
Lecture 01 | Part 1

Welcome

machine learning ?= magic

(demo)1

1Source code: https://gist.github.com/eldridgejm/b8cdac34bf77a4c3add9a9bf2d7362c8

machine learning ?= magic

machine learning = math + data

But first...▶ The syllabus: dsc140a.com▶ Labs + Homeworks + Exams + “Super Homework”▶ This class has some policies you may/may not be
familiar with:▶ slip days▶ lab redemption▶ one homework dropped▶ exam redemption

This Class▶ This course focuses on machine learning theory.▶ 80% theory, 20% practice▶ Other classes (DSC 80, DSC 148) focus on
machine learning practice.

Math Background▶ The most important prereqs for this class are:▶ DSC 40A (mathematical foundations of ML)▶ DSC 80 (ML practice + pandas)▶ MATH 20C (multivariable calculus)▶ MATH 18 (linear algebra)▶ MATH 183 (probability/statistics)▶ We’ll review some of the math, but you might
want to fill in some gaps on your own.

If you’re a DSC major/minor...▶ There are several ways to satisfy the DSC major’s
ML requirement▶ CSE 150A, CSE 151A, DSC 140A, DSC 140B▶ Recommendation: take DSC 140A and DSC 140B▶ Avoid “mixing and matching”▶ e.g., avoid DSC 140A + CSE 151A

If you’re not a DSC major/minor...▶ Welcome!▶ This class assumes that you’ve seen some
machine learning before.▶ least squares regression, gradient descent, empirical

risk minimization▶ If not, DSC 40A might be a good place to start.▶ You’ll also want to be comfortable with Python.

Lecture 01 | Part 2

Prediction

Prediction▶ Prediction is the most common task in machine
learning.▶ Given some input information...▶ Predict some related output.

Examples▶ Given a data scientist’s age, college GPA, and
state of residence, predict their salary.▶ Given a penguin’s bill length and body mass,
predict its species.▶ Given a digital image, predict the gesture being
made.

Features and Labels▶ Each piece of input information is called a
feature.▶ The output we’re trying to predict is called the
label (or target).▶ Example:▶ Features: age, college GPA, state of residence▶ Label: salary

Regression▶ When the label is a continuous number, we call it
a regression problem.▶ Examples: predicting salary

Classification▶ When the label is one of a finite number of
choices, we call it a classification problem.▶ Examples: predicting species, predicting
gestures

Binary vs. Multiclass Classification▶ In binary classification, there are only two
possible labels.▶ In multiclass classification, there are more than
two possible labels.▶ For simplicity, we’ll focus on binary classification.

Features▶ Features are most often numerical.▶ Why?
1. Computers process numbers (not penguins).
2. Allows us to use mathematical machinery.

Feature Vectors▶ We often package features into a feature vector.▶ Example: ⃗𝑥 = (bill length,body mass)𝑇▶ The dimensionality of a feature vector is the
number of features it contains.

Choosing Features▶ Features should contain information relevant to
predicting the label.▶ There should be a relationship between them.▶ It might be quite complex!▶ Choosing good features is crucial.▶ “Garbage in, garbage out.”

Learning from Data▶ To teach the computer, we provide it with many
training examples.▶ Each example consists of an input feature vector⃗𝑥 and the correct output label 𝑦.▶ The set of examples is called the training set:

X = {(⃗𝑥(1), 𝑦1), (⃗𝑥(2), 𝑦2), … , (⃗𝑥(𝑛), 𝑦𝑛)}

-

T2

Learning from Data▶ Hope: given enough examples, the computer will
detect a pattern between the features and labels.▶ This process is called learning.▶ The more complex the relationship, the more
examples we’ll need.

Train Error▶ To see how well the computer has learned, we
can compute the train error.▶ Make predictions on the training set.▶ E.g., for classification, the fraction of training

examples misclassified.▶ But this is not always a good indicator of how
well the computer will do on new examples.

Test Error▶ Instead, we reserve some examples for a test set.▶ Randomly choose, say, 30% of the examples to
be in the test set.

training data (70%) test data (30%)▶ Randomizing is important!

Test Error▶ Train only on the training set.▶ Make predictions on the test set.▶ The error on the test set is the test error.▶ The test error is a better indicator of how well
the computer will do on new examples.

Generalization▶ The ability of the model to perform well on new,
unseen examples is called generalization.▶ In prediction, it’s what we’re after.▶ Training error can be useful, but we care mostly
about test error.

Overfitting and Underfitting▶ Overfitting: model does not generalize.▶ Train error is much lower than test error.▶ Underfitting: model is not learning the pattern.▶ Both train and test error are high.▶ Need more features, more complex model, etc.

Example: Penguin Prediction

2▶ Task: given bill length and body mass, predict species.
2Artwork by @allison_horst

Training Set▶ We collect a training set of 344 penguins. For
each penguin, we record:▶ The features: bill length, body mass▶ The label: species▶ Each penguin becomes a feature vector in ℝ2.⃗𝑥(𝑖) = (body mass of penguin 𝑖, bill length of penguin 𝑖)𝑇▶ We can embed penguins as point cloud in ℝ2.

Penguin Embedding

Penguin Embedding

Exercise
We see a new penguin with body mass of 5300 g
and bill length of 46 mm. What is its species, most
likely?

:
E

A Simple Intuition▶ New penguin’s embedding is close to Gentoo
penguins ⟹ it is mostly likely also Gentoo.▶ Our Assumption: locality. Nearby (similar)
feature vectors have similar labels.

Lecture 01 | Part 3

Nearest Neighbors Predictors

Nearest Neighbors Predictors▶ Idea: to predict the label of a new example:
1. find the most similar example in the training set
2. predict the same label▶ This is called a nearest neighbor predictor.▶ Useful for both regression and classification.

Nearest Neighbor Classifier▶ Data: a training set X of 𝑛 feature vectors with
labels: {(⃗𝑥(𝑖), 𝑦𝑖)} = {(⃗𝑥(1), 𝑦1), … , (⃗𝑥(𝑛), 𝑦𝑛)}▶ Given: a new point, ⃗𝑧 with unknown label.▶ Predict:
1. Find the closest point to ⃗𝑧 in X :𝑖∗ = argmin𝑖∈{1,…,𝑛} ‖ ⃗𝑥(𝑖) − ⃗𝑧‖
2. Use 𝑦𝑖∗ as the predicted label.

Exercise
What is the predicted label for the new point?

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

M

Exercise
What about for this new point?

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

Nut

A Note About Distances▶ We found the nearest neighbor using the
Euclidean distance:‖�⃗� − �⃗�‖ = √(𝑝1 − 𝑞1)2 + … + (𝑝𝑑 − 𝑞𝑑)2= √ 𝑑∑𝑘=1(𝑝𝑘 − 𝑞𝑘)2= √(�⃗� − �⃗�) ⋅ (�⃗� − �⃗�)▶ Note that this is just one choice – there are other
valid distances. E.g., cosine distance.

A Note About Distances▶ The Euclidean distance treats all features
equally.▶ In other words, all features contribute equally to
the prediction.

Exercise
What is the predicted label for the new point?

𝑥1

𝑥2

0.1

1

0.2

2

0.3

3

0.4

4

0.5

5

au

Answer▶ Predicted label: yellow.▶ The features are measured on different scales.▶ The blue points look closer, but the yellow point
is closer in Euclidean distance.▶ Not just a visual illusion; sometimes, features on
different scales can cause problems.

Example▶ Person A is 6 ft tall, 180 lbs.▶ Person B is 7 ft tall, 185 lbs.▶ A new person is 7 ft tall, 180 lbs. Intuitively
speaking, are they more similar to A or B?

Standardizing Features▶ When features are measured on different scales,
it can help to standardize.▶ Idea: shift and scale to make each feature have
mean 0 and standard deviation 1.

Standardizing Features▶ Suppose we have two features, 𝑥1 and 𝑥2, and let:▶ 𝜇1, 𝜇2 be the means of each feature in the training set,▶ 𝜎1, 𝜎2 be the standard deviations.▶ When standardizing:(𝑥1, 𝑥2)𝑇 becomes (𝑧1, 𝑧2)𝑇 = (𝑥1 − 𝜇1𝜎1 , 𝑥2 − 𝜇2𝜎2)𝑇▶ Do this for all training data, and new test
examples.

0
. 0

⑪

Example
When plotted in standard units, the data now looks
like this:

𝑧1 (su)
𝑧2 (su)

1

1

2

2

aff

The Decision Boundary▶ We can visualize the prediction for every possible input.▶ Decision boundary: where the prediction changes.

Exercise
What will the decision boundary look like for our
NN penguin classifier, roughly-speaking?

umi

The Decision Boundary

Exercise
Suppose there are no duplicates in the training
data.

True or False: the nearest neighbor classifier will
have 100% training accuracy.

Answer▶ True.▶ If no duplicates, each training example is its own
nearest neighbor.▶ So for each training example, we predict the
correct label.▶ Takeaway: training accuracy can be misleading.

Problem▶ What if the nearest neighbor is an outlier?

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

m

𝑘-Nearest Neighbors▶ Before: single closest neighbor determined
prediction.▶ Idea: have 𝑘 closest neighbors “vote”.▶ Can be useful to reduce noise.

𝑘-Nearest Neighbors Classifier▶ Data: a training set X of 𝑛 feature vectors with
labels: {(⃗𝑥(𝑖), 𝑦𝑖)} = {(⃗𝑥(1), 𝑦1), … , (⃗𝑥(𝑛), 𝑦𝑛)}▶ Given: a new point, ⃗𝑧 with unknown label, a
choice for the parameter 𝑘.▶ Predict:
1. Find the 𝑘 closest points to ⃗𝑧 in X :
2. Use the most common label among those 𝑘 points as
the predicted label.

Exercise
What is the predicted label for the new point using𝑘NN with 𝑘 = 3?

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

ey

𝑘 and the Decision Boundary▶ How might the decision boundary change as we
increase 𝑘?

𝑘 = 1

𝑘 and the Decision Boundary▶ How might the decision boundary change as we
increase 𝑘?

𝑘 = 10

𝑘 and the Decision Boundary▶ How might the decision boundary change as we
increase 𝑘?

𝑘 = 20

𝑘 and “Complexity”▶ 𝑘 controls the “complexity” of the decision
boundary.▶ The larger 𝑘, the simpler the boundary.▶ Choosing 𝑘 appropriately controls
overfitting/underfitting.

overfitting
𝑘 too small

underfitting
𝑘 too large

Exercise
What will the prediction be if we set 𝑘 = 𝑛, where 𝑛
is the number of training examples?

Nearest Neighbor Regression▶ The nearest neighbor rule can be used for
regression, too.

Motivation

Exercise
We see a new penguin with body mass of 4000 g.
What is a likely flipper length for this penguin?

W

A Simple Prediction Algorithm▶ Data: a set of penguins (as feature vectors) and
their flipper lengths.▶ Given: a new penguin whose flipper length is
unknown.▶ Predict:
1. Find the nearest penguin whose flipper length is
known.

2. Use that penguin’s flipper length as our prediction.

Nearest Neighbor Regression▶ Data: a set X of 𝑛 feature vectors with targets:{(⃗𝑥(𝑖), 𝑦𝑖)} = {(⃗𝑥(1), 𝑦1), … , (⃗𝑥(𝑛), 𝑦𝑛)}▶ Given: a new point, ⃗𝑧 with unknown target.▶ Predict:
1. Find the closest point to ⃗𝑧 in X :𝑖∗ = argmin𝑖∈{1,…,𝑛} ‖ ⃗𝑥(𝑖) − ⃗𝑧‖
2. Use 𝑦𝑖∗ as the predicted target.

𝑘NN Regression▶ As with classification, can generalize to 𝑘 nearest
neighbors.▶ Natural prediction: the mean of the targets of
the 𝑘 closest neighbors.

𝑘-Nearest Neighbors Regression▶ Data: a set X of 𝑛 feature vectors with targets:{(⃗𝑥(𝑖), 𝑦𝑖)} = {(⃗𝑥(1), 𝑦1), … , (⃗𝑥(𝑛), 𝑦𝑛)}▶ Given: a new point, ⃗𝑧 with unknown target.▶ Predict:
1. Find the 𝑘 closest points to ⃗𝑧 in X
2. Use the average of their labels as the predicted target

Example: 𝑘𝑁𝑁 Penguin Regression

Example: 𝑘𝑁𝑁 Penguin Regression

Example: 𝑘𝑁𝑁 Penguin Regression

Lecture 01 | Part 4

Gesture Recognition Demo, Revisited

Gesture Recognition▶ The gesture recognition demo we saw earlier is a𝑘NN classifier.

Features▶ Each video frame is made into a 𝑑-dimensional
feature vector.
1. Converted to grayscale.
2. Divided into 𝑑 horizontal strips.
3. Feature 𝑖 is the average brightness of strip 𝑖.

Example: 𝑑 = 2

Example: 𝑑 = 2

Example: 𝑑 = 2

Observation▶ The feature vectors for the same gesture are
close together.▶ The data has “organized” itself.

Prediction▶ Given a new frame, convert it to a feature vector
and find the 𝑘 closest training frames.

Beyond 𝑑 = 2▶ We can use more features.▶ We can still apply 𝑘NN in high dimensions.▶ (But we can’t visualize the feature vectors with a
scatter plot)▶ The original demo used 𝑑 = 5 features.

𝑑 = 5

Takeaway▶ Even seemingly-intelligent behavior can be
achieved with simple algorithms + data.

Lecture 01 | Part 5

From Theory to Practice

Tip #0: Implementation▶ sklearn has a 𝑘NN implementation.▶ sklearn.neighbors.KNeighborsClassifier
for classification.▶ But this a theory class; we’ll implement it
ourselves.

Tip #0: Implementation▶ 𝑘NN can be implemented in a few lines of code
with numpy.▶ useful functions:▶ np.linalg.norm: computes distances,▶ np.argmin: finds index of the minimum value▶ np.argpartition: finds indices of 𝑘 smallest values▶ np.bincount: counts occurrences of each value

import numpy as np

def knn_predict(X_train, y_train, x, k=1):
compute distances between test and training examples
distances = np.linalg.norm(X_train - x, axis=1)

find the indices of the k smallest distances
nearest = np.argpartition(distances, k, axis=0)[:k]

get the labels of the k nearest neighbors
nearest_labels = y_train[nearest]

return the most common label
return np.bincount(nearest_labels).argmax()

Tip #1: Choosing 𝑘▶ To choose 𝑘, further divide your data into
training, test, and validation sets.

train test val.

Tip #1: Choosing 𝑘▶ Pick a few different values of 𝑘, train model on
each, and compute error on the validation set.▶ Keep the 𝑘 that gives the lowest error; this is
your choice.▶ Compute test error using this 𝑘.

Tip #1: Choosing 𝑘▶ When you’re done and ready to use the model
“in production”:
1. combine all of your data into one large training set,
2. use the 𝑘 you chose in validation,
3. train the final model.

Tip #2: Standardizing Features

»> knn = sklearn.neighbors.KNeighborsClassifier(n_neighbors=1)
»> knn.fit(X_train, y_train)
»> knn.score(X_test, y_test)
0.672

»> mu, sigma = X_train.mean(axis=0), X_train.std(axis=0)
»> Z_train = (X_train - mu) / sigma
»> Z_test = (X_test - mu) / sigma
»> knn.fit(Z_train, y_train)
»> knn.score(Z_test, y_test)
0.972

Trivia: Speeding it Up▶ Making a prediction requires computing the
distance to every training example.▶ There are ways of speeding this up:▶ Approximate nearest neighbors,▶ 𝑘-d trees, ball trees, etc.▶ Subsampling the data.

Lecture 01 | Part 6

The End?

The End?▶ We have developed a simple prediction
algorithm: 𝑘-nearest neighbors.▶ Can used for both classification and regression.▶ Often works well!▶ Have we “solved” machine learning?

No▶ Nearest neighbor predictors have significant
limitations in two areas:

1. Computational efficiency▶ I.e., they are slow, or require a lot of memory.

2. Predictive performance▶ I.e., they aren’t always as accurate as other methods.

Something Unsatisfying▶ Do nearest neighbor models learn anything?▶ They seem to just “memorize” the training data.

The Main Problem▶ Nearest neighbor approaches do not learn which
features are useful and which are not.

Example▶ Suppose all Adelie penguins weigh less than all
Gentoo penguins.▶ I.e., we can predict perfectly based on body
mass alone.

Example: One Noisy Feature▶ Suppose we add a feature that is total noise.▶ Still enough information to perfectly classify.▶ 1-NN: 98% test accuracy.

Example: Two Noisy Features▶ Suppose we add another feature that is total noise.▶ Still enough information to perfectly classify.▶ 1-NN: 95% test accuracy (-3%).

Example: Noisy Features▶ No matter how many noisy features we add, there is
enough information to classify perfectly.▶ But 1-NN performance degrades with # of (noisy) features:

Explanation▶ Euclidean distance treats all features the same.▶ Even those that are pure noise.▶ NN does not learn which features are useful.3▶ Distance becomes less meaningful as noisy
features are added.

3For extensions of kNN which learn a distance metric from data, see:
(Weinberger and Saul, 2009; Goldberger et al., 2005; Shalev-Shwartz et al.,
2004)

Summary▶ 𝑘NN prediction is simple and can work well.▶ It may be computationally intensive.▶ It does not:▶ “learn” in the sense of “compressing knowledge”.▶ learn which features are useful.

Next time...▶ A different approach that attempts to learn a
“weight” for each feature.

