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Empirical Risk

Last time, we framed the problem of learning as
minimizing the empirical risk.

In the case where H is linear::

_)

W:

D> - Aug(x?), y,)

i=1

1
n
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Minimizing Empirical Risk

Picking different loss functions changes the
optimization problem.

If we use square loss:

i) 1< (i
)= — > (- Aug(x?) - y;)?

i=1

We can minimize by setting the gradient to zero.

We get: w = (X"X)'XTy.
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Minimizing Empirical Risk

But sometimes we can't use this approach.
If R is not differentiable (absolute loss).
If computing w* = (X"X)'XTy is too expensive.

4/69



Today

A general, very popular approach to
optimization: gradient descent.

Instead of solving for w* “all at once”, we'll
iterate towards it.
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What is the gradient?
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What is the derivative?

Consider f(z) =322 +2z+ 1.
What is the slope of the curve at z=1?

10 4
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What is the derivative?

Consider f(z) = 32?2 +2z+ 1.
What is the slope of the curve at z=1?

7,,

f(2)
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What is the derivative?

The derivative gives the slope anywhere:

f(z)=32%+2z+1

df
dz( 2) =

The slope of the curve at z=1:

df
dz( ) =
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What type of object?

The derivative of f : R = R is a function:
Input: scalar.
Output: scalar.

Example: g(z) =62Z+2.

The derivative evaluated at a point is a scalar:
Example: %(1) = 8.
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Sign of the Derivative

If the derivative at a point is:
Positive: the function is increasing.
Negative: the function is decreasing.
Zero: the function is flat.

10 5
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What is the height of the dashed line at z + 6?

fleo)y A.-

11/69



Derivatives and Change

The derivative tells us how much the function
changes with an infinitesimal increase in z.
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Increases and Decreases

The sign of the derivative tells us if the function

is increasing or decreasing.
Positive: f is increasing at z.
Negative: f is decreasing at z.
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Multivariate Functions

Now consider f(Z) = f(z,,2,) = 427 + 22, + 22, 2,.
What is the slope of the surface at (z,z,) = (3,1)?
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Multivariate Functions

Now consider f(2) = f(z,,z,) = 423 + 2z, + 22,2,.
What is the slope of the surface at (z,,2,) = (3,1)?
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Partial Derivatives

When f is a function of a vector Z = (z,, z,)’, there
are two slopes to talk about:

of

5. slope in the z; direction.

of

52" slope in the z, direction.
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Example
What is the slope of f at(z,,2,) =(3,1) in

The z, direction?
The z, direction?

2)=4z2+22, +22,7
] 2 123
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What is the gradient?

We can package the partial derivatives into a
single object: the gradient.

Af 3 (fzf (2))
dz af( )

622
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What is the gradient?

In general, if f : RY —» R, then the gradient is:
& )

i . | %@

ey
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What type of object?

The gradient of a function f : R - Ris a

function':
Input: vector in R¢.
Output: vector in R¢.

Example: %(2’) = (82, +22,, 2 +2z,)".

The gradient of f : R? —» R evaluated at a point

is a vector in RY:
Example: %(3, 1) = (26, 8)".

'Sometimes it is referred to as a vector field.
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Gradient Fields

The gradient can be viewed as a vector field:
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Meaning of Gradient Vector

The gradient of a function f : R — R at a point
Zis a vector in RY.

The ith component is the slope of f at Z in the
ith direction.
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Which of these could possibly

be the gradient at the point
(97 _4)?

A/\/\A
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Gradients and Change

Recall: f(z+8) = f(2) + 6 x I(2).

In multiple dimensions:

f(2+8)= @)+ (6% 52 ) (8, L @)+

=1+ 5-



At a point Z = (2,3)", f(2) is 7 and the gradient
2@ = (4,2

What is the approximate® value of f(2.1,3.1)?

9Quality of approximation depends on second derivative.
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Steepest Ascent

Key property: the gradient vector points in the
direction of steepest ascent.
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So the total change is & - %(2’).

cos 6.

S 2 dfyay w2 l19fy 2
Also remember: 6 - —(2) = || 6] "E(z)

So the increase in f is maximized when 6 = 0.
That is, when 6 points in the direction of g(f).
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Steepest Descent

The negative gradient points in the direction of
steepest descent.
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Why?

The direction of steepest ascent is the opposite
of the direction of steepest descent.

Because, zoomed in, the function looks linear.
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Contours




Contours

The contours are the level sets of the function.
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Contours and Gradients

The gradient is orthogonal to the contours.

—————————————
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Optimization

To find a minimum (or maximum), look for where the
gradient is 0.

100
80
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40
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Example

Goal: minimize f(Z) = €2*2 + (z, - 2)% + (z, - 3)2.
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Example

Try solving g(é’) = 0.

The gradient is:

df . (221 41 2(z, - 2))

—\Z) =
dZ( ) 22,677 + 2(z, - 3)

Can we solve the system? Not in closed form.

22,677 +2(z,-2) =0

222ez%+25 +2(z,-3)=0
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A Problem

The function is differentiable?.
But we can’t set gradient to zero and solve.

How do we find the minimum?

’The gradient exists everywhere.
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A Solution

Idea: iterate towards a minimum,
step by step.

Start at an arbitrary location.

At every step, move in direction
of steepest descent.
i.e., the negative gradient.
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The gradient of a function f(2) at (1,1)is (2,1)".

If you're trying to minimize f(Z), which place should
you go to next?

A) (1,1)
B) (.8,.9)
) (1.2,1.1)

38/69



Direction of Steepest Descent

If n is the learning rate, then the next step is:

=3 =3 df =
(t+1) = 3(t) _ g x =2 (3(0)
z z xdé’(z )
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Gradient Descent

To minimize f(2):

Pick arbitrary starting point 29, learning rate n > 0

Until convergence, repeat:
Compute gradient: %(Z(t)) at 20,
2(t+ - d -
Update: 2+ = 200 _  x d—;(z(t)).

When converged, return 2.
It is (approximately) a local minimum.
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Stopping Criterion

Close to a minimum,

gradient is small.
100

80
60
40
20

Idea: stop when "%(?(t))"
is small.

Alternative: stop when
|2 - 20 is small.
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def gradient_descent(
gradient, z_o, learning_rate, stop_threshold
):

Z =20
while True:
z_ new = z - learning_rate * gradient(z)
if np.linalg.norm(z_new - z) < stop_threshold:
break
Z = Z_new
return z_new
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Picking Parameters

The learning rate and stopping threshold are
parameters.

They need to be chosen carefully for each
problem.

If not, the algorithm may not converge.
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Example
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Let f(z,,2,) = 27 + 323 + 2, ,.

Starting at Z© = (1, 1), what is the next point after
one step of gradient descent with learning rate n =
0.1?
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Gradient Descent for ERM

In ERM, our goal is to minimize empirical risk:

W)= > HAug(R0) - i )
1=1

Often, we can minimize using gradient descent.

3We've assumed H is a linear prediction function.
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The Gradient of the Risk

The gradient of the empirical risk is:

Gradient of risk is average gradient of loss.

As far as we can go without knowing the loss.
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The Gradient of the MSE

Recall: the mean squared error is the empirical
risk with respect to the square loss:

- 1 L - , -
R(W) = - > (Aug(x) - i - y;)?
i=1

The gradient is:
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Recall that the square loss for a linear predictor is:
(Aug(X?) - i - y;)°.

What is the gradient of the square loss with respect
to w?
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The Gradient of the MSE

The gradient of the mean squared error is:*

dR

o= Z(Aug (%) - ;) Aug(X)

Each training point X') contributes to the
gradient.

“We saw before that g—VRV(vT/) = 2X"XWw - 2X"y. These two are actually equal.
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What will be the gradient if every prediction is ex-
actly correct?

-
1
—
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Gradient Descent for Least Squares

We can perform least squares regression by
solving the normal equations: w* = (X7X)'X"y.

But we can find the same solution using gradient
descent:
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Example

We will run gradient descent to train a least
squares regression model on the following data:
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The plot below shows a linear prediction function
using weight vector w(®.

What is the sign of the second entry of 48 (/)2

25
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In Practice
(S)GD is heavily used in machine learning.

Can be used to solve many optimization
problems.

But it can be tricky to get working.
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Learning Rate
The learning rate has to be chosen carefully.
If too large, the algorithm may diverge.

If too small, the algorithm may converge slowly.

61/ 69



500
400
300
200
100

Diverging

63/69



Diverging
To diagnose, print R(W) at each iteration.

If it is increasing consistently, the algorithm is
diverging.

Fix: decrease the learning rate.
But not by too much! Then it may converge too
slowly.
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Problem

When the contours are “long and skinny,” you will
be forced to pick a very small learning rate.

500
400
300
200
100
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A Fix
Scaling (standardizing) the features can help.

This makes the contours more circular.

Doesn’t change the prediction!
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Next Time

How do we minimize the risk with respect to
absolute loss?

When is gradient descent guaranteed to
converge?
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