
on a medium-to-large data set.

Say, n = 200,000 examples, d = 5,000 features.

Encoded as 64 bit floats, X is 8 GB.
Fits in your laptop’s memory, but barely.

Example: predict sentiment from text.

9/40

Attempt 0: Normal Equations

You start by solving the normal equations:
np.linalg.solve(X.T @ X, X.T @ y)

Time: 30.7 seconds.
Mean Squared Error: 7.2 x 1077,
Can we speed this up?

10/ 40

Attempt 1: Gradient Descent

Recall' that the gradient of the MSE is:

n

G0 = 5D (AuglR) i -y;) AuglR)
1

= (2XTxw - 2X7)

You code up a function:?
def gradient(w):

n = len(y)
return (2/n) * X.Ta (X w - vy)

TFrom Lecture 02, where we derived this.
2There’s a good and a bad way to do this.

11/ 40

Attempt 1: Gradient Descent

You plug this into gradient_descent from last
lecture, run it, and...

Time: 8.6 seconds total
14 iterations
~ 0.6 seconds per iteration

Mean Squared Error: 9.4 x 107,

12/ 40

Trivia: why is it faster?

Solving normal equations takes ©(nd? + d3) time.
O(nd?) time to compute X'X.
O(d?®) time to solve the system.

Gradient descent takes ©(nd) time per iteration.
O(nd) time to compute Xw.
O(nd) time to compute XT(XW -).

13/40

Looking Ahead
What if you had a larger data set?
Say, n = 10,000,000 examples, d = 5,000 features.

Encoded as 64 bit floats, X is 400 GB.
Doesn’t fit in your laptop’s memory!
Barely fits on your hard drive.

14 [40

Approach 0: Normal Equations

You can try solving the normal equations:
np.linalg.solve(X.T @ X, X.T @ y)

One of three things will happen:
You will receive an out of memory error.
The process will be killed (or your OS will freeze).
It will run, but take a very long time (paging).

15/ 40

Approach 1: Gradient Descent

We can’t store the data in memory all at once.

But we can still compute the gradient, g—g.

Read a little bit of data at once.
Or, distribute the computation to several machines.

Computing gradient involves a loop over data:

IR) = 25 (ugli) i - ;) Aug(x)
dw n ¢ i

16 / 40

Problem

== (Aug(x?)- @ - ;) Aug(x?)

i=1

QlD.
Slm
3|N

In machine learning, the number of training
points n can be very large.

Computing the gradient can be expensive when

nis large.
So each step of gradient descent is expensive.

17/ 40

Idea

Don’t worry about computing the exact gradient.

An approximation will do.

18/ 40

Ds<C /40A

P/bb&éﬁz’sﬁt Modlj)? ¢ MA(J%M éar/nhg’

Lecture 4 Part 3

Stochastic Gradient Descent

19/ 40

Gradient Descent for Minimizing Risk

In ML, we often want to minimize a risk function:

- 1 L (7 -
R(W) = — > UHED; @), y,)
i=1

20/ 40

Observation

The gradient of the risk is the average of the
gradient of the losses:

— =_§ - .7)
R(n dVT/ X IW)lyl)

i=1

The averaging is over all training points.

This can take a long time when n is large.

3Trivia: this usually takes ©(nd) time.
21/ 40

Idea

The (full) gradient of the risk uses all of the
training data:
1<% d (30 g
ZoR(i) = - SoH(K;), y)

= dw

Idea: instead of using all n training points,
randomly choose a smaller set, B:

EZ_P(H(X W), Y;)

22/ 40

Stochastic Gradient
The smaller set B is called a mini-batch.
We now compute a stochastic gradient:

4R

5 1
“ZR() = m,zd_w"‘”(x),)

“Stochastic,” because it is a random.

23/40

Stochastic Gradient

- 1 d ->(f -
R = —= > ——tHED; W), y,)

The stochastic gradient is an approximation of
the full gradient.

When |B| « n, it is much faster to compute.

But the approximation is noisy.

24 [40

Stochastic Gradient Descent for ERM
To minimize empirical risk R(wW):

Pick starting weights W%, learning rate n > 0, batch size m.

Until convergence, repeat:

Randomly sample a batch B of m training data points.

Compute stochastic gradient:
*(I)
= 5 Z W), y;)
IEB

Update: W = w® - ng

When converged, return w®.

25/ 40

Note

A new batch should be randomly sampled on
each iteration!

This way, the entire training set is used over time.

Size of batch should be small compared to n.
Think: m = 64, m =32, oreven m = 1.

26/ 40

Example: Least Squares

We can use SGD to perform least squares
regression.

Need to compute the gradient of the square loss:

L (HEO;),) = (Rug(i?) - -)’

27/ 40

What is the gradient of the square loss of a linear
predictor? That is, what is - (Aug(x") - # - y,)’?

28/ 40

Example: Least Squares

The gradient of the square loss of a linear
predictor is:

d S(). @

29/ 40

Example: Least Squares

Therefore, on each step we compute the
stochastic gradient:

§=2 (Augla®)- i - y,) Aug(x)

ieB
The update rule is:

@ = @0 - pg

30/ 40

Example: Least Squares

We can write in matrix-vector form, too:
Let X, be the design matrix using only the examples
in batch B.
Let y, be the corresponding vector of labels.

Then:

31/40

Example: SGD

32/ 40

SGD vs. GD

7
| : @
2§\\4\\2 0 2 4

Tradeoffs

In each step of GD, move in the “best” direction.
But slowly!

In each step of SGD, move in a “good” direction.
But quickly!

SGD may take more steps to converge, but can be
faster overall.

34/ 40

Example

Suppose you're doing least squares regression
on a medium-to-large data set.

Say, n = 200,000 examples, d = 5,000 features.

Encoded as 64 bit floats, X is 8 GB.
Fits in your laptop’s memory, but barely.

Example: predict sentiment from text.

35/40

We saw...
Solving the normal equations took 30.7 seconds.

Gradient descent took 8.6 seconds.
14 iterations, = 0.6 seconds per iteration.

Stochastic gradient descent takes 3 seconds.
Batch size m = 16.
13,900 iterations, ~ 0.0002 seconds per iteration.

36/ 40

Aside: Terminology

Some people say “stochastic gradient descent”
only when batch size is 1.

They say “mini-batch gradient descent” for larger
batch sizes.

In this class: we’ll use “SGD” for any batch size,
as long as it's chosen randomly.

37/ 40

Aside: A Popular Variant
One variant of SGD uses epochs.

During each epoch, we:
Randomly shuffle the training data.
Divide the training data into n/m mini-batches.
Perform one step for each mini-batch.

38/40

Usefulness of SGD

SGD enables learning on massive data sets.
Billions of training examples, or more.

Useful even when exact solutions available.
E.g., least squares regression / classification.

39/40

History: ADALINE

40/ 40

