
Lecture 02 | Part 1

Introduction

News

▶ Lab 01 released. Due Sunday @ 11:59 pm.

▶ HW 01 released. Due Wednesday @ 11:59 pm.
▶ LATEX template available (optional).

▶ Math self-check released.

Last Time

▶ We saw nearest neighbor predictors.

▶ They can work well.

▶ But they memorize the training data rather than
learning a simpler underlying pattern.

The Main Problem

▶ Nearest neighbor approaches do not learn which
features are useful and which are not.

Example

▶ Suppose all Adelie penguins weigh less than all
Gentoo penguins.

▶ I.e., we can predict perfectly based on body
mass alone.

Example: One Noisy Feature
▶ Suppose we add a feature that is total noise.
▶ Still enough information to perfectly classify.
▶ 1-NN: 98% test accuracy.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Body Mass (su)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

No
ise

 Fe
at

ur
e

#1

Gentoo
Adelie

Example: Two Noisy Features
▶ Suppose we add another feature that is total noise.
▶ Still enough information to perfectly classify.
▶ 1-NN: 95% test accuracy (-3%).

Body Mass (su)

1.0
0.5

0.0
0.5

1.0 Nois
e F

ea
tur

e #
1

1.0
0.5

0.0
0.5

1.0

No
ise

 Fe
at

ur
e

#2

1.0

0.5

0.0

0.5

1.0

Example: Noisy Features
▶ No matter how many noisy features we add, there is
enough information to classify perfectly.

▶ But 1-NN performance degrades with # of (noisy) features:

0 200 400 600 800 1000
of noise features

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Explanation

▶ Euclidean distance treats all features the same.
▶ Even those that are pure noise.

▶ NN does not learn which features are useful.1

▶ Distance becomes less meaningful as noisy
features are added.

1For extensions of kNN which learn a distance metric from data, see:
(Weinberger and Saul, 2009; Goldberger et al., 2005; Shalev-Shwartz et al.,
2004)

The Rest of DSC 140A

▶ We’ll explore three different paradigms for
learning from data.

▶ Part 1: Empirical Risk Minimization
▶ Part 2: Probabilistic Modeling
▶ Part 3: Tree-based Methods

Lecture 02 | Part 2

Empirical Risk Minimization

Prediction

▶ Prediction is the most common task in ML:
▶ given: a feature vector, ⃗𝑥
▶ predict: an output target, 𝑦.

▶ Example:
▶ given: years of experience and college GPA
▶ predict: salary

Prediction Functions

▶ Informally: we think experience, GPA, etc., are
predictive of salary.

▶ Formally: we think there is a function 𝐻 that
takes in (experience, GPA) and outputs a good
prediction of the salary.

𝐻(experience,GPA) → predicted salary

Prediction Functions

▶ In general, a prediction function2 𝐻 takes in a
feature vector and outputs a predicted label.

𝐻(⃗𝑥) → 𝑦

2Sometimes called a hypothesis function.

Example Prediction Function

𝐻(experience,GPA) = $50,000
+ $10,000 × experience
+ $5,000 × GPA

Goal

▶ There are many possible prediction functions.

▶ How do we pick a good one?

▶ One that works well on unseen, future data.

▶ Problem: we don’t know the future.

Data

▶ Assumption: the future will be like the past.

▶ So a prediction function that works well on past
data will likely work well on future data.

▶ Idea: can use past data to “measure” how a good
prediction function is, select between them.

Example
▶ 𝐻1(𝑥) = 60,000 + 10,000𝑥
▶ 𝐻2(𝑥) = 70,000 + 200𝑥2
▶ 𝐻3(𝑥) = 110,000 − 15,000𝑥

Fit

▶ We preferred 𝐻1 over 𝐻2 and 𝐻3 because it “fit”
the data better.

▶ How do we formally quantify how well a
prediction function fits the data?

Measuring Errors

▶ Idea: measure the difference between the
prediction and the correct label.

Loss Functions

▶ A loss function measures the difference between
a prediction 𝐻(⃗𝑥(𝑖)) and the “right answer” 𝑦𝑖.

▶ There are many different loss functions. For now,
we’ll consider two.

▶ Absolute loss: ℓabs(𝐻(⃗𝑥(𝑖)), 𝑦𝑖) = |𝐻(⃗𝑥(𝑖)) − 𝑦𝑖|

▶ Square loss: ℓsq(𝐻(⃗𝑥(𝑖)), 𝑦𝑖) = (𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2

Quantifying Overall Fit

▶ A loss function measures the difference between a
prediction and the correct label for a single
training point.

▶ A good prediction function should make good
predictions on average over the entire training set.

▶ That is, for a good 𝐻, the average loss should be
small.

Empirical Risk

▶ The average loss on the training set, also called
the empirical risk, is defined to be:

𝑅(𝐻) = 1
𝑛

𝑛

∑
𝑖=1

ℓ(𝐻(⃗𝑥(𝑖)), 𝑦𝑖)

▶ It is a function of 𝐻, but it also depends on:
▶ The training data, X = (⃗𝑥(1), 𝑦1), … , (⃗𝑥(𝑛), 𝑦𝑛)
▶ The particular choice of loss function ℓ

Example

Terminology

▶ We might say: “the empirical risk with respect to
absolute loss”. This means:

𝑅(𝐻) = 1
𝑛

𝑛

∑
𝑖=1

|𝐻(⃗𝑥(𝑖)) − 𝑦𝑖|

▶ Or, “the empirical risk with respect to square
loss”. This means:

𝑅(𝐻) = 1
𝑛

𝑛

∑
𝑖=1

(𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2

Terminology

▶ We might be quick and say “risk” instead of
“empirical risk”.

Minimizing Empirical Risk

▶ Empirical risk measures the “fit” of a prediction
function to the training data.

▶ Idea: find a prediction function 𝐻 that has the
smallest empirical risk.

Exercise

Consider the data shown below, and assume abso-
lute loss.

Sketch a prediction function 𝐻 that minimizes the
empirical risk.

Problem

▶ It is too easy to find a prediction function that
has zero empirical risk.

▶ Simply memorize the training data.
▶ We want to learn a simpler pattern.

▶ Instead, we will restrict our search for prediction
functions to a smaller set of (simple) functions.

▶ This set is called the hypothesis class.

Exercise

Consider the data shown below, and assume abso-
lute loss.

Sketch a linear prediction function 𝐻 that mini-
mizes the empirical risk.

Empirical Risk Minimization

▶ The learning strategy we have just derived is
called empirical risk minimization (ERM).

▶ Step 1: choose a hypothesis class
▶ for example, linear functions

▶ Step 2: choose a loss function

▶ Step 3: find 𝐻 minimizing empirical risk

ERM is a Recipe

▶ By choosing different hypothesis classes and
losses, we derive different learning algorithms.

▶ Some choices for Step 1 & 2 make Step 3 easier
or harder.

▶ We’ll see different choices in the coming weeks.

Lecture 02 | Part 3

Linear Prediction Functions

A Simple Choice

▶ ERM asks us to choose a hypothesis class.

▶ Let’s start with a simple one: linear functions.

▶ This choice will take us quite far.

Linear Functions

▶ A linear prediction function of one feature has
the form:

𝐻(𝑥) = 𝑤0 + 𝑤1𝑥

▶ In general, a linear prediction function of 𝑑
features has the form:

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

▶ 𝑤0, 𝑤1, … , 𝑤𝑑 are the parameters or weights.

Interpreting Weights

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

▶ 𝑤0 (the bias) determines the prediction when all
features are zero.

▶ 𝑤1 determines how much the prediction changes
when 𝑥1 increases by one unit

▶ Similarly for 𝑤2, … , 𝑤𝑑

Interpreting Weights

▶ When plotted, linear prediction functions are:
▶ straight lines when ⃗𝑥 ∈ ℝ1

▶ planes when ⃗𝑥 ∈ ℝ2

▶ hyperplanes when ⃗𝑥 ∈ ℝ𝑑

▶ 𝑤𝑖 is the slope of the hyperplane in the 𝑥𝑖
direction.

Example

10
5

0
5

10
x1 10

5
0

5
10

x 2

40
20
0

20

40

H
(x

)

𝑤0 = 1, 𝑤1 = −3, 𝑤2 = 2

𝐻(⃗𝑥) = 1 − 3𝑥1 + 2𝑥2

Parameter Vectors

▶ The parameters of a linear function can be
packaged into a parameter vector, 𝑤⃗.

▶ Example: if 𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 then
𝑤⃗ = (𝑤0, … , 𝑤3)𝑇.

▶ If ⃗𝑥 ∈ ℝ𝑑, then 𝑤⃗ ∈ ℝ𝑑+1.

Parameterization

▶ A linear function 𝐻(⃗𝑥) is completely specified by
its parameter vector.

▶ Can work either with the function, 𝐻, or vector, 𝑤⃗.

▶ Sometimes write 𝐻(⃗𝑥; 𝑤⃗).

▶ Example: 𝑤⃗ = (8, 3, 1, 5, −2, −7)𝑇 specifies

𝐻(⃗𝑥; 𝑤⃗) = 8 + 3𝑥1 + 1𝑥2 + 5𝑥3 − 2𝑥4 − 7𝑥5

Compact Form

▶ Recall the dot product of vectors 𝑎⃗ and 𝑏⃗:

𝑎⃗ = (𝑎1, 𝑎2, … , 𝑎𝑑)𝑇 𝑏⃗ = (𝑏1, 𝑏2, … , 𝑏𝑑)𝑇

𝑎⃗ ⋅ 𝑏⃗ = 𝑎1𝑏1 + 𝑎2𝑏2 + … + 𝑎𝑑𝑏𝑑

▶ Observe:

𝐻(⃗𝑥; 𝑤⃗) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑
= (𝑤0, 𝑤1, … , 𝑤𝑑)𝑇⏟⏟⏟⏟⏟⏟⏟

𝑤⃗

⋅ (1, 𝑥1, … , 𝑥𝑑)𝑇⏟
?

Compact Form
▶ The augmented feature vector Aug(⃗𝑥) is the
vector obtained by adding a 1 to the front of ⃗𝑥:

⃗𝑥 = (

𝑥1

𝑥2

⋮
𝑥𝑑

) Aug(⃗𝑥) = (

1

𝑥1

𝑥2

⋮
𝑥𝑑

)

▶ With augmentation, we can write:
𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

= 𝑤⃗ ⋅ Aug(⃗𝑥)

Lecture 02 | Part 4

ERM for Linear Predictors

Empirical Risk Minimization

To create a new ML algorithm:

▶ Step 1: choose a hypothesis class
▶ We’ve chosen linear functions

▶ Step 2: choose a loss function

▶ Step 3: find 𝐻 minimizing empirical risk

Loss Functions

▶ Next, we need to choose a loss function.

▶ Choice depends on the problem at hand.

▶ Let’s focus on regression for now.

▶ The absolute loss is a natural first choice.

Empirical Risk w.r.t. Absolute Loss

▶ Now that we have assumed 𝐻(⃗𝑥) is linear, we can
write the empirical risk w.r.t. the absolute loss as:

𝑅abs(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1

|𝐻(⃗𝑥(𝑖)) − 𝑦𝑖|

= 1
𝑛

𝑛

∑
𝑖=1

|𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) − 𝑦𝑖|

▶ A function of 𝑤⃗, since 𝐻 is totally specified by 𝑤⃗.

Example

0 5 10 15 20 25 30
Experience

0

50000

100000

150000

200000

250000

300000

350000

Sa
la

ry

Example

0 5 10 15 20 25 30
Experience

0

50000

100000

150000

200000

250000

300000

350000

Sa
la

ry

H with w(1)

H with w(2)

H with w(3)

Example

0 5 10 15 20 25 30
Experience

0

50000

100000

150000

200000

250000

300000

350000

Sa
la

ry

H with w(1)

𝑅abs(𝑤⃗(1)) ≈ 17,000

Example

0 5 10 15 20 25 30
Experience

0

50000

100000

150000

200000

250000

300000

350000

Sa
la

ry

H with w(2)

𝑅abs(𝑤⃗(2)) ≈ 90,000

Example

0 5 10 15 20 25 30
Experience

0

50000

100000

150000

200000

250000

300000

350000

Sa
la

ry

H with w(3)

𝑅abs(𝑤⃗(3)) ≈ 50,000

Risk Surface

▶ Can imagine plotting 𝑅abs(𝑤⃗) for all values of 𝑤⃗.

▶ This is called the risk surface.

▶ A 𝑤⃗ that makes the surface lowest minimizes the
empirical risk.

Risk Surface

Plot of 𝑅abs(𝑤⃗)

50000
60000
70000
80000
90000
100000
110000
120000
130000

w
0

4500 5000 5500 6000 6500 7000 7500
w1

16000
16500
17000
17500
18000
18500

19000

19500

R(w
0 ,w

1)

0 5 10 15 20 25 30
Experience

0

50000

100000

150000

200000

250000

300000

350000

Sa
la

ry

More Features

▶ With 2 features, we fit a plane instead of a line.
▶ With ≥ 3 features, we fit a hyperplane.

▶ We can no longer easily visualize the risk surface.

▶ But the idea is the same: find the 𝑤⃗ that
minimizes the empirical risk.

Example

2
4

6

8

10

x1

0
2

4
6

8
10

x2

75
50
25
0

25

50

75

100

Example

0
2

4
6

8
10

x1

0
2

4
6

8
10

x2

100
75
50
25
0

25
50
75

100

H(x)

Minimizing Empirical Risk
▶ How do we find the 𝑤⃗ that minimizes 𝑅abs(𝑤⃗) (the
empirical risk with respect to the absolute loss)?

50000
60000
70000
80000
90000
100000
110000
120000
130000

w
0

4500 5000 5500 6000 6500 7000 7500
w1

16000
16500
17000
17500
18000
18500

19000

19500

R(w
0 ,w

1)

Calculus

▶ We know how to use calculus to find the
minimum of a function:
1. Find the gradient 𝑑

𝑑𝑤⃗𝑅abs(𝑤⃗).
2. Set it equal to zero, solve for 𝑤⃗.
3. This finds places where 𝑅abs(𝑤⃗) is flat; check that it is
a minimum (and not a maximum or saddle point).

Problem

▶ 𝑅abs(𝑤⃗) is not differentiable.

▶ There are places where the gradient (slope) is
not defined.

▶ These appear as “cusps” or “sharp creases” in
the risk surface.

80000
82500
85000
87500
90000
92500
95000
97500
100000

w
0

5000 5500 6000 6500 7000 7500
w1

16000

18000

20000

22000

24000

26000

28000

30000

R(w
0 ,w

1)

Another Loss?

▶ We cannot use the usual calculus approach to
minimize 𝑅abs(𝑤⃗).

▶ We’ll come back to this in a later lecture.

▶ Instead, let’s see if the square loss is any better.

Empirical Risk w.r.t. Square Loss

▶ Assuming 𝐻(⃗𝑥) is linear, we can write the
empirical risk w.r.t. the square loss as:

𝑅sq(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1

(𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2

= 1
𝑛

𝑛

∑
𝑖=1

(𝑤⃗ ⋅ Aug(⃗𝑥(𝑖)) − 𝑦𝑖)2

▶ 𝑅sq(𝑤⃗) is called the mean squared error (MSE).

Risk Surface

20000
40000
60000
80000
100000
120000
140000

w
0

2000 3000 4000 5000 6000 7000 8000 9000 10000
w1

4

5

6

7

8

9

1e8
R(w

0 ,w
1)

Good News!

▶ The mean squared error is differentiable.

▶ Now, we’ll try to find the 𝑤⃗ that minimizes 𝑅sq(𝑤⃗)
with calculus.

Lecture 02 | Part 5

Least Squares

Minimizing the MSE

▶ Goal: minimize 𝑅sq(𝑤⃗) with respect to 𝑤⃗.

▶ Calculus Approach: Find gradient of 𝑅sq(𝑤⃗); set
to zero; solve for 𝑤⃗.

▶ We’ll rely on results from vector calculus.

First Step: Rewrite Risk

▶ Step one: rewrite 𝑅sq in vector form.

▶ We will find:

𝑅sq(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1

(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)
2

= 1
𝑛‖𝑋𝑤⃗ − ⃗𝑦‖2

Recall
▶ If 𝑢⃗ = (𝑢1, 𝑢2, … , 𝑢𝑘)𝑇, then:

‖𝑢⃗‖2 = 𝑢⃗ ⋅ 𝑢⃗ =
𝑘

∑
𝑖=1

𝑢2
𝑖

▶ So, if 𝑎⃗ = (𝑎1, … , 𝑎𝑘)𝑇 and 𝑏⃗ = (𝑏1, … , 𝑏𝑘)𝑇:

‖𝑎⃗ − 𝑏⃗‖2 = (𝑎⃗ − 𝑏⃗) ⋅ (𝑎⃗ − 𝑏⃗)

=
𝑘

∑
𝑖=1

(𝑎𝑖 − 𝑏𝑖)2

First Step: Rewrite Risk
▶ Define 𝑝𝑖 = Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗, and let 𝑝⃗ = (𝑝1, … , 𝑝𝑛)𝑇.

▶ 𝑝⃗ is a vector of the predictions on training set.
▶ Note: 𝑝⃗ ∈ ℝ𝑛, not ℝ𝑑!

▶ Then:

𝑅sq(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1

(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)
2

= 1
𝑛

𝑛

∑
𝑖=1

(𝑝𝑖 − 𝑦𝑖)
2

= 1
𝑛‖𝑝⃗ − ⃗𝑦‖2

First Step: Rewrite Risk

▶ Define the (augmented) design matrix, 𝑋:

𝑋 = (

Aug(⃗𝑥(1))
Aug(⃗𝑥(2))

⋮ ⋮
Aug(⃗𝑥(𝑛))

) =
⎛⎜⎜⎜

⎝

1 𝑥(1)
1 𝑥(1)

2 … 𝑥(1)
𝑑

1 𝑥(2)
1 𝑥(2)

2 … 𝑥(2)
𝑑

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥(𝑛)

1 𝑥(𝑛)
2 … 𝑥(𝑛)

𝑑

⎞⎟⎟⎟

⎠

First Step: Rewrite Risk

▶ Observe: 𝑝⃗ = 𝑋𝑤⃗.

(

Aug(⃗𝑥(1))
Aug(⃗𝑥(2))

⋮ ⋮
Aug(⃗𝑥(𝑛))

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑋

(

𝑤0
𝑤1
⋮
𝑤𝑑

)

⏟
𝑤⃗

= (

Aug(⃗𝑥(1)) ⋅ 𝑤⃗
Aug(⃗𝑥(2)) ⋅ 𝑤⃗

⋮
Aug(⃗𝑥(𝑛)) ⋅ 𝑤⃗

)

⏟⏟⏟⏟⏟⏟⏟
𝑝⃗

First Step: Rewrite Risk

▶ Therefore, the MSE can be written:

𝑅sq(𝑤⃗) = 1
𝑛

𝑛

∑
𝑖=1

(Aug(⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)
2

= 1
𝑛

𝑛

∑
𝑖=1

(𝑝𝑖 − 𝑦𝑖)
2

= 1
𝑛‖𝑝⃗ − ⃗𝑦‖2

= 1
𝑛‖𝑋𝑤⃗ − ⃗𝑦‖2

Goal

▶ Find 𝑤⃗ ∈ ℝ𝑑+1 minimizing:

𝑅sq(𝑤⃗) = 1
𝑛‖𝑋𝑤⃗ − ⃗𝑦‖2

▶ Step Two: find gradient, set to zero, solve.

Step Two: Find Gradient
▶ We want to compute:

𝑑
𝑑𝑤⃗

[𝑅sq(𝑤⃗)] = 𝑑
𝑑𝑤⃗

[1𝑛‖𝑋𝑤⃗ − ⃗𝑦‖2]

▶ 𝑑𝑅sq
𝑑𝑤⃗ is the gradient of 𝑅sq.

▶ It is the vector of partial derivatives:

𝑑𝑅sq
𝑑𝑤⃗

= (
𝜕𝑅sq
𝜕𝑤0

,
𝜕𝑅sq
𝜕𝑤1

, … ,
𝜕𝑅sq
𝜕𝑤𝑑

)
𝑇

Good to know...

(𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇

(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇

𝑢⃗ ⋅ ⃗𝑣 = ⃗𝑣 ⋅ 𝑢⃗ = 𝑢⃗𝑇 ⃗𝑣 = ⃗𝑣𝑇𝑢⃗
(𝑢⃗ + ⃗𝑣) ⋅ (𝑤⃗ + ⃗𝑧) = 𝑢⃗ ⋅ 𝑤⃗ + 𝑢⃗ ⋅ ⃗𝑥 + ⃗𝑣 ⋅ 𝑤⃗ + ⃗𝑣 ⋅ ⃗𝑧
‖𝑢⃗‖2 = 𝑢⃗ ⋅ 𝑢⃗

Step Two: Find Gradient
▶ Expand norm to make gradient easier.

‖𝑋𝑤⃗ − ⃗𝑦‖2 =

=

=

=

Exercise

Consider:
𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗ − 2 ⃗𝑦𝑇𝑋𝑤⃗ + ⃗𝑦𝑇 ⃗𝑦

1. What type of object should it be?
▶ Scalar, vector, or matrix?

2. What type of object is it?

Step Two: Find Gradient

𝑑
𝑑𝑤⃗

[𝑅sq(𝑤⃗)] = 1
𝑛

𝑑
𝑑𝑤⃗

[𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗ − 2 ⃗𝑦𝑇𝑋𝑤⃗ + ⃗𝑦𝑇 ⃗𝑦]

= ?

Idea

▶ While we could compute each of:
𝜕𝑅sq
𝜕𝑤0

,
𝜕𝑅sq
𝜕𝑤1

, ….

▶ there’s an easier way using matrix-vector
calculus.

Exercise

If you had to guess, which of the following is equal
to 𝑑

𝑑𝑤⃗ [𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗]?

1. 𝑋
2. 𝑤⃗
3. 2𝑋𝑇𝑋𝑤⃗
4. 2𝑋𝑤⃗

Claims

▶ 𝑑
𝑑𝑤⃗ [𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗] = 2𝑋𝑇𝑋𝑤⃗

▶ 𝑑
𝑑𝑤⃗ [⃗𝑦𝑇𝑋𝑤⃗] = 𝑋𝑇 ⃗𝑦

▶ 𝑑
𝑑𝑤⃗ [⃗𝑦𝑇 ⃗𝑦] = 0

How?

▶ General procedure: expand, differentiate, gather
1. Expand ⃗𝑣𝑇𝑢⃗ until coordinates 𝑢1, … , 𝑢𝑘 are visible.
2. Compute 𝜕𝑑/𝜕𝑢1, 𝜕𝑑/𝜕𝑢2, …, 𝜕𝑑/𝜕𝑢𝑘.
3. Gather result in vector form.

Step Two: Find Gradient

▶ We claimed

𝑑
𝑑𝑤⃗ [𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗] = 2𝑋𝑇𝑋𝑤⃗ 𝑑

𝑑𝑤⃗ [⃗𝑦𝑇𝑋𝑤⃗] = 𝑋𝑇 ⃗𝑦 𝑑
𝑑𝑤⃗ [⃗𝑦𝑇 ⃗𝑦] = 0

▶ So:

𝑑
𝑑𝑤⃗

[𝑅sq(𝑤⃗)] = 1
𝑛

𝑑
𝑑𝑤⃗

[𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗ − 2 ⃗𝑦𝑇𝑋𝑤⃗ + ⃗𝑦𝑇 ⃗𝑦]

=

Solution

▶ We have found:

𝑑
𝑑𝑤⃗

[𝑅sq(𝑤⃗)] = 1
𝑛 (2𝑋𝑇𝑋𝑤⃗ − 2𝑋𝑇 ⃗𝑦)

▶ To minimize 𝑅sq(𝑤⃗), set gradient to zero, solve:

2𝑋𝑇𝑋𝑤⃗ − 2𝑋𝑇 ⃗𝑦 = 0 ⟹ 𝑋𝑇𝑋𝑤⃗ = 𝑋𝑇 ⃗𝑦

▶ This is a system of equations in matrix form,
called the normal equations.

The Normal Equations

▶ The least squares solutions for 𝑤⃗ are found by
solving the normal equations:

𝑋𝑇𝑋𝑤⃗ = 𝑋𝑇 ⃗𝑦

▶ Mathematically, solved by:

𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

A Direct Solution
▶ 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦 is exactly at the bottom of the risk surface.

20000
40000
60000
80000
100000
120000
140000

w
0

2000 3000 4000 5000 6000 7000 8000 9000 10000
w1

4

5

6

7

8

9

1e8
R(w

0 ,w
1)

Linear Least Squares Regression

▶ To train:
▶ Given a training set {(⃗𝑥(1), 𝑦1), … , (⃗𝑥(𝑛), 𝑦𝑛)}...
1. Construct 𝑛 × (𝑑 + 1) augmented design matrix, 𝑋.
2. Solve the normal equations: 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦.

▶ To predict:
▶ Given a new ⃗𝑥, compute 𝐻(⃗𝑥) = Aug(⃗𝑥) ⋅ 𝑤⃗∗.

Linear Least Squares Regression

The first algorithm we’ve derived from the ERM
framework:

▶ Step 1: choose a hypothesis class
▶ We’ve chosen linear functions

▶ Step 2: choose a loss function
▶ We’ve chosen the square loss

▶ Step 3: find 𝐻 minimizing empirical risk
▶ We’ve found a direct solution: 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

Compare to 𝑘-Nearest Neighbors

▶ Then: 𝑘-NN did not learn the relative importance
of features.

▶ Now: Linear least squares learns a weight for
each feature.

Lecture 02 | Part 6

From Theory to Practice

Implementation

▶ sklearn.linear_model.LinearRegression

▶ But linear least squares is very simple to
implement in numpy:

> # training
> w = np.linalg.solve(X.T @ X, X.T @ y)
> # prediction on a new example, x
> # (you'll need to define augment)
> augment(x) @ w

Augmentation

▶ One easy way to implement augment:

def augment(x):
return np.array([1, *x])

▶ This code only works for a single example.

▶ To augment an array of examples, use np.ones
and np.column_stack.

Don’t Invert!

▶ Don’t actually compute (𝑋𝑇𝑋)−1.

▶ That is, avoid np.linalg.inv

▶ Inverting a matrix can be slow and numerically
unstable.

Practical Issues

▶ You’ll sometimes run into technical issues when
using least squares.

▶ But we have the theoretical tools to understand
and address them.

Issue: “Singular Matrix” Error

▶ You’re training a regression model to predict
house prices.

▶ Two of your features are 1) size in square feet
and 2) size in square yards.

Issue: “Singular Matrix” Error

▶ Let’s look at the data.

5001000
1500

2000
2500

3000
3500

sq. ft.50 100 150 200 250 300 350 400sq. yds.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1e6

Y

50010001500
2000

2500
3000

3500
sq. ft.

50 100 150 200 250 300 350 400sq. yds.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1e6

Y

5001000150020002500
3000

3500
sq. ft.

50 100 150 200 250 300 350 400
sq. yds.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1e6

Y

500100015002000250030003500
sq. ft.

50 100 150 200 250 300 350 400
sq. yds.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1e6

Y

500100015002000250030003500 sq. ft.

50 100 150 200 250 300 350 400
sq. yds.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1e6

Y

Issue: “Singular Matrix” Error

▶ The data aren’t truly 3-dimensional.

▶ There are infinitely many planes with the same
empirical risk.

▶ That is, there are infinitely many solutions to the
normal equations.

▶ This is why the matrix is singular.

50010001500
2000

2500
3000

3500
sq. ft.50 100 150 200 250 300 350 400sq. yds.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1e6

Y

500100015002000
2500

3000
3500

sq. ft.
50 100 150 200 250 300 350 400sq. yds.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1e6

Y

50010001500200025003000
3500

sq. ft.
50 100 150 200 250 300 350 400

sq. yds.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1e6

Y

500100015002000250030003500
sq. ft.

50 100 150 200 250 300 350 400
sq. yds.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1e6

Y

500100015002000250030003500 sq. ft.

50 100 150 200 250 300 350 400
sq. yds.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1e6

Y

500100015002000250030003500 sq. ft.

50 100 150 200 250 300 350 400
sq. yds.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1e6

Y

500100015002000250030003500 sq. ft.

50 100150200250300350 400

sq. yds.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1e6

Y

500100015002000250030003500 sq. ft.

50100150200250300350400

sq. yds.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1e6

Y

500100015002000250030003500 sq. ft.

50100150200250300350400

sq. yds.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1e6

Y

Multicollinearity

▶ The situation where one feature is a linear
combination of others is called multicollinearity.

▶ Can happen because the features are redundant,
or because of chance.

▶ One fix: remove one of the redundant features.
▶ We’ll see another fix in lecture on regularization.

Issue: Time

▶ Solving a linear system in 𝑑 unknowns takes Θ(𝑑3) time.

▶ Fine for small number of features, but can be slow when
using many features.

▶ Next time: an approach for efficiently minimizing risk when
data is very large.

