

Lecture 3 | Part 1

Recap

Empirical Risk

Last time, we framed the problem of learning as minimizing the empirical risk.

$$R(H) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}), y_i)$$

▶ In the case where *H* is linear::

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}), y_i)$$

Minimizing Empirical Risk

- Picking different loss functions changes the optimization problem.
- If we use square loss:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) - y_i)^2$$

We can minimize by setting the gradient to zero.

• We get:
$$\vec{w} = (X^T X)^{-1} X^T \vec{y}$$
.

Minimizing Empirical Risk

But sometimes we can't use this approach.
 If R is not differentiable (absolute loss).
 If computing w^{*} = (X^TX)⁻¹X^Ty^{*} is too expensive.

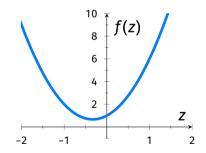
Today

- A general, very popular approach to optimization: gradient descent.
- Instead of solving for w^{*} "all at once", we'll iterate towards it.

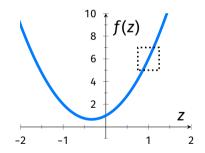
Lecture 3 | Part 2

What is the gradient?

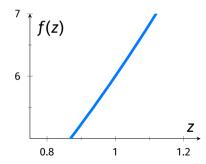
Consider f(z) = 3z² + 2z + 1.
 What is the slope of the curve at z = 1?



Consider f(z) = 3z² + 2z + 1.
 What is the slope of the curve at z = 1?



Consider f(z) = 3z² + 2z + 1.
 What is the slope of the curve at z = 1?



The derivative gives the slope anywhere:

$$f(z) = 3z^2 + 2z + 1$$

$$\frac{df}{dz}(z) =$$

The slope of the curve at z = 1:

$$\frac{df}{dz}(1) =$$

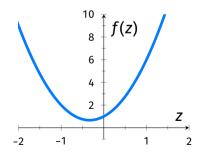
What type of object?

- The derivative of $f : \mathbb{R} \to \mathbb{R}$ is a **function**:
 - Input: scalar.
 - Output: scalar.
 - Example: $\frac{df}{dz}(z) = 6z + 2$.
- The derivative evaluated at a point is a scalar:
 Example: df/dz(1) = 8.

Sign of the Derivative

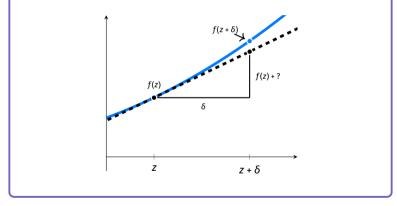
If the derivative at a point is:

- Positive: the function is increasing.
- Negative: the function is decreasing.
- Zero: the function is flat.



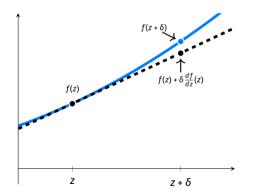
Exercise

What is the height of the dashed line at $z + \delta$?



Derivatives and Change

The derivative tells us **how much** the function changes with an infinitesimal increase in z.



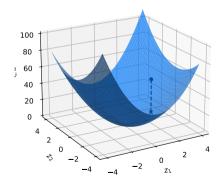
Increases and Decreases

- The sign of the derivative tells us if the function is increasing or decreasing.
 - Positive: f is increasing at z.
 - Negative: f is decreasing at z.

Multivariate Functions

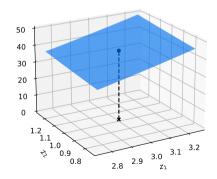
Now consider
$$f(\vec{z}) = f(z_1, z_2) = 4z_1^2 + 2z_2 + 2z_1z_2$$
.
What is the **slope** of the surface at $(z_1, z_2) = (3, 1)$?

h



Multivariate Functions

Now consider
$$f(\vec{z}) = f(z_1, z_2) = 4z_1^2 + 2z_2 + 2z_1z_2$$
.
What is the **slope** of the surface at $(z_1, z_2) = (3, 1)$?



Partial Derivatives

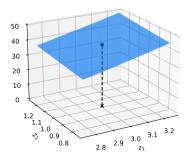
When f is a function of a vector z = (z₁, z₂)^T, there are two slopes to talk about:

•
$$\frac{\partial f}{\partial z_1}$$
: slope in the z_1 direction.

$$\frac{\partial f}{\partial z_2}$$
: slope in the z_2 direction.

Example

$$f(\vec{z}) = 4z_1^2 + 2z_2 + 2z_1z_2$$



$$\frac{\partial f}{\partial z_1}(z_1, z_2) =$$

$$\frac{\partial f}{\partial z_1}(3, 1) =$$

$$\frac{\partial f}{\partial z_2}(z_1, z_2) =$$

$$\frac{\partial f}{\partial z_2}(3, 1) =$$

What is the gradient?

We can package the partial derivatives into a single object: the gradient.

$$\frac{df}{d\vec{z}}(\vec{z}) = \begin{pmatrix} \frac{\partial f}{\partial z_1}(\vec{z}) \\ \frac{\partial f}{\partial z_2}(\vec{z}) \end{pmatrix}$$

What is the gradient?

▶ In general, if $f : \mathbb{R}^d \to \mathbb{R}$, then the gradient is:

$$\frac{df}{d\vec{z}}(\vec{z}) = \begin{pmatrix} \frac{\partial f}{\partial z_1}(\vec{z}) \\ \frac{\partial f}{\partial z_2}(\vec{z}) \\ \vdots \\ \frac{\partial f}{\partial z_d}(\vec{z}) \end{pmatrix}$$

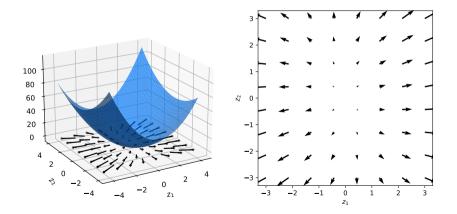
What type of object?

- The gradient of a function $f : \mathbb{R}^d \to \mathbb{R}$ is a **function**¹:
 - ▶ Input: vector in \mathbb{R}^d .
 - Output: vector in \mathbb{R}^d .
 - Example: $\frac{df}{d\vec{z}}(\vec{z}) = (8z_1 + 2z_2, 2 + 2z_1)^T$.
- ► The gradient of $f : \mathbb{R}^d \to \mathbb{R}$ evaluated at a point is a vector in \mathbb{R}^d : Example: $\frac{df}{d\tilde{z}}(3,1) = (26,8)^T$.

¹Sometimes it is referred to as a **vector field**.

Gradient Fields

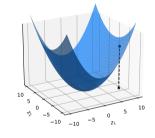
The gradient can be viewed as a vector field:



Meaning of Gradient Vector

- The gradient of a function $f : \mathbb{R}^d \to \mathbb{R}$ at a point \vec{z} is a vector in \mathbb{R}^d .
- The *i*th component is the **slope** of *f* at *z* in the *i*th direction.

Exercise



Which of these could possibly be the gradient at the point (9,-4)?

Gradients and Change

• Recall:
$$f(z + \delta) \approx f(z) + \delta \times \frac{df}{dz}(z)$$
.

In multiple dimensions:

$$\begin{split} f(\vec{z} + \vec{\delta}) &\approx f(\vec{z}) + \left(\delta_1 \times \frac{\partial f}{\partial z_1}(\vec{z})\right) + \left(\delta_2 \times \frac{\partial f}{\partial z_2}(\vec{z})\right) + \dots \\ &\approx f(\vec{z}) + \vec{\delta} \cdot \frac{df}{d\vec{z}}(\vec{z}) \end{split}$$

Exercise

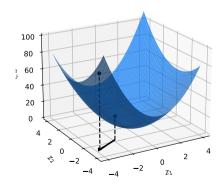
At a point $\vec{z} = (2,3)^T$, $f(\vec{z})$ is 7 and the gradient $\frac{df}{d\vec{z}}(\vec{z}) = (4,-2)^T$.

What is the approximate^a value of f(2.1, 3.1)?

^aQuality of approximation depends on second derivative.

Steepest Ascent

Key property: the gradient vector points in the direction of steepest ascent.



Proof

► Remember:
$$f(\vec{z} + \vec{\delta}) \approx f(\vec{z}) + \vec{\delta} \cdot \frac{df}{d\vec{z}}(\vec{z})$$
.

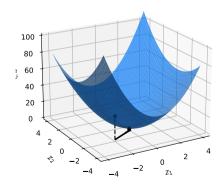
So the total change is $\vec{\delta} \cdot \frac{df}{d\vec{z}}(\vec{z})$.

Also remember:
$$\vec{\delta} \cdot \frac{df}{d\vec{z}}(\vec{z}) = \|\vec{\delta}\| \left\| \frac{df}{d\vec{z}}(\vec{z}) \right\| \cos \theta$$
.

So the increase in *f* is maximized when θ = 0.
 That is, when δ points in the direction of df/dz (z).

Steepest Descent

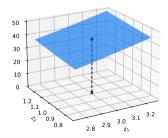
The negative gradient points in the direction of steepest descent.



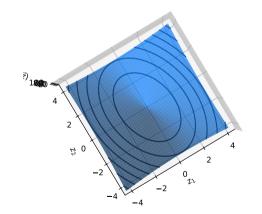
Why?

The direction of steepest ascent is the **opposite** of the direction of steepest descent.

Because, zoomed in, the function looks linear.

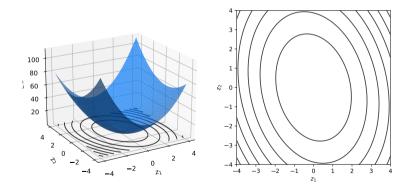


Contours



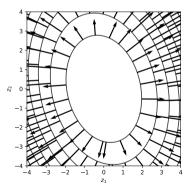
Contours

The contours are the **level sets** of the function.



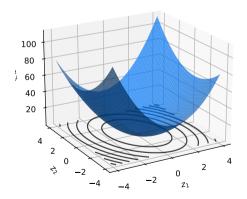
Contours and Gradients

► The gradient is **orthogonal** to the contours.



Optimization

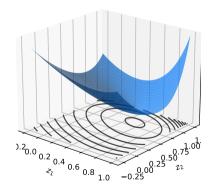
► To find a **minimum** (or **maximum**), look for where the gradient is 0.



Lecture 3 | Part 3

Gradient Descent

• **Goal:** minimize
$$f(\vec{z}) = e^{z_1^2 + z_2^2} + (z_1 - 2)^2 + (z_2 - 3)^2$$
.



Try solving
$$\frac{df}{d\vec{z}}(\vec{z}) = 0$$
.

► The gradient is:

$$\frac{df}{d\vec{z}}(\vec{z}) = \begin{pmatrix} 2z_1e^{z_1^2+z_2^2}+2(z_1-2)\\ 2z_2e^{z_1^2+z_2^2}+2(z_2-3) \end{pmatrix}$$

Can we solve the system? Not in closed form.

$$2z_1e^{z_1^2+z_2^2} + 2(z_1 - 2) = 0$$

$$2z_2e^{z_1^2+z_2^2} + 2(z_2 - 3) = 0$$

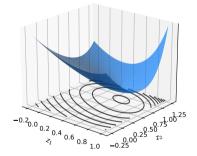
A Problem

- ► The function **is differentiable**².
- But we can't set gradient to zero and solve.
- **How do we find the minimum**?

²The gradient exists everywhere.

A Solution

- Idea: iterate towards a minimum, step by step.
- Start at an arbitrary location.
- At every step, move in direction of steepest descent.
 i.e., the negative gradient.



Exercise

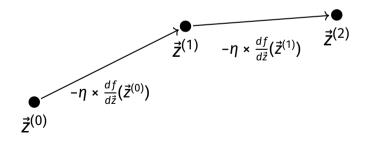
The gradient of a function $f(\vec{z})$ at (1, 1) is $(2, 1)^{T}$.

If you're trying to minimize $f(\vec{z})$, which place should you go to next?

Direction of Steepest Descent

• If η is the **learning rate**, then the next step is:

$$\vec{z}^{(t+1)} = \vec{z}^{(t)} - \eta \times \frac{df}{d\vec{z}}(\vec{z}^{(t)})$$

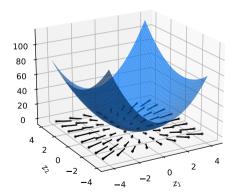


Gradient Descent

To minimize $f(\vec{z})$:

- Pick arbitrary starting point $\vec{z}^{(0)}$, learning rate $\eta > 0$
- Until convergence, repeat:
 - Compute gradient: $\frac{df}{d\vec{z}}(\vec{z}^{(t)})$ at $\vec{z}^{(t)}$.
 - **Update:** $\vec{z}^{(t+1)} = \vec{z}^{(t)} \eta \times \frac{df}{d\vec{z}}(\vec{z}^{(t)}).$
- When converged, return $\vec{z}^{(t)}$.
 - It is (approximately) a local minimum.

Stopping Criterion

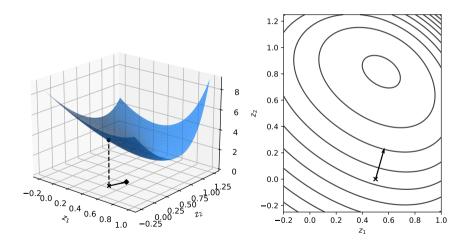


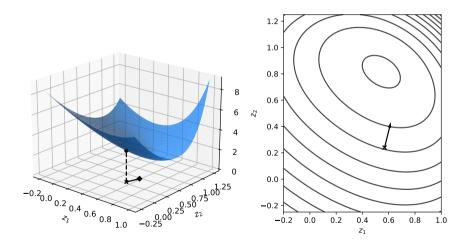
- Close to a minimum, gradient is small.
- Idea: stop when $\left\| \frac{df}{d\vec{z}}(\vec{z}^{(t)}) \right\|$ is small.
- ► **Alternative:** stop when $\|\vec{z}^{(t+1)} \vec{z}^{(t)}\|$ is small.

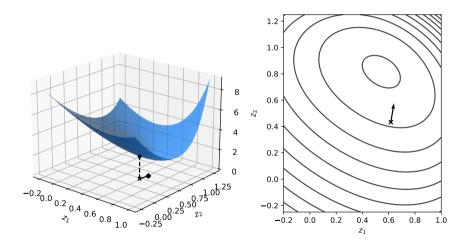
```
def gradient descent(
    gradient, z o, learning rate, stop threshold
):
    Z = Z \Theta
    while True:
        z new = z - learning rate * gradient(z)
        if np.linalg.norm(z new -z) < stop threshold:
            break
        z = z_{new}
    return z new
```

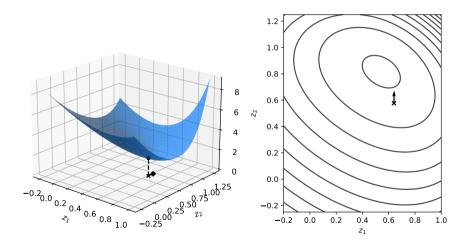
Picking Parameters

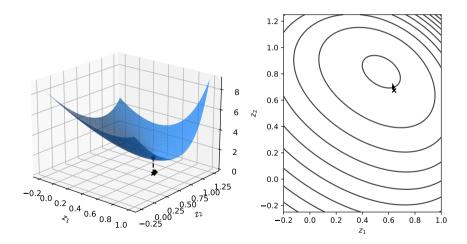
- The learning rate and stopping threshold are parameters.
- They need to be chosen carefully for each problem.
- If not, the algorithm may not converge.

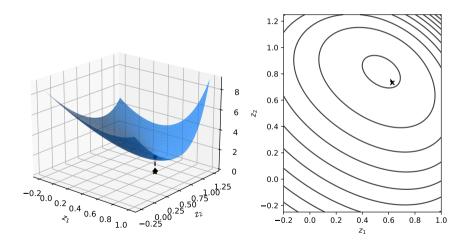


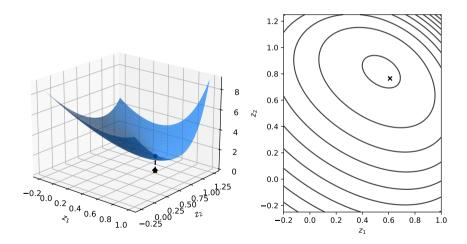


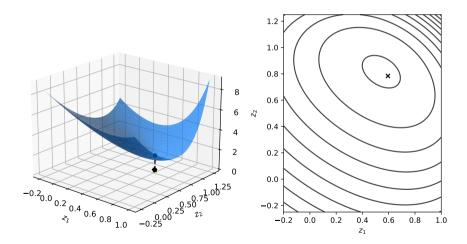


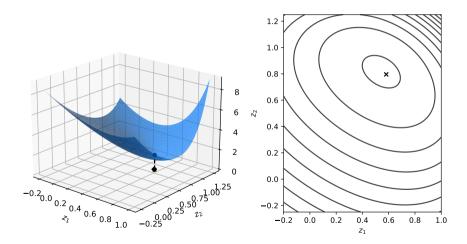


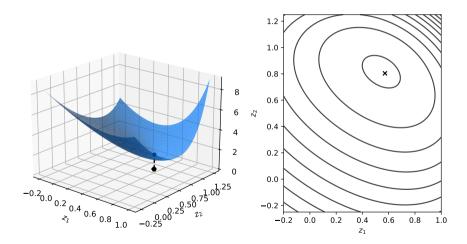












Exercise

Let
$$f(z_1, z_2) = z_1^4 + 3z_2^2 + z_1z_2$$
.

Starting at $\vec{z}^{(0)} = (1, 1)$, what is the next point after one step of gradient descent with learning rate $\eta = 0.1$?

Lecture 3 | Part 4

Gradient Descent for ERM

Gradient Descent for ERM

In ERM, our goal is to minimize empirical risk:³

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w}, y_i)$$

Often, we can minimize using gradient descent.

³We've assumed *H* is a linear prediction function.

The Gradient of the Risk

The gradient of the empirical risk is:

$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{d}{d\vec{w}} \left(\frac{1}{n} \sum_{i=1}^{n} \ell(\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w}, y_i) \right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \frac{d\ell}{d\vec{w}}(\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w}, y_i)$$

Gradient of risk is average gradient of loss.

As far as we can go without knowing the loss.

The Gradient of the MSE

Recall: the mean squared error is the empirical risk with respect to the square loss:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$$

► The gradient is:

$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{d}{d\vec{w}} (\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$$

Exercise

Recall that the square loss for a linear predictor is: $(\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$.

What is the gradient of the square loss with respect to \vec{w} ?

The Gradient of the MSE

The gradient of the mean squared error is:⁴

$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} (\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i) \operatorname{Aug}(\vec{x}^{(i)})$$

• Each training point $\vec{x}^{(i)}$ contributes to the gradient.

⁴We saw before that $\frac{dR}{d\vec{w}}(\vec{w}) = 2X^T X \vec{w} - 2X^T \vec{y}$. These two are actually equal.

Exercise

What will be the gradient if every prediction is exactly correct?

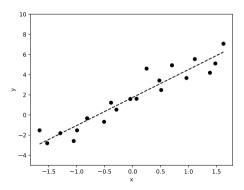
$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} (\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i) \text{Aug}(\vec{x}^{(i)})$$

Gradient Descent for Least Squares

- ► We can perform least squares regression by solving the normal equations: $\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$.
- But we can find the same solution using gradient descent:

$$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \eta \times \frac{2}{n} \sum_{i=1}^{n} (\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w}^{(t)} - y_i) \operatorname{Aug}(\vec{x}^{(i)})$$

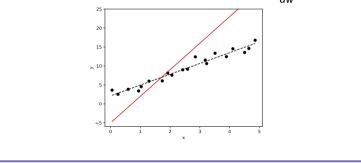
We will run gradient descent to train a least squares regression model on the following data:



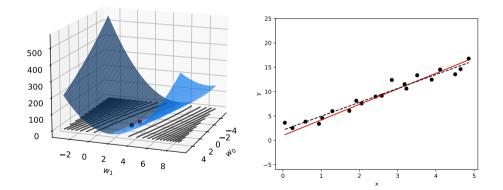
Exercise

The plot below shows a linear prediction function using weight vector $\vec{w}^{(0)}$.

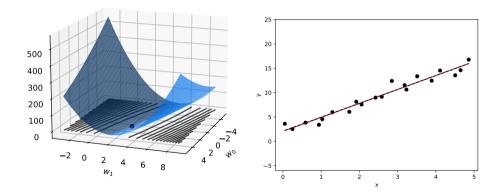
What is the sign of the **second** entry of $\frac{dR}{d\vec{w}}(\vec{w}^{(0)})$?



Iteration #40



Iteration #100



Lecture 3 | Part 5

Appendix: From Theory to Practice

In Practice

- ▶ (S)GD is **heavily used** in machine learning.
- Can be used to solve many optimization problems.
- But it can be tricky to get working.

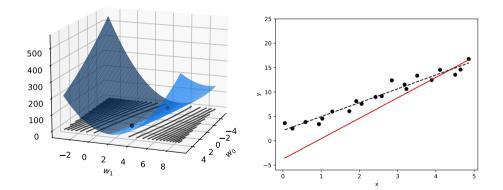
Learning Rate

The learning rate has to be chosen carefully.

If too large, the algorithm may diverge.

If too small, the algorithm may converge slowly.

Diverging

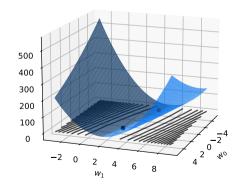


Diverging

- ▶ To diagnose, print $R(\vec{w})$ at each iteration.
- If it is increasing consistently, the algorithm is diverging.
- Fix: decrease the learning rate.
 But not by too much! Then it may converge too slowly.

Problem

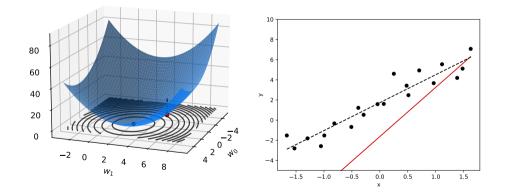
When the contours are "long and skinny," you will be forced to pick a very small learning rate.



A Fix

- Scaling (standardizing) the features can help.
- This makes the contours more circular.
- Doesn't change the prediction!

Scaling



Next Time

- How do we minimize the risk with respect to absolute loss?
- When is gradient descent guaranteed to converge?