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Introduction



News

▶ Lab 01 released. Due Sunday @ 11:59 pm.

▶ HW 01 released. Due Wednesday @ 11:59 pm.
▶ LATEX template available (optional).

▶ Math self-check released.



Last Time

▶ We saw nearest neighbor predictors.

▶ They can work well.

▶ But they memorize the training data rather than
learning a simpler underlying pattern.



The Main Problem

▶ Nearest neighbor approaches do not learn which
features are useful and which are not.



Example

▶ Suppose all Adelie penguins weigh less than all
Gentoo penguins.

▶ I.e., we can predict perfectly based on body
mass alone.



Example: One Noisy Feature
▶ Suppose we add a feature that is total noise.
▶ Still enough information to perfectly classify.
▶ 1-NN: 98% test accuracy.
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Example: Two Noisy Features
▶ Suppose we add another feature that is total noise.
▶ Still enough information to perfectly classify.
▶ 1-NN: 95% test accuracy (-3%).
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Example: Noisy Features
▶ No matter how many noisy features we add, there is
enough information to classify perfectly.

▶ But 1-NN performance degrades with # of (noisy) features:
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Explanation

▶ Euclidean distance treats all features the same.
▶ Even those that are pure noise.

▶ NN does not learn which features are useful.1

▶ Distance becomes less meaningful as noisy
features are added.

1For extensions of kNN which learn a distance metric from data, see:
(Weinberger and Saul, 2009; Goldberger et al., 2005; Shalev-Shwartz et al.,
2004)



The Rest of DSC 140A

▶ We’ll explore three different paradigms for
learning from data.

▶ Part 1: Empirical Risk Minimization
▶ Part 2: Probabilistic Modeling
▶ Part 3: Tree-based Methods
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Empirical Risk Minimization



Prediction

▶ Prediction is the most common task in ML:
▶ given: a feature vector, ⃗𝑥
▶ predict: an output target, 𝑦.

▶ Example:
▶ given: years of experience and college GPA
▶ predict: salary



Prediction Functions

▶ Informally: we think experience, GPA, etc., are
predictive of salary.

▶ Formally: we think there is a function 𝐻 that
takes in (experience, GPA) and outputs a good
prediction of the salary.

𝐻(experience,GPA) → predicted salary



Prediction Functions

▶ In general, a prediction function2 𝐻 takes in a
feature vector and outputs a predicted label.

𝐻( ⃗𝑥) → 𝑦

2Sometimes called a hypothesis function.



Example Prediction Function

𝐻(experience,GPA) = $50,000
+ $10,000 × experience
+ $5,000 × GPA



Goal

▶ There are many possible prediction functions.

▶ How do we pick a good one?

▶ One that works well on unseen, future data.

▶ Problem: we don’t know the future.



Data

▶ Assumption: the future will be like the past.

▶ So a prediction function that works well on past
data will likely work well on future data.

▶ Idea: can use past data to “measure” how a good
prediction function is, select between them.



Example
▶ 𝐻1(𝑥) = 60,000 + 10,000𝑥
▶ 𝐻2(𝑥) = 70,000 + 200𝑥2
▶ 𝐻3(𝑥) = 110,000 − 15,000𝑥



Fit

▶ We preferred 𝐻1 over 𝐻2 and 𝐻3 because it “fit”
the data better.

▶ How do we formally quantify how well a
prediction function fits the data?



Measuring Errors

▶ Idea: measure the difference between the
prediction and the correct label.



Loss Functions

▶ A loss function measures the difference between
a prediction 𝐻( ⃗𝑥(𝑖)) and the “right answer” 𝑦𝑖.

▶ There are many different loss functions. For now,
we’ll consider two.

▶ Absolute loss: ℓabs(𝐻( ⃗𝑥(𝑖)), 𝑦𝑖) = |𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖|

▶ Square loss: ℓsq(𝐻( ⃗𝑥(𝑖)), 𝑦𝑖) = (𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖)2



Quantifying Overall Fit

▶ A loss function measures the difference between a
prediction and the correct label for a single
training point.

▶ A good prediction function should make good
predictions on average over the entire training set.

▶ That is, for a good 𝐻, the average loss should be
small.



Empirical Risk

▶ The average loss on the training set, also called
the empirical risk, is defined to be:

𝑅(𝐻) = 1
𝑛

𝑛

∑
𝑖=1

ℓ(𝐻( ⃗𝑥(𝑖)), 𝑦𝑖)

▶ It is a function of 𝐻, but it also depends on:
▶ The training data, X = ( ⃗𝑥(1), 𝑦1), … , ( ⃗𝑥(𝑛), 𝑦𝑛)
▶ The particular choice of loss function ℓ



Example



Terminology

▶ We might say: “the empirical risk with respect to
absolute loss”. This means:

𝑅(𝐻) = 1
𝑛

𝑛

∑
𝑖=1

|𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖|

▶ Or, “the empirical risk with respect to square
loss”. This means:

𝑅(𝐻) = 1
𝑛

𝑛

∑
𝑖=1

(𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖)2



Terminology

▶ We might be quick and say “risk” instead of
“empirical risk”.



Minimizing Empirical Risk

▶ Empirical risk measures the “fit” of a prediction
function to the training data.

▶ Idea: find a prediction function 𝐻 that has the
smallest empirical risk.



Exercise

Consider the data shown below, and assume abso-
lute loss.

Sketch a prediction function 𝐻 that minimizes the
empirical risk.



Problem

▶ It is too easy to find a prediction function that
has zero empirical risk.

▶ Simply memorize the training data.
▶ We want to learn a simpler pattern.

▶ Instead, we will restrict our search for prediction
functions to a smaller set of (simple) functions.

▶ This set is called the hypothesis class.



Exercise

Consider the data shown below, and assume abso-
lute loss.

Sketch a linear prediction function 𝐻 that mini-
mizes the empirical risk.



Empirical Risk Minimization

▶ The learning strategy we have just derived is
called empirical risk minimization (ERM).

▶ Step 1: choose a hypothesis class
▶ for example, linear functions

▶ Step 2: choose a loss function

▶ Step 3: find 𝐻 minimizing empirical risk



ERM is a Recipe

▶ By choosing different hypothesis classes and
losses, we derive different learning algorithms.

▶ Some choices for Step 1 & 2 make Step 3 easier
or harder.

▶ We’ll see different choices in the coming weeks.
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Linear Prediction Functions



A Simple Choice

▶ ERM asks us to choose a hypothesis class.

▶ Let’s start with a simple one: linear functions.

▶ This choice will take us quite far.



Linear Functions

▶ A linear prediction function of one feature has
the form:

𝐻(𝑥) = 𝑤0 + 𝑤1𝑥

▶ In general, a linear prediction function of 𝑑
features has the form:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

▶ 𝑤0, 𝑤1, … , 𝑤𝑑 are the parameters or weights.



Interpreting Weights

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

▶ 𝑤0 (the bias) determines the prediction when all
features are zero.

▶ 𝑤1 determines how much the prediction changes
when 𝑥1 increases by one unit

▶ Similarly for 𝑤2, … , 𝑤𝑑



Interpreting Weights

▶ When plotted, linear prediction functions are:
▶ straight lines when ⃗𝑥 ∈ ℝ1

▶ planes when ⃗𝑥 ∈ ℝ2

▶ hyperplanes when ⃗𝑥 ∈ ℝ𝑑

▶ 𝑤𝑖 is the slope of the hyperplane in the 𝑥𝑖
direction.



Example
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Parameter Vectors

▶ The parameters of a linear function can be
packaged into a parameter vector, 𝑤⃗.

▶ Example: if 𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 then
𝑤⃗ = (𝑤0, … , 𝑤3)𝑇.

▶ If ⃗𝑥 ∈ ℝ𝑑, then 𝑤⃗ ∈ ℝ𝑑+1.



Parameterization

▶ A linear function 𝐻( ⃗𝑥) is completely specified by
its parameter vector.

▶ Can work either with the function, 𝐻, or vector, 𝑤⃗.

▶ Sometimes write 𝐻( ⃗𝑥; 𝑤⃗).

▶ Example: 𝑤⃗ = (8, 3, 1, 5, −2, −7)𝑇 specifies

𝐻( ⃗𝑥; 𝑤⃗) = 8 + 3𝑥1 + 1𝑥2 + 5𝑥3 − 2𝑥4 − 7𝑥5



Compact Form

▶ Recall the dot product of vectors 𝑎⃗ and 𝑏⃗:

𝑎⃗ = (𝑎1, 𝑎2, … , 𝑎𝑑)𝑇 𝑏⃗ = (𝑏1, 𝑏2, … , 𝑏𝑑)𝑇

𝑎⃗ ⋅ 𝑏⃗ = 𝑎1𝑏1 + 𝑎2𝑏2 + … + 𝑎𝑑𝑏𝑑

▶ Observe:

𝐻( ⃗𝑥; 𝑤⃗) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑
= (𝑤0, 𝑤1, … , 𝑤𝑑)𝑇⏟⏟⏟⏟⏟⏟⏟

𝑤⃗

⋅ (1, 𝑥1, … , 𝑥𝑑)𝑇⏟
?



Compact Form
▶ The augmented feature vector Aug( ⃗𝑥) is the
vector obtained by adding a 1 to the front of ⃗𝑥:

⃗𝑥 = (

𝑥1

𝑥2

⋮
𝑥𝑑

) Aug( ⃗𝑥) = (

1

𝑥1

𝑥2

⋮
𝑥𝑑

)

▶ With augmentation, we can write:
𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

= 𝑤⃗ ⋅ Aug( ⃗𝑥)
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Empirical Risk Minimization

To create a new ML algorithm:

▶ Step 1: choose a hypothesis class
▶ We’ve chosen linear functions

▶ Step 2: choose a loss function

▶ Step 3: find 𝐻 minimizing empirical risk



Loss Functions

▶ Next, we need to choose a loss function.

▶ Choice depends on the problem at hand.

▶ Let’s focus on regression for now.

▶ The absolute loss is a natural first choice.



Empirical Risk w.r.t. Absolute Loss

▶ Now that we have assumed 𝐻( ⃗𝑥) is linear, we can
write the empirical risk w.r.t. the absolute loss as:

𝑅abs(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1

|𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖|

= 1
𝑛

𝑛

∑
𝑖=1

|𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖|

▶ A function of 𝑤⃗, since 𝐻 is totally specified by 𝑤⃗.



Example

0 5 10 15 20 25 30
Experience

0

50000

100000

150000

200000

250000

300000

350000

Sa
la

ry



Example

0 5 10 15 20 25 30
Experience

0

50000

100000

150000

200000

250000

300000

350000

Sa
la

ry

H with w(1)

H with w(2)

H with w(3)



Example
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Example
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Example
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Risk Surface

▶ Can imagine plotting 𝑅abs(𝑤⃗) for all values of 𝑤⃗.

▶ This is called the risk surface.

▶ A 𝑤⃗ that makes the surface lowest minimizes the
empirical risk.



Risk Surface
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More Features

▶ With 2 features, we fit a plane instead of a line.
▶ With ≥ 3 features, we fit a hyperplane.

▶ We can no longer easily visualize the risk surface.

▶ But the idea is the same: find the 𝑤⃗ that
minimizes the empirical risk.



Example

2
4

6

8

10

x1

0
2

4
6

8
10

x2

75
50
25
0

25

50

75

100



Example

0
2

4
6

8
10

x1

0
2

4
6

8
10

x2

100
75
50
25
0

25
50
75

100

H(x)



Minimizing Empirical Risk
▶ How do we find the 𝑤⃗ that minimizes 𝑅abs(𝑤⃗) (the
empirical risk with respect to the absolute loss)?
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Calculus

▶ We know how to use calculus to find the
minimum of a function:
1. Find the gradient 𝑑

𝑑𝑤⃗𝑅abs(𝑤⃗).
2. Set it equal to zero, solve for 𝑤⃗.
3. This finds places where 𝑅abs(𝑤⃗) is flat; check that it is
a minimum (and not a maximum or saddle point).



Problem

▶ 𝑅abs(𝑤⃗) is not differentiable.

▶ There are places where the gradient (slope) is
not defined.

▶ These appear as “cusps” or “sharp creases” in
the risk surface.
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Another Loss?

▶ We cannot use the usual calculus approach to
minimize 𝑅abs(𝑤⃗).

▶ We’ll come back to this in a later lecture.

▶ Instead, let’s see if the square loss is any better.



Empirical Risk w.r.t. Square Loss

▶ Assuming 𝐻( ⃗𝑥) is linear, we can write the
empirical risk w.r.t. the square loss as:

𝑅sq(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1

(𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖)2

= 1
𝑛

𝑛

∑
𝑖=1

(𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖)2

▶ 𝑅sq(𝑤⃗) is called the mean squared error (MSE).



Risk Surface
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Good News!

▶ The mean squared error is differentiable.

▶ Now, we’ll try to find the 𝑤⃗ that minimizes 𝑅sq(𝑤⃗)
with calculus.



Lecture 02 | Part 5

Least Squares



Minimizing the MSE

▶ Goal: minimize 𝑅sq(𝑤⃗) with respect to 𝑤⃗.

▶ Calculus Approach: Find gradient of 𝑅sq(𝑤⃗); set
to zero; solve for 𝑤⃗.

▶ We’ll rely on results from vector calculus.



First Step: Rewrite Risk

▶ Step one: rewrite 𝑅sq in vector form.

▶ We will find:

𝑅sq(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1

(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)
2

= 1
𝑛‖𝑋𝑤⃗ − ⃗𝑦‖2



Recall
▶ If 𝑢⃗ = (𝑢1, 𝑢2, … , 𝑢𝑘)𝑇, then:

‖𝑢⃗‖2 = 𝑢⃗ ⋅ 𝑢⃗ =
𝑘

∑
𝑖=1

𝑢2
𝑖

▶ So, if 𝑎⃗ = (𝑎1, … , 𝑎𝑘)𝑇 and 𝑏⃗ = (𝑏1, … , 𝑏𝑘)𝑇:

‖𝑎⃗ − 𝑏⃗‖2 = (𝑎⃗ − 𝑏⃗) ⋅ (𝑎⃗ − 𝑏⃗)

=
𝑘

∑
𝑖=1

(𝑎𝑖 − 𝑏𝑖)2



First Step: Rewrite Risk
▶ Define 𝑝𝑖 = Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗, and let 𝑝⃗ = (𝑝1, … , 𝑝𝑛)𝑇.

▶ 𝑝⃗ is a vector of the predictions on training set.
▶ Note: 𝑝⃗ ∈ ℝ𝑛, not ℝ𝑑!

▶ Then:

𝑅sq(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1

(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)
2

= 1
𝑛

𝑛

∑
𝑖=1

(𝑝𝑖 − 𝑦𝑖)
2

= 1
𝑛‖𝑝⃗ − ⃗𝑦‖2



First Step: Rewrite Risk

▶ Define the (augmented) design matrix, 𝑋:

𝑋 = (

Aug( ⃗𝑥(1))
Aug( ⃗𝑥(2))

⋮ ⋮
Aug( ⃗𝑥(𝑛))

) =
⎛⎜⎜⎜

⎝

1 𝑥(1)
1 𝑥(1)

2 … 𝑥(1)
𝑑

1 𝑥(2)
1 𝑥(2)

2 … 𝑥(2)
𝑑

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥(𝑛)

1 𝑥(𝑛)
2 … 𝑥(𝑛)

𝑑

⎞⎟⎟⎟

⎠



First Step: Rewrite Risk

▶ Observe: 𝑝⃗ = 𝑋𝑤⃗.

(

Aug( ⃗𝑥(1))
Aug( ⃗𝑥(2))

⋮ ⋮
Aug( ⃗𝑥(𝑛))

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑋

(

𝑤0
𝑤1
⋮
𝑤𝑑

)

⏟
𝑤⃗

= (

Aug( ⃗𝑥(1)) ⋅ 𝑤⃗
Aug( ⃗𝑥(2)) ⋅ 𝑤⃗

⋮
Aug( ⃗𝑥(𝑛)) ⋅ 𝑤⃗

)

⏟⏟⏟⏟⏟⏟⏟
𝑝⃗



First Step: Rewrite Risk

▶ Therefore, the MSE can be written:

𝑅sq(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1

(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)
2

= 1
𝑛

𝑛

∑
𝑖=1

(𝑝𝑖 − 𝑦𝑖)
2

= 1
𝑛‖𝑝⃗ − ⃗𝑦‖2

= 1
𝑛‖𝑋𝑤⃗ − ⃗𝑦‖2



Goal

▶ Find 𝑤⃗ ∈ ℝ𝑑+1 minimizing:

𝑅sq(𝑤⃗) = 1
𝑛‖𝑋𝑤⃗ − ⃗𝑦‖2

▶ Step Two: find gradient, set to zero, solve.



Step Two: Find Gradient
▶ We want to compute:

𝑑
𝑑𝑤⃗

[𝑅sq(𝑤⃗)] = 𝑑
𝑑𝑤⃗

[1𝑛‖𝑋𝑤⃗ − ⃗𝑦‖2]

▶ 𝑑𝑅sq
𝑑𝑤⃗ is the gradient of 𝑅sq.

▶ It is the vector of partial derivatives:

𝑑𝑅sq
𝑑𝑤⃗

= (
𝜕𝑅sq
𝜕𝑤0

,
𝜕𝑅sq
𝜕𝑤1

, … ,
𝜕𝑅sq
𝜕𝑤𝑑

)
𝑇



Good to know...

(𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇

(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇

𝑢⃗ ⋅ ⃗𝑣 = ⃗𝑣 ⋅ 𝑢⃗ = 𝑢⃗𝑇 ⃗𝑣 = ⃗𝑣𝑇𝑢⃗
(𝑢⃗ + ⃗𝑣) ⋅ (𝑤⃗ + ⃗𝑧) = 𝑢⃗ ⋅ 𝑤⃗ + 𝑢⃗ ⋅ ⃗𝑥 + ⃗𝑣 ⋅ 𝑤⃗ + ⃗𝑣 ⋅ ⃗𝑧
‖𝑢⃗‖2 = 𝑢⃗ ⋅ 𝑢⃗



Step Two: Find Gradient
▶ Expand norm to make gradient easier.

‖𝑋𝑤⃗ − ⃗𝑦‖2 =

=

=

=



Exercise

Consider:
𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗ − 2 ⃗𝑦𝑇𝑋𝑤⃗ + ⃗𝑦𝑇 ⃗𝑦

1. What type of object should it be?
▶ Scalar, vector, or matrix?

2. What type of object is it?



Step Two: Find Gradient

𝑑
𝑑𝑤⃗

[𝑅sq(𝑤⃗)] = 1
𝑛

𝑑
𝑑𝑤⃗

[𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗ − 2 ⃗𝑦𝑇𝑋𝑤⃗ + ⃗𝑦𝑇 ⃗𝑦]

= ?



Idea

▶ While we could compute each of:
𝜕𝑅sq
𝜕𝑤0

,
𝜕𝑅sq
𝜕𝑤1

, ….

▶ there’s an easier way using matrix-vector
calculus.



Exercise

If you had to guess, which of the following is equal
to 𝑑

𝑑𝑤⃗ [𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗]?

1. 𝑋
2. 𝑤⃗
3. 2𝑋𝑇𝑋𝑤⃗
4. 2𝑋𝑤⃗



Claims

▶ 𝑑
𝑑𝑤⃗ [𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗] = 2𝑋𝑇𝑋𝑤⃗

▶ 𝑑
𝑑𝑤⃗ [ ⃗𝑦𝑇𝑋𝑤⃗] = 𝑋𝑇 ⃗𝑦

▶ 𝑑
𝑑𝑤⃗ [ ⃗𝑦𝑇 ⃗𝑦] = 0



How?

▶ General procedure: expand, differentiate, gather
1. Expand ⃗𝑣𝑇𝑢⃗ until coordinates 𝑢1, … , 𝑢𝑘 are visible.
2. Compute 𝜕𝑑/𝜕𝑢1, 𝜕𝑑/𝜕𝑢2, …, 𝜕𝑑/𝜕𝑢𝑘.
3. Gather result in vector form.



Step Two: Find Gradient

▶ We claimed

𝑑
𝑑𝑤⃗ [𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗] = 2𝑋𝑇𝑋𝑤⃗ 𝑑

𝑑𝑤⃗ [ ⃗𝑦𝑇𝑋𝑤⃗] = 𝑋𝑇 ⃗𝑦 𝑑
𝑑𝑤⃗ [ ⃗𝑦𝑇 ⃗𝑦] = 0

▶ So:

𝑑
𝑑𝑤⃗

[𝑅sq(𝑤⃗)] = 1
𝑛

𝑑
𝑑𝑤⃗

[𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗ − 2 ⃗𝑦𝑇𝑋𝑤⃗ + ⃗𝑦𝑇 ⃗𝑦]

=



Solution

▶ We have found:

𝑑
𝑑𝑤⃗

[𝑅sq(𝑤⃗)] = 1
𝑛 (2𝑋𝑇𝑋𝑤⃗ − 2𝑋𝑇 ⃗𝑦)

▶ To minimize 𝑅sq(𝑤⃗), set gradient to zero, solve:

2𝑋𝑇𝑋𝑤⃗ − 2𝑋𝑇 ⃗𝑦 = 0 ⟹ 𝑋𝑇𝑋𝑤⃗ = 𝑋𝑇 ⃗𝑦

▶ This is a system of equations in matrix form,
called the normal equations.



The Normal Equations

▶ The least squares solutions for 𝑤⃗ are found by
solving the normal equations:

𝑋𝑇𝑋𝑤⃗ = 𝑋𝑇 ⃗𝑦

▶ Mathematically, solved by:

𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦



A Direct Solution
▶ 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦 is exactly at the bottom of the risk surface.
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Linear Least Squares Regression

▶ To train:
▶ Given a training set {( ⃗𝑥(1), 𝑦1), … , ( ⃗𝑥(𝑛), 𝑦𝑛)}...
1. Construct 𝑛 × (𝑑 + 1) augmented design matrix, 𝑋.
2. Solve the normal equations: 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦.

▶ To predict:
▶ Given a new ⃗𝑥, compute 𝐻( ⃗𝑥) = Aug( ⃗𝑥) ⋅ 𝑤⃗∗.



Linear Least Squares Regression

The first algorithm we’ve derived from the ERM
framework:

▶ Step 1: choose a hypothesis class
▶ We’ve chosen linear functions

▶ Step 2: choose a loss function
▶ We’ve chosen the square loss

▶ Step 3: find 𝐻 minimizing empirical risk
▶ We’ve found a direct solution: 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦



Compare to 𝑘-Nearest Neighbors

▶ Then: 𝑘-NN did not learn the relative importance
of features.

▶ Now: Linear least squares learns a weight for
each feature.



Lecture 02 | Part 6

From Theory to Practice



Implementation

▶ sklearn.linear_model.LinearRegression

▶ But linear least squares is very simple to
implement in numpy:

> # training
> w = np.linalg.solve(X.T @ X, X.T @ y)
> # prediction on a new example, x
> # (you'll need to define augment)
> augment(x) @ w



Augmentation

▶ One easy way to implement augment:

def augment(x):
return np.array([1, *x])

▶ This code only works for a single example.

▶ To augment an array of examples, use np.ones
and np.column_stack.



Don’t Invert!

▶ Don’t actually compute (𝑋𝑇𝑋)−1.

▶ That is, avoid np.linalg.inv

▶ Inverting a matrix can be slow and numerically
unstable.



Practical Issues

▶ You’ll sometimes run into technical issues when
using least squares.

▶ But we have the theoretical tools to understand
and address them.



Issue: “Singular Matrix” Error

▶ You’re training a regression model to predict
house prices.

▶ Two of your features are 1) size in square feet
and 2) size in square yards.





Issue: “Singular Matrix” Error

▶ Let’s look at the data.
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Issue: “Singular Matrix” Error

▶ The data aren’t truly 3-dimensional.

▶ There are infinitely many planes with the same
empirical risk.

▶ That is, there are infinitely many solutions to the
normal equations.

▶ This is why the matrix is singular.
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Multicollinearity

▶ The situation where one feature is a linear
combination of others is called multicollinearity.

▶ Can happen because the features are redundant,
or because of chance.

▶ One fix: remove one of the redundant features.
▶ We’ll see another fix in lecture on regularization.



Issue: Time

▶ Solving a linear system in 𝑑 unknowns takes Θ(𝑑3) time.

▶ Fine for small number of features, but can be slow when
using many features.

▶ Next time: an approach for efficiently minimizing risk when
data is very large.


