
Lecture 01 | Part 1

Welcome

machine learning ?= magic

(demo)1

1Source code: https://gist.github.com/eldridgejm/b8cdac34bf77a4c3add9a9bf2d7362c8

https://gist.github.com/eldridgejm/b8cdac34bf77a4c3add9a9bf2d7362c8

machine learning ?= magic

machine learning = math + data

But first...

▶ The syllabus: dsc140a.com

▶ Labs + Homeworks + Exams + “Super Homework”

▶ This class has some policies you may/may not be
familiar with:

▶ slip days
▶ lab redemption
▶ one homework dropped
▶ exam redemption

This Class

▶ This course focuses on machine learning theory.
▶ 80% theory, 20% practice

▶ Other classes (DSC 80, DSC 148) focus on
machine learning practice.

Math Background

▶ The most important prereqs for this class are:
▶ DSC 40A (mathematical foundations of ML)
▶ DSC 80 (ML practice + pandas)
▶ MATH 20C (multivariable calculus)
▶ MATH 18 (linear algebra)
▶ MATH 183 (probability/statistics)

▶ We’ll review some of the math, but you might
want to fill in some gaps on your own.

If you’re a DSC major/minor...

▶ There are several ways to satisfy the DSC major’s
ML requirement

▶ CSE 150A, CSE 151A, DSC 140A, DSC 140B

▶ Recommendation: take DSC 140A and DSC 140B

▶ Avoid “mixing and matching”
▶ e.g., avoid DSC 140A + CSE 151A

If you’re not a DSC major/minor...

▶ Welcome!

▶ This class assumes that you’ve seen some
machine learning before.

▶ least squares regression, gradient descent, empirical
risk minimization

▶ If not, DSC 40A might be a good place to start.

▶ You’ll also want to be comfortable with Python.

Lecture 01 | Part 2

Prediction

Prediction

▶ Prediction is the most common task in machine
learning.

▶ Given some input information...
▶ Predict some related output.

Examples

▶ Given a data scientist’s age, college GPA, and
state of residence, predict their salary.

▶ Given a penguin’s bill length and body mass,
predict its species.

▶ Given a digital image, predict the gesture being
made.

Features and Labels

▶ Each piece of input information is called a
feature.

▶ The output we’re trying to predict is called the
label (or target).

▶ Example:
▶ Features: age, college GPA, state of residence
▶ Label: salary

Regression

▶ When the label is a continuous number, we call it
a regression problem.

▶ Examples: predicting salary

Classification

▶ When the label is one of a finite number of
choices, we call it a classification problem.

▶ Examples: predicting species, predicting
gestures

Binary vs. Multiclass Classification

▶ In binary classification, there are only two
possible labels.

▶ In multiclass classification, there are more than
two possible labels.

▶ For simplicity, we’ll focus on binary classification.

Features

▶ Features are most often numerical.

▶ Why?
1. Computers process numbers (not penguins).
2. Allows us to use mathematical machinery.

Feature Vectors

▶ We often package features into a feature vector.

▶ Example:

⃗𝑥 = (bill length,body mass)𝑇

▶ The dimensionality of a feature vector is the
number of features it contains.

Choosing Features

▶ Features should contain information relevant to
predicting the label.

▶ There should be a relationship between them.
▶ It might be quite complex!

▶ Choosing good features is crucial.
▶ “Garbage in, garbage out.”

Learning from Data

▶ To teach the computer, we provide it with many
training examples.

▶ Each example consists of an input feature vector
⃗𝑥 and the correct output label 𝑦.

▶ The set of examples is called the training set:

X = {(⃗𝑥(1), 𝑦1), (⃗𝑥(2), 𝑦2), … , (⃗𝑥(𝑛), 𝑦𝑛)}

Learning from Data

▶ Hope: given enough examples, the computer will
detect a pattern between the features and labels.

▶ This process is called learning.

▶ The more complex the relationship, the more
examples we’ll need.

Train Error

▶ To see how well the computer has learned, we
can compute the train error.

▶ Make predictions on the training set.
▶ E.g., for classification, the fraction of training
examples misclassified.

▶ But this is not always a good indicator of how
well the computer will do on new examples.

Test Error

▶ Instead, we reserve some examples for a test set.

▶ Randomly choose, say, 30% of the examples to
be in the test set.

training data (70%) test data (30%)

▶ Randomizing is important!

Test Error

▶ Train only on the training set.

▶ Make predictions on the test set.

▶ The error on the test set is the test error.

▶ The test error is a better indicator of how well
the computer will do on new examples.

Generalization

▶ The ability of the model to perform well on new,
unseen examples is called generalization.

▶ In prediction, it’s what we’re after.

▶ Training error can be useful, but we care mostly
about test error.

Overfitting and Underfitting

▶ Overfitting: model does not generalize.
▶ Train error is much lower than test error.

▶ Underfitting: model is not learning the pattern.
▶ Both train and test error are high.
▶ Need more features, more complex model, etc.

Example: Penguin Prediction

2

▶ Task: given bill length and body mass, predict species.

2Artwork by @allison_horst

Training Set

▶ We collect a training set of 344 penguins. For
each penguin, we record:

▶ The features: bill length, body mass
▶ The label: species

▶ Each penguin becomes a feature vector in ℝ2.

⃗𝑥(𝑖) = (body mass of penguin 𝑖, bill length of penguin 𝑖)𝑇

▶ We can embed penguins as point cloud in ℝ2.

Penguin Embedding

3000 3500 4000 4500 5000 5500 6000
Body Mass (g)

35

40

45

50

55

60

Bi
ll

Le
ng

th
 (m

m
)

Penguin Embedding

3000 3500 4000 4500 5000 5500 6000
Body Mass (g)

35

40

45

50

55

60

Bi
ll

Le
ng

th
 (m

m
)

Adelie
Gentoo
Chinstrap

Exercise

We see a new penguin with body mass of 5300 g
and bill length of 46 mm. What is its species, most
likely?

3000 3500 4000 4500 5000 5500 6000
Body Mass (g)

35

40

45

50

55

60

Bi
ll

Le
ng

th
 (m

m
)

Adelie
Gentoo
Chinstrap

A Simple Intuition

▶ New penguin’s embedding is close to Gentoo
penguins ⟹ it is mostly likely also Gentoo.

▶ Our Assumption: locality. Nearby (similar)
feature vectors have similar labels.

Lecture 01 | Part 3

Nearest Neighbors Predictors

Nearest Neighbors Predictors

▶ Idea: to predict the label of a new example:
1. find the most similar example in the training set
2. predict the same label

▶ This is called a nearest neighbor predictor.

▶ Useful for both regression and classification.

Nearest Neighbor Classifier

▶ Data: a training set X of 𝑛 feature vectors with
labels: {(⃗𝑥(𝑖), 𝑦𝑖)} = {(⃗𝑥(1), 𝑦1), … , (⃗𝑥(𝑛), 𝑦𝑛)}

▶ Given: a new point, ⃗𝑧 with unknown label.

▶ Predict:
1. Find the closest point to ⃗𝑧 in X :

𝑖∗ = argmin
𝑖∈{1,…,𝑛}

‖ ⃗𝑥(𝑖) − ⃗𝑧‖

2. Use 𝑦𝑖∗ as the predicted label.

Exercise

What is the predicted label for the new point?

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

Exercise

What about for this new point?

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

A Note About Distances

▶ We found the nearest neighbor using the
Euclidean distance:

‖𝑝⃗ − 𝑞⃗‖ = √(𝑝1 − 𝑞1)2 + … + (𝑝𝑑 − 𝑞𝑑)2

= √
𝑑

∑
𝑘=1
(𝑝𝑘 − 𝑞𝑘)2

= √(𝑝⃗ − 𝑞⃗) ⋅ (𝑝⃗ − 𝑞⃗)

▶ Note that this is just one choice – there are other
valid distances. E.g., cosine distance.

A Note About Distances

▶ The Euclidean distance treats all features
equally.

▶ In other words, all features contribute equally to
the prediction.

Exercise

What is the predicted label for the new point?

𝑥1

𝑥2

0.1

1

0.2

2

0.3

3

0.4

4

0.5

5

Answer

▶ Predicted label: yellow.

▶ The features are measured on different scales.

▶ The blue points look closer, but the yellow point
is closer in Euclidean distance.

▶ Not just a visual illusion; sometimes, features on
different scales can cause problems.

Example

▶ Person A is 6 ft tall, 180 lbs.

▶ Person B is 7 ft tall, 185 lbs.

▶ A new person is 7 ft tall, 180 lbs. Intuitively
speaking, are they more similar to A or B?

Standardizing Features

▶ When features are measured on different scales,
it can help to standardize.

▶ Idea: shift and scale to make each feature have
mean 0 and standard deviation 1.

Standardizing Features

▶ Suppose we have two features, 𝑥1 and 𝑥2, and let:
▶ 𝜇1, 𝜇2 be the means of each feature in the training set,
▶ 𝜎1, 𝜎2 be the standard deviations.

▶ When standardizing:

(𝑥1, 𝑥2)𝑇 becomes (𝑧1, 𝑧2)𝑇 = (
𝑥1 − 𝜇1
𝜎1

,
𝑥2 − 𝜇2
𝜎2

)
𝑇

▶ Do this for all training data, and new test
examples.

Example

When plotted in standard units, the data now looks
like this:

𝑧1 (su)

𝑧2 (su)

1

1

2

2

The Decision Boundary
▶ We can visualize the prediction for every possible input.
▶ Decision boundary: where the prediction changes.

2 1 0 1 2
Body Mass (su)

2

1

0

1

2

3

Bi
ll

Le
ng

th
 (s

u)

Adelie
Gentoo
Chinstrap

Exercise

What will the decision boundary look like for our
NN penguin classifier, roughly-speaking?

2 1 0 1 2
Body Mass (su)

2

1

0

1

2

3

Bi
ll

Le
ng

th
 (s

u)

Adelie
Gentoo
Chinstrap

The Decision Boundary

2 1 0 1 2 3
Body Mass (su)

2

1

0

1

2

3

Bi
ll

Le
ng

th
 (s

u)

Adelie
Gentoo
Chinstrap

Exercise

Suppose there are no duplicates in the training
data.

True or False: the nearest neighbor classifier will
have 100% training accuracy.

Answer

▶ True.

▶ If no duplicates, each training example is its own
nearest neighbor.

▶ So for each training example, we predict the
correct label.

▶ Takeaway: training accuracy can be misleading.

Problem

▶ What if the nearest neighbor is an outlier?

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

𝑘-Nearest Neighbors

▶ Before: single closest neighbor determined
prediction.

▶ Idea: have 𝑘 closest neighbors “vote”.

▶ Can be useful to reduce noise.

𝑘-Nearest Neighbors Classifier

▶ Data: a training set X of 𝑛 feature vectors with
labels: {(⃗𝑥(𝑖), 𝑦𝑖)} = {(⃗𝑥(1), 𝑦1), … , (⃗𝑥(𝑛), 𝑦𝑛)}

▶ Given: a new point, ⃗𝑧 with unknown label, a
choice for the parameter 𝑘.

▶ Predict:
1. Find the 𝑘 closest points to ⃗𝑧 in X :
2. Use the most common label among those 𝑘 points as
the predicted label.

Exercise

What is the predicted label for the new point using
𝑘NN with 𝑘 = 3?

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

𝑘 and the Decision Boundary
▶ How might the decision boundary change as we
increase 𝑘?

2 1 0 1 2 3
Body Mass (su)

2

1

0

1

2

3

Bi
ll

Le
ng

th
 (s

u)

Adelie
Gentoo
Chinstrap

𝑘 = 1

𝑘 and the Decision Boundary
▶ How might the decision boundary change as we
increase 𝑘?

2 1 0 1 2 3
Body Mass (su)

2

1

0

1

2

3

Bi
ll

Le
ng

th
 (s

u)

Adelie
Gentoo
Chinstrap

𝑘 = 10

𝑘 and the Decision Boundary
▶ How might the decision boundary change as we
increase 𝑘?

2 1 0 1 2 3
Body Mass (su)

2

1

0

1

2

3

Bi
ll

Le
ng

th
 (s

u)

Adelie
Gentoo
Chinstrap

𝑘 = 20

𝑘 and “Complexity”

▶ 𝑘 controls the “complexity” of the decision
boundary.

▶ The larger 𝑘, the simpler the boundary.

▶ Choosing 𝑘 appropriately controls
overfitting/underfitting.

overfitting
𝑘 too small

underfitting

𝑘 too large

Exercise

What will the prediction be if we set 𝑘 = 𝑛, where 𝑛
is the number of training examples?

Nearest Neighbor Regression

▶ The nearest neighbor rule can be used for
regression, too.

Motivation

3000 3500 4000 4500
Body Mass (g)

180

185

190

195

200

205

210

Fl
ip

pe
r L

en
gt

h
(m

m
)

Exercise

We see a new penguin with body mass of 4000 g.
What is a likely flipper length for this penguin?

3000 3500 4000 4500
Body Mass (g)

180

185

190

195

200

205

210

Fl
ip

pe
r L

en
gt

h
(m

m
)

A Simple Prediction Algorithm

▶ Data: a set of penguins (as feature vectors) and
their flipper lengths.

▶ Given: a new penguin whose flipper length is
unknown.

▶ Predict:
1. Find the nearest penguin whose flipper length is
known.

2. Use that penguin’s flipper length as our prediction.

Nearest Neighbor Regression

▶ Data: a set X of 𝑛 feature vectors with targets:
{(⃗𝑥(𝑖), 𝑦𝑖)} = {(⃗𝑥(1), 𝑦1), … , (⃗𝑥(𝑛), 𝑦𝑛)}

▶ Given: a new point, ⃗𝑧 with unknown target.

▶ Predict:
1. Find the closest point to ⃗𝑧 in X :

𝑖∗ = argmin
𝑖∈{1,…,𝑛}

‖ ⃗𝑥(𝑖) − ⃗𝑧‖

2. Use 𝑦𝑖∗ as the predicted target.

𝑘NN Regression

▶ As with classification, can generalize to 𝑘 nearest
neighbors.

▶ Natural prediction: the mean of the targets of
the 𝑘 closest neighbors.

𝑘-Nearest Neighbors Regression

▶ Data: a set X of 𝑛 feature vectors with targets:
{(⃗𝑥(𝑖), 𝑦𝑖)} = {(⃗𝑥(1), 𝑦1), … , (⃗𝑥(𝑛), 𝑦𝑛)}

▶ Given: a new point, ⃗𝑧 with unknown target.

▶ Predict:
1. Find the 𝑘 closest points to ⃗𝑧 in X
2. Use the average of their labels as the predicted target

Example: 𝑘𝑁𝑁 Penguin Regression

2500 3000 3500 4000 4500 5000
Body Mass (g)

180

185

190

195

200

205

210

Fl
ip

pe
r L

en
gt

h
(m

m
)

k = 1

Example: 𝑘𝑁𝑁 Penguin Regression

2500 3000 3500 4000 4500 5000
Body Mass (g)

180

185

190

195

200

205

210

Fl
ip

pe
r L

en
gt

h
(m

m
)

k = 10

Example: 𝑘𝑁𝑁 Penguin Regression

2500 3000 3500 4000 4500 5000
Body Mass (g)

180

185

190

195

200

205

210

Fl
ip

pe
r L

en
gt

h
(m

m
)

k = 20

Lecture 01 | Part 4

Gesture Recognition Demo, Revisited

Gesture Recognition

▶ The gesture recognition demo we saw earlier is a
𝑘NN classifier.

Features

▶ Each video frame is made into a 𝑑-dimensional
feature vector.
1. Converted to grayscale.
2. Divided into 𝑑 horizontal strips.
3. Feature 𝑖 is the average brightness of strip 𝑖.

Example: 𝑑 = 2

Example: 𝑑 = 2

Example: 𝑑 = 2

Observation

▶ The feature vectors for the same gesture are
close together.

▶ The data has “organized” itself.

Prediction

▶ Given a new frame, convert it to a feature vector
and find the 𝑘 closest training frames.

Beyond 𝑑 = 2

▶ We can use more features.
▶ We can still apply 𝑘NN in high dimensions.
▶ (But we can’t visualize the feature vectors with a
scatter plot)

▶ The original demo used 𝑑 = 5 features.

𝑑 = 5

Takeaway

▶ Even seemingly-intelligent behavior can be
achieved with simple algorithms + data.

Lecture 01 | Part 5

From Theory to Practice

Tip #0: Implementation

▶ sklearn has a 𝑘NN implementation.

▶ sklearn.neighbors.KNeighborsClassifier
for classification.

▶ But this a theory class; we’ll implement it
ourselves.

Tip #0: Implementation

▶ 𝑘NN can be implemented in a few lines of code
with numpy.

▶ useful functions:
▶ np.linalg.norm: computes distances,
▶ np.argmin: finds index of the minimum value
▶ np.argpartition: finds indices of 𝑘 smallest values
▶ np.bincount: counts occurrences of each value

import numpy as np

def knn_predict(X_train, y_train, x, k=1):
compute distances between test and training examples
distances = np.linalg.norm(X_train - x, axis=1)

find the indices of the k smallest distances
nearest = np.argpartition(distances, k, axis=0)[:k]

get the labels of the k nearest neighbors
nearest_labels = y_train[nearest]

return the most common label
return np.bincount(nearest_labels).argmax()

Tip #1: Choosing 𝑘

▶ To choose 𝑘, further divide your data into
training, test, and validation sets.

train test val.

Tip #1: Choosing 𝑘

▶ Pick a few different values of 𝑘, train model on
each, and compute error on the validation set.

▶ Keep the 𝑘 that gives the lowest error; this is
your choice.

▶ Compute test error using this 𝑘.

Tip #1: Choosing 𝑘

▶ When you’re done and ready to use the model
“in production”:
1. combine all of your data into one large training set,
2. use the 𝑘 you chose in validation,
3. train the final model.

Tip #2: Standardizing Features

»> knn = sklearn.neighbors.KNeighborsClassifier(n_neighbors=1)
»> knn.fit(X_train, y_train)
»> knn.score(X_test, y_test)
0.672

»> mu, sigma = X_train.mean(axis=0), X_train.std(axis=0)
»> Z_train = (X_train - mu) / sigma
»> Z_test = (X_test - mu) / sigma
»> knn.fit(Z_train, y_train)
»> knn.score(Z_test, y_test)
0.972

Trivia: Speeding it Up

▶ Making a prediction requires computing the
distance to every training example.

▶ There are ways of speeding this up:
▶ Approximate nearest neighbors,
▶ 𝑘-d trees, ball trees, etc.
▶ Subsampling the data.

Lecture 01 | Part 6

The End?

The End?

▶ We have developed a simple prediction
algorithm: 𝑘-nearest neighbors.

▶ Can used for both classification and regression.

▶ Often works well!

▶ Have we “solved” machine learning?

No

▶ Nearest neighbor predictors have significant
limitations in two areas:

1. Computational efficiency
▶ I.e., they are slow, or require a lot of memory.

2. Predictive performance
▶ I.e., they aren’t always as accurate as other methods.

Something Unsatisfying

▶ Do nearest neighbor models learn anything?

▶ They seem to just “memorize” the training data.

The Main Problem

▶ Nearest neighbor approaches do not learn which
features are useful and which are not.

Example

▶ Suppose all Adelie penguins weigh less than all
Gentoo penguins.

▶ I.e., we can predict perfectly based on body
mass alone.

Example: One Noisy Feature
▶ Suppose we add a feature that is total noise.
▶ Still enough information to perfectly classify.
▶ 1-NN: 98% test accuracy.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Body Mass (su)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

No
ise

 Fe
at

ur
e

#1

Gentoo
Adelie

Example: Two Noisy Features
▶ Suppose we add another feature that is total noise.
▶ Still enough information to perfectly classify.
▶ 1-NN: 95% test accuracy (-3%).

Body Mass (su)

1.0
0.5

0.0
0.5

1.0 Nois
e F

ea
tur

e #
1

1.0
0.5

0.0
0.5

1.0

No
ise

 Fe
at

ur
e

#2

1.0

0.5

0.0

0.5

1.0

Example: Noisy Features
▶ No matter how many noisy features we add, there is
enough information to classify perfectly.

▶ But 1-NN performance degrades with # of (noisy) features:

0 200 400 600 800 1000
of noise features

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Explanation

▶ Euclidean distance treats all features the same.
▶ Even those that are pure noise.

▶ NN does not learn which features are useful.3

▶ Distance becomes less meaningful as noisy
features are added.

3For extensions of kNN which learn a distance metric from data, see:
(Weinberger and Saul, 2009; Goldberger et al., 2005; Shalev-Shwartz et al.,
2004)

Summary

▶ 𝑘NN prediction is simple and can work well.

▶ It may be computationally intensive.

▶ It does not:
▶ “learn” in the sense of “compressing knowledge”.
▶ learn which features are useful.

Next time...

▶ A different approach that attempts to learn a
“weight” for each feature.

