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Welcome



machine learning ?= magic



(demo)1

1Source code: https://gist.github.com/eldridgejm/b8cdac34bf77a4c3add9a9bf2d7362c8

https://gist.github.com/eldridgejm/b8cdac34bf77a4c3add9a9bf2d7362c8


machine learning ?= magic



machine learning = math + data



But first...

▶ The syllabus: dsc140a.com

▶ Labs + Homeworks + Exams + “Super Homework”

▶ This class has some policies you may/may not be
familiar with:

▶ slip days
▶ lab redemption
▶ one homework dropped
▶ exam redemption



This Class

▶ This course focuses on machine learning theory.
▶ 80% theory, 20% practice

▶ Other classes (DSC 80, DSC 148) focus on
machine learning practice.



Math Background

▶ The most important prereqs for this class are:
▶ DSC 40A (mathematical foundations of ML)
▶ DSC 80 (ML practice + pandas)
▶ MATH 20C (multivariable calculus)
▶ MATH 18 (linear algebra)
▶ MATH 183 (probability/statistics)

▶ We’ll review some of the math, but you might
want to fill in some gaps on your own.



If you’re a DSC major/minor...

▶ There are several ways to satisfy the DSC major’s
ML requirement

▶ CSE 150A, CSE 151A, DSC 140A, DSC 140B

▶ Recommendation: take DSC 140A and DSC 140B

▶ Avoid “mixing and matching”
▶ e.g., avoid DSC 140A + CSE 151A



If you’re not a DSC major/minor...

▶ Welcome!

▶ This class assumes that you’ve seen some
machine learning before.

▶ least squares regression, gradient descent, empirical
risk minimization

▶ If not, DSC 40A might be a good place to start.

▶ You’ll also want to be comfortable with Python.
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Prediction



Prediction

▶ Prediction is the most common task in machine
learning.

▶ Given some input information...
▶ Predict some related output.



Examples

▶ Given a data scientist’s age, college GPA, and
state of residence, predict their salary.

▶ Given a penguin’s bill length and body mass,
predict its species.

▶ Given a digital image, predict the gesture being
made.



Features and Labels

▶ Each piece of input information is called a
feature.

▶ The output we’re trying to predict is called the
label (or target).

▶ Example:
▶ Features: age, college GPA, state of residence
▶ Label: salary



Regression

▶ When the label is a continuous number, we call it
a regression problem.

▶ Examples: predicting salary



Classification

▶ When the label is one of a finite number of
choices, we call it a classification problem.

▶ Examples: predicting species, predicting
gestures



Binary vs. Multiclass Classification

▶ In binary classification, there are only two
possible labels.

▶ In multiclass classification, there are more than
two possible labels.

▶ For simplicity, we’ll focus on binary classification.



Features

▶ Features are most often numerical.

▶ Why?
1. Computers process numbers (not penguins).
2. Allows us to use mathematical machinery.



Feature Vectors

▶ We often package features into a feature vector.

▶ Example:

⃗𝑥 = (bill length,body mass)𝑇

▶ The dimensionality of a feature vector is the
number of features it contains.



Choosing Features

▶ Features should contain information relevant to
predicting the label.

▶ There should be a relationship between them.
▶ It might be quite complex!

▶ Choosing good features is crucial.
▶ “Garbage in, garbage out.”



Learning from Data

▶ To teach the computer, we provide it with many
training examples.

▶ Each example consists of an input feature vector
⃗𝑥 and the correct output label 𝑦.

▶ The set of examples is called the training set:

X = {( ⃗𝑥(1), 𝑦1), ( ⃗𝑥(2), 𝑦2), … , ( ⃗𝑥(𝑛), 𝑦𝑛)}



Learning from Data

▶ Hope: given enough examples, the computer will
detect a pattern between the features and labels.

▶ This process is called learning.

▶ The more complex the relationship, the more
examples we’ll need.



Train Error

▶ To see how well the computer has learned, we
can compute the train error.

▶ Make predictions on the training set.
▶ E.g., for classification, the fraction of training
examples misclassified.

▶ But this is not always a good indicator of how
well the computer will do on new examples.



Test Error

▶ Instead, we reserve some examples for a test set.

▶ Randomly choose, say, 30% of the examples to
be in the test set.

training data (70%) test data (30%)

▶ Randomizing is important!



Test Error

▶ Train only on the training set.

▶ Make predictions on the test set.

▶ The error on the test set is the test error.

▶ The test error is a better indicator of how well
the computer will do on new examples.



Generalization

▶ The ability of the model to perform well on new,
unseen examples is called generalization.

▶ In prediction, it’s what we’re after.

▶ Training error can be useful, but we care mostly
about test error.



Overfitting and Underfitting

▶ Overfitting: model does not generalize.
▶ Train error is much lower than test error.

▶ Underfitting: model is not learning the pattern.
▶ Both train and test error are high.
▶ Need more features, more complex model, etc.



Example: Penguin Prediction

2

▶ Task: given bill length and body mass, predict species.

2Artwork by @allison_horst



Training Set

▶ We collect a training set of 344 penguins. For
each penguin, we record:

▶ The features: bill length, body mass
▶ The label: species

▶ Each penguin becomes a feature vector in ℝ2.

⃗𝑥(𝑖) = (body mass of penguin 𝑖, bill length of penguin 𝑖)𝑇

▶ We can embed penguins as point cloud in ℝ2.



Penguin Embedding
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Penguin Embedding
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Exercise

We see a new penguin with body mass of 5300 g
and bill length of 46 mm. What is its species, most
likely?
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A Simple Intuition

▶ New penguin’s embedding is close to Gentoo
penguins ⟹ it is mostly likely also Gentoo.

▶ Our Assumption: locality. Nearby (similar)
feature vectors have similar labels.
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Nearest Neighbors Predictors



Nearest Neighbors Predictors

▶ Idea: to predict the label of a new example:
1. find the most similar example in the training set
2. predict the same label

▶ This is called a nearest neighbor predictor.

▶ Useful for both regression and classification.



Nearest Neighbor Classifier

▶ Data: a training set X of 𝑛 feature vectors with
labels: {( ⃗𝑥(𝑖), 𝑦𝑖)} = {( ⃗𝑥(1), 𝑦1), … , ( ⃗𝑥(𝑛), 𝑦𝑛)}

▶ Given: a new point, ⃗𝑧 with unknown label.

▶ Predict:
1. Find the closest point to ⃗𝑧 in X :

𝑖∗ = argmin
𝑖∈{1,…,𝑛}

‖ ⃗𝑥(𝑖) − ⃗𝑧‖

2. Use 𝑦𝑖∗ as the predicted label.



Exercise

What is the predicted label for the new point?
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Exercise

What about for this new point?
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A Note About Distances

▶ We found the nearest neighbor using the
Euclidean distance:

‖𝑝⃗ − 𝑞⃗‖ = √(𝑝1 − 𝑞1)2 + … + (𝑝𝑑 − 𝑞𝑑)2

= √
𝑑

∑
𝑘=1
(𝑝𝑘 − 𝑞𝑘)2

= √(𝑝⃗ − 𝑞⃗) ⋅ (𝑝⃗ − 𝑞⃗)

▶ Note that this is just one choice – there are other
valid distances. E.g., cosine distance.



A Note About Distances

▶ The Euclidean distance treats all features
equally.

▶ In other words, all features contribute equally to
the prediction.



Exercise

What is the predicted label for the new point?
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Answer

▶ Predicted label: yellow.

▶ The features are measured on different scales.

▶ The blue points look closer, but the yellow point
is closer in Euclidean distance.

▶ Not just a visual illusion; sometimes, features on
different scales can cause problems.



Example

▶ Person A is 6 ft tall, 180 lbs.

▶ Person B is 7 ft tall, 185 lbs.

▶ A new person is 7 ft tall, 180 lbs. Intuitively
speaking, are they more similar to A or B?



Standardizing Features

▶ When features are measured on different scales,
it can help to standardize.

▶ Idea: shift and scale to make each feature have
mean 0 and standard deviation 1.



Standardizing Features

▶ Suppose we have two features, 𝑥1 and 𝑥2, and let:
▶ 𝜇1, 𝜇2 be the means of each feature in the training set,
▶ 𝜎1, 𝜎2 be the standard deviations.

▶ When standardizing:

(𝑥1, 𝑥2)𝑇 becomes (𝑧1, 𝑧2)𝑇 = (
𝑥1 − 𝜇1
𝜎1

,
𝑥2 − 𝜇2
𝜎2

)
𝑇

▶ Do this for all training data, and new test
examples.



Example

When plotted in standard units, the data now looks
like this:

𝑧1 (su)

𝑧2 (su)

1
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2



The Decision Boundary
▶ We can visualize the prediction for every possible input.
▶ Decision boundary: where the prediction changes.
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Exercise

What will the decision boundary look like for our
NN penguin classifier, roughly-speaking?
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The Decision Boundary
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Exercise

Suppose there are no duplicates in the training
data.

True or False: the nearest neighbor classifier will
have 100% training accuracy.



Answer

▶ True.

▶ If no duplicates, each training example is its own
nearest neighbor.

▶ So for each training example, we predict the
correct label.

▶ Takeaway: training accuracy can be misleading.



Problem

▶ What if the nearest neighbor is an outlier?
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𝑘-Nearest Neighbors

▶ Before: single closest neighbor determined
prediction.

▶ Idea: have 𝑘 closest neighbors “vote”.

▶ Can be useful to reduce noise.



𝑘-Nearest Neighbors Classifier

▶ Data: a training set X of 𝑛 feature vectors with
labels: {( ⃗𝑥(𝑖), 𝑦𝑖)} = {( ⃗𝑥(1), 𝑦1), … , ( ⃗𝑥(𝑛), 𝑦𝑛)}

▶ Given: a new point, ⃗𝑧 with unknown label, a
choice for the parameter 𝑘.

▶ Predict:
1. Find the 𝑘 closest points to ⃗𝑧 in X :
2. Use the most common label among those 𝑘 points as
the predicted label.



Exercise

What is the predicted label for the new point using
𝑘NN with 𝑘 = 3?
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𝑘 and the Decision Boundary
▶ How might the decision boundary change as we
increase 𝑘?
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𝑘 and the Decision Boundary
▶ How might the decision boundary change as we
increase 𝑘?
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𝑘 and the Decision Boundary
▶ How might the decision boundary change as we
increase 𝑘?
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𝑘 and “Complexity”

▶ 𝑘 controls the “complexity” of the decision
boundary.

▶ The larger 𝑘, the simpler the boundary.

▶ Choosing 𝑘 appropriately controls
overfitting/underfitting.

overfitting
𝑘 too small

underfitting

𝑘 too large



Exercise

What will the prediction be if we set 𝑘 = 𝑛, where 𝑛
is the number of training examples?



Nearest Neighbor Regression

▶ The nearest neighbor rule can be used for
regression, too.



Motivation
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Exercise

We see a new penguin with body mass of 4000 g.
What is a likely flipper length for this penguin?

3000 3500 4000 4500
Body Mass (g)

180

185

190

195

200

205

210

Fl
ip

pe
r L

en
gt

h 
(m

m
)



A Simple Prediction Algorithm

▶ Data: a set of penguins (as feature vectors) and
their flipper lengths.

▶ Given: a new penguin whose flipper length is
unknown.

▶ Predict:
1. Find the nearest penguin whose flipper length is
known.

2. Use that penguin’s flipper length as our prediction.



Nearest Neighbor Regression

▶ Data: a set X of 𝑛 feature vectors with targets:
{( ⃗𝑥(𝑖), 𝑦𝑖)} = {( ⃗𝑥(1), 𝑦1), … , ( ⃗𝑥(𝑛), 𝑦𝑛)}

▶ Given: a new point, ⃗𝑧 with unknown target.

▶ Predict:
1. Find the closest point to ⃗𝑧 in X :

𝑖∗ = argmin
𝑖∈{1,…,𝑛}

‖ ⃗𝑥(𝑖) − ⃗𝑧‖

2. Use 𝑦𝑖∗ as the predicted target.



𝑘NN Regression

▶ As with classification, can generalize to 𝑘 nearest
neighbors.

▶ Natural prediction: the mean of the targets of
the 𝑘 closest neighbors.



𝑘-Nearest Neighbors Regression

▶ Data: a set X of 𝑛 feature vectors with targets:
{( ⃗𝑥(𝑖), 𝑦𝑖)} = {( ⃗𝑥(1), 𝑦1), … , ( ⃗𝑥(𝑛), 𝑦𝑛)}

▶ Given: a new point, ⃗𝑧 with unknown target.

▶ Predict:
1. Find the 𝑘 closest points to ⃗𝑧 in X
2. Use the average of their labels as the predicted target



Example: 𝑘𝑁𝑁 Penguin Regression
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Example: 𝑘𝑁𝑁 Penguin Regression
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Example: 𝑘𝑁𝑁 Penguin Regression
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Gesture Recognition Demo, Revisited



Gesture Recognition

▶ The gesture recognition demo we saw earlier is a
𝑘NN classifier.



Features

▶ Each video frame is made into a 𝑑-dimensional
feature vector.
1. Converted to grayscale.
2. Divided into 𝑑 horizontal strips.
3. Feature 𝑖 is the average brightness of strip 𝑖.



Example: 𝑑 = 2



Example: 𝑑 = 2



Example: 𝑑 = 2



Observation

▶ The feature vectors for the same gesture are
close together.

▶ The data has “organized” itself.



Prediction

▶ Given a new frame, convert it to a feature vector
and find the 𝑘 closest training frames.



Beyond 𝑑 = 2

▶ We can use more features.
▶ We can still apply 𝑘NN in high dimensions.
▶ (But we can’t visualize the feature vectors with a
scatter plot)

▶ The original demo used 𝑑 = 5 features.



𝑑 = 5



Takeaway

▶ Even seemingly-intelligent behavior can be
achieved with simple algorithms + data.
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From Theory to Practice



Tip #0: Implementation

▶ sklearn has a 𝑘NN implementation.

▶ sklearn.neighbors.KNeighborsClassifier
for classification.

▶ But this a theory class; we’ll implement it
ourselves.



Tip #0: Implementation

▶ 𝑘NN can be implemented in a few lines of code
with numpy.

▶ useful functions:
▶ np.linalg.norm: computes distances,
▶ np.argmin: finds index of the minimum value
▶ np.argpartition: finds indices of 𝑘 smallest values
▶ np.bincount: counts occurrences of each value



import numpy as np

def knn_predict(X_train, y_train, x, k=1):
# compute distances between test and training examples
distances = np.linalg.norm(X_train - x, axis=1)

# find the indices of the k smallest distances
nearest = np.argpartition(distances, k, axis=0)[:k]

# get the labels of the k nearest neighbors
nearest_labels = y_train[nearest]

# return the most common label
return np.bincount(nearest_labels).argmax()



Tip #1: Choosing 𝑘

▶ To choose 𝑘, further divide your data into
training, test, and validation sets.

train test val.



Tip #1: Choosing 𝑘

▶ Pick a few different values of 𝑘, train model on
each, and compute error on the validation set.

▶ Keep the 𝑘 that gives the lowest error; this is
your choice.

▶ Compute test error using this 𝑘.



Tip #1: Choosing 𝑘

▶ When you’re done and ready to use the model
“in production”:
1. combine all of your data into one large training set,
2. use the 𝑘 you chose in validation,
3. train the final model.



Tip #2: Standardizing Features



»> knn = sklearn.neighbors.KNeighborsClassifier(n_neighbors=1)
»> knn.fit(X_train, y_train)
»> knn.score(X_test, y_test)
0.672



»> mu, sigma = X_train.mean(axis=0), X_train.std(axis=0)
»> Z_train = (X_train - mu) / sigma
»> Z_test = (X_test - mu) / sigma
»> knn.fit(Z_train, y_train)
»> knn.score(Z_test, y_test)
0.972



Trivia: Speeding it Up

▶ Making a prediction requires computing the
distance to every training example.

▶ There are ways of speeding this up:
▶ Approximate nearest neighbors,
▶ 𝑘-d trees, ball trees, etc.
▶ Subsampling the data.
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The End?



The End?

▶ We have developed a simple prediction
algorithm: 𝑘-nearest neighbors.

▶ Can used for both classification and regression.

▶ Often works well!

▶ Have we “solved” machine learning?



No

▶ Nearest neighbor predictors have significant
limitations in two areas:

1. Computational efficiency
▶ I.e., they are slow, or require a lot of memory.

2. Predictive performance
▶ I.e., they aren’t always as accurate as other methods.



Something Unsatisfying

▶ Do nearest neighbor models learn anything?

▶ They seem to just “memorize” the training data.



The Main Problem

▶ Nearest neighbor approaches do not learn which
features are useful and which are not.



Example

▶ Suppose all Adelie penguins weigh less than all
Gentoo penguins.

▶ I.e., we can predict perfectly based on body
mass alone.



Example: One Noisy Feature
▶ Suppose we add a feature that is total noise.
▶ Still enough information to perfectly classify.
▶ 1-NN: 98% test accuracy.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Body Mass (su)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

No
ise

 Fe
at

ur
e 

#1

Gentoo
Adelie



Example: Two Noisy Features
▶ Suppose we add another feature that is total noise.
▶ Still enough information to perfectly classify.
▶ 1-NN: 95% test accuracy (-3%).
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Example: Noisy Features
▶ No matter how many noisy features we add, there is
enough information to classify perfectly.

▶ But 1-NN performance degrades with # of (noisy) features:
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Explanation

▶ Euclidean distance treats all features the same.
▶ Even those that are pure noise.

▶ NN does not learn which features are useful.3

▶ Distance becomes less meaningful as noisy
features are added.

3For extensions of kNN which learn a distance metric from data, see:
(Weinberger and Saul, 2009; Goldberger et al., 2005; Shalev-Shwartz et al.,
2004)



Summary

▶ 𝑘NN prediction is simple and can work well.

▶ It may be computationally intensive.

▶ It does not:
▶ “learn” in the sense of “compressing knowledge”.
▶ learn which features are useful.



Next time...

▶ A different approach that attempts to learn a
“weight” for each feature.


