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Lecture 4 Part1

Introduction
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Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
We've chosen linear predictors.

Step 2: choose a loss function

Step 3: find H minimizing empirical risk
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Minimizing Empirical Risk

We want to minimize the empirical risk:

Z p(Aug(xD) - W, y;)

For some choices of loss function, we can find a
formula for the minimizer.
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Example: Least Squares

With the square loss, risk becomes:

_)

ZAug)? )W - y,)

_1
n i=1

Setting gradient to zero, solving for w gives:

- (XTX)_1XT)7
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Gradient Descent

But sometimes we can’t solve for w directly.
It's too costly.
There's no closed-form solution.

Idea: use gradient descent to iteratively
minimize risk.
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Gradient Descent

Starting from an initial guess W%, iteratively

update: iR

dw

t+1)

W( = VT/(t) -n— (W )
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Today
We'll address two issues with gradient descent.

Can be expensive to compute the exact gradient.
Especially when we have a large data set.
Solution: stochastic gradient descent.

Doesn’t work as-is if risk is not differentiable.
Such as with the absolute loss.
Solution: subgradient descent.
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Motivation: Large Scale Learning
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Example

Suppose you're doing least squares regression
on a medium-to-large data set.

Say, n = 200,000 examples, d = 5,000 features.

Encoded as 64 bit floats, X is 8 GB.
Fits in your laptop’s memory, but barely.

Example: predict sentiment from text.
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Attempt 0: Normal Equations

You start by solving the normal equations:
np.linalg.solve(X.T @ X, X.T @ y)

Time: 30.7 seconds.
Mean Squared Error: 7.2 x 1077,
Can we speed this up?
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Attempt 1: Gradient Descent

Recall' that the gradient of the MSE is:

n

G0 = 5D (AuglR) i -y;) AuglR)
1

= (2XTxw - 2X7)

You code up a function:?
def gradient(w):

n = len(y)
return (2/n) * X.Ta (X w - vy)

TFrom Lecture 02, where we derived this.
2There’s a good and a bad way to do this.
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Attempt 1: Gradient Descent

You plug this into gradient_descent from last
lecture, run it, and...

Time: 8.6 seconds total
14 iterations
~ 0.6 seconds per iteration

Mean Squared Error: 9.4 x 107,
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Trivia: why is it faster?

Solving normal equations takes ©(nd? + d3) time.
O(nd?) time to compute X'X.
O(d?®) time to solve the system.

Gradient descent takes ©(nd) time per iteration.
O(nd) time to compute Xw.
O(nd) time to compute XT(XW - ).
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Looking Ahead
What if you had a larger data set?
Say, n = 10,000,000 examples, d = 5,000 features.

Encoded as 64 bit floats, X is 400 GB.
Doesn’t fit in your laptop’s memory!
Barely fits on your hard drive.
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Approach 0: Normal Equations

You can try solving the normal equations:
np.linalg.solve(X.T @ X, X.T @ y)

One of three things will happen:
You will receive an out of memory error.
The process will be killed (or your OS will freeze).
It will run, but take a very long time (paging).
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Approach 1: Gradient Descent

We can’t store the data in memory all at once.

But we can still compute the gradient, g—g.

Read a little bit of data at once.
Or, distribute the computation to several machines.

Computing gradient involves a loop over data:

IR ) = 25 (ugli) i - ;) Aug(x)
dw n ¢ i
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Problem

== (Aug(x?)- @ - ;) Aug(x?)

i=1

QlD.
Slm
3|N

In machine learning, the number of training
points n can be very large.

Computing the gradient can be expensive when

nis large.
So each step of gradient descent is expensive.
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Idea

Don’t worry about computing the exact gradient.

An approximation will do.
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Stochastic Gradient Descent
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Gradient Descent for Minimizing Risk

In ML, we often want to minimize a risk function:

- 1 L (7 -
R(W) = — > UHED; @), y,)
i=1
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Observation

The gradient of the risk is the average of the
gradient of the losses:

— =_§ - .7 )
R( n dVT/ X IW)lyl)

i=1

The averaging is over all training points.

This can take a long time when n is large.

3Trivia: this usually takes ©(nd) time.
21/ 40



Idea

The (full) gradient of the risk uses all of the
training data:
1<% d (30 g
ZoR(i) = - SoH(K; ), y)

= dw

Idea: instead of using all n training points,
randomly choose a smaller set, B:

EZ_P(H(X W), Y;)
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Stochastic Gradient
The smaller set B is called a mini-batch.
We now compute a stochastic gradient:

4R

5 1
“ZR() = m,zd_w"‘”(x ), )

“Stochastic,” because it is a random.
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Stochastic Gradient

- 1 d ->(f -
R = —= > ——tHED; W), y,)

The stochastic gradient is an approximation of
the full gradient.

When |B| « n, it is much faster to compute.

But the approximation is noisy.
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Stochastic Gradient Descent for ERM
To minimize empirical risk R(wW):

Pick starting weights W%, learning rate n > 0, batch size m.

Until convergence, repeat:

Randomly sample a batch B of m training data points.

Compute stochastic gradient:
*(I)
= 5 Z W), y;)
IEB

Update: W = w® - ng

When converged, return w®.
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Note

A new batch should be randomly sampled on
each iteration!

This way, the entire training set is used over time.

Size of batch should be small compared to n.
Think: m = 64, m =32, oreven m = 1.
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Example: Least Squares

We can use SGD to perform least squares
regression.

Need to compute the gradient of the square loss:

L (HEO; ), ) = (Rug(i?) - - )’
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What is the gradient of the square loss of a linear
predictor? That is, what is - (Aug(x") - # - y,)’?
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Example: Least Squares

The gradient of the square loss of a linear
predictor is:

d S(). @
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Example: Least Squares

Therefore, on each step we compute the
stochastic gradient:

§=2 (Augla®)- i - y,) Aug(x)

ieB
The update rule is:

@ = @0 - pg
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Example: Least Squares

We can write in matrix-vector form, too:
Let X, be the design matrix using only the examples
in batch B.
Let y, be the corresponding vector of labels.

Then:
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Example: SGD
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SGD vs. GD
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Tradeoffs

In each step of GD, move in the “best” direction.
But slowly!

In each step of SGD, move in a “good” direction.
But quickly!

SGD may take more steps to converge, but can be
faster overall.
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Example

Suppose you're doing least squares regression
on a medium-to-large data set.

Say, n = 200,000 examples, d = 5,000 features.

Encoded as 64 bit floats, X is 8 GB.
Fits in your laptop’s memory, but barely.

Example: predict sentiment from text.
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We saw...
Solving the normal equations took 30.7 seconds.

Gradient descent took 8.6 seconds.
14 iterations, = 0.6 seconds per iteration.

Stochastic gradient descent takes 3 seconds.
Batch size m = 16.
13,900 iterations, ~ 0.0002 seconds per iteration.
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Aside: Terminology

Some people say “stochastic gradient descent”
only when batch size is 1.

They say “mini-batch gradient descent” for larger
batch sizes.

In this class: we’ll use “SGD” for any batch size,
as long as it's chosen randomly.
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Aside: A Popular Variant
One variant of SGD uses epochs.

During each epoch, we:
Randomly shuffle the training data.
Divide the training data into n/m mini-batches.
Perform one step for each mini-batch.
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Usefulness of SGD

SGD enables learning on massive data sets.
Billions of training examples, or more.

Useful even when exact solutions available.
E.g., least squares regression / classification.
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History: ADALINE
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