
DSC 140A - Homework 08
Due: Wednesday, March 5

Instructions: Write your solutions to the following problems either by typing them or handwriting
them on another piece of paper or on an iPad/tablet. Show your work or provide justification
unless otherwise noted; submissions that don’t show work might lose credit. If you write code to
solve a problem, include the code by copy/pasting or as a screenshot. You may use numpy, pandas,
matplotlib (or another plotting library), and any standard library module, but no other third-party
libraries unless specified. Submit homeworks via Gradescope by 11:59 PM.

A LATEX template is provided at http://dsc140a.com, next to where you found this homework.
Using it is totally optional, but encouraged if you plan to go to grad school. See this video for a quick
introduction to LATEX.

Problem 1.

The file at the link below contains a data set of 100 points from two classes (1 and -1).

https://f000.backblazeb2.com/file/jeldridge-data/003-two_clusters/data.csv

The first two columns contains features, and the last column contains the label of the point. Note that the
labels are 1 and -1, not 1 and 0, and that there are no column headers.

In all parts of this problem you may use code to compute your answers. If you do, be sure to include your
code.

a) Suppose two Gaussians with full covariance matrices are used to model the densities pX(x |Y = 1)
and pX(x |Y = −1). What are the maximum likelihood estimates for the covariance matrices of each
Gaussian?

(Allow each Gaussian to have its own covariance matrix; don’t use the same covariance for both.)

Hint: the covariance matrix for the Gaussian fit to points from class 1 should have 12.29 in its top-left
entry.

Solution: If you’d like to compute the covariances manually:

data = np.loadtxt('data.csv', delimiter=',')
X = data[:,:2]
y = data[:,-1]

X_1 = X[y == 1]
X_0 = X[y == -1]

y_1 = y[y == 1]
y_0 = y[y == -1] * 0

mu_1 = X_1.mean(axis=0)
Z_1 = (X_1 - mu_1)
n_1 = len(Z_1)

mu_0 = X_0.mean(axis=0)
Z_0 = (X_0 - mu_0)
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n_0 = len(Z_0)

C_1 = 1 / n_1 * Z_1.T @ Z_1
C_0 = 1 / n_0 * Z_0.T @ Z_0

>>> C_1
array([[12.29584016, 0.28098224],

[ 0.28098224, 16.06766736]])
>>> C_0
array([[10.91736224, 0.53015728],

[ 0.53015728, 15.17320916]])

You could also have used numpy. If you did, you had to make sure to get to pass it an array
whose columns are data points, instead of rows, and to use bias = True:

np.cov(X_1.T, bias=True)

b) Using the estimated Gaussians with the Bayes classification rule, what are the predicted labels of each
of the following points?

• (0, 0)T

• (1, 1)T

• (10, 5)T

• (5,−5)T

• (8, 5)T

Show your calculations.

Note: making predictions in this way (using Gaussians with unequal covariance matrices) is known as
Quadratic Discriminant Analysis.

Solution: The predicted labels are -1, -1, 1, -1, -1.

The code below defines a function for making the predictions:

mvn = scipy.stats.multivariate_normal

py_1 = n_1 / (n_1 + n_0)
py_0 = n_0 / (n_1 + n_0)

def predict(x):
if mvn.pdf(x, mean=mu_1, cov=C_1) * py_1 > mvn.pdf(x, mean=mu_0, cov=C_0) * py_0:

return 1
else:

return -1

Problem 2.

In lecture, we derived Linear Discriminant Analysis (LDA) by starting with the Bayes classifier and modeling
each class-conditional density as a multivariate Gaussian and using the same covariance matrix for each. We
stated, but did not prove, that the decision boundary of an LDA classifier is linear.

Recall that, for a binary classifier based on the Bayes Classifier, the decision boundary is the set of all points
~x where

p̂(~x |Y = 1)P̂(Y = 1) = p̂(~x |Y = 0)P̂(Y = 0),

2



where the various p̂ and P̂ are estimated densities and probabilities.

Using this fact, prove that the decision boundary of an LDA classifier is linear. For simplicity, you may
assume that ~x ∈ R2 and that the shared covariance matrix is diagonal (although the result holds even if the
covariance matrix is not diagonal).

Hint: since you may assume that ~x = (x1, x2)
T , you can start from the above equality and solve for x2 in

terms of x1, showing that you get the equation of a line.

Solution: Let C be the shared covariance matrix. The decision boundary consists of all ~x = (x1, x2)
T

for which
p̂(~x |Y = 1) · P̂(Y = 1) = p̂(~x |Y = 0)ċ̂P(Y = 0).

Since this is an LDA classifier, p(~x |Y = 0) and p(~x |Y = 1) are both multivariate Gaussian densities
with the same covariance matrix C. Let ~µ0 and ~µ1 be the means of the two classes. Then, substituting
the Gaussian density function, the decision boundary consists of all ~x for which

1

(2π|C|)d/2
e−

1
2 (~x−~µ0)

TC−1(~x−~µ0) · P̂(Y = 0) =
1

(2π|C|)d/2
e−

1
2 (~x−~µ1)

TC−1(~x−~µ1) · P̂(Y = 1).

We notice that the same normalization term appears on both sides of the equation, and so we can cancel
it:

e−
1
2 (~x−~µ0)

TC−1(~x−~µ0) · P̂(Y = 0) = e−
1
2 (~x−~µ1)

TC−1(~x−~µ1) · P̂(Y = 1).

We can also take the natural logarithm of both sides to simplify, giving:

−1

2
(~x− ~µ0)

TC−1(~x− ~µ0) + log P̂(Y = 0) = −1

2
(~x− ~µ1)

TC−1(~x− ~µ1) + log P̂(Y = 1). (1)

Here is where it might be convenient to write ~x = (x1, x2)
T and expand. Additionally, write ~µ0 =

(µ01, µ02)
T and ~µ1 = (µ11, µ12)

T , and let

C =

(
σ2
1 0
0 σ2

2

)
.

Since C is diagonal, its inverse is simply:

C−1 =

(
1
σ2
1

0

0 1
σ2
2

)

Using these variables, we can expand:

(~x− ~µ0)
TC−1(~x− ~µ0) =

(
x1 − µ01 x2 − µ02

)( 1
σ2
1

0

0 1
σ2
2

)(
x1 − µ01

x2 − µ02

)

=
(
x1 − µ01 x2 − µ02

)(x1−µ01

σ2
1

x2−µ02

σ2
2

)

=
(x1 − µ01)

2

σ2
1

+
(x2 − µ02)

2

σ2
2

.

Similarly, carrying out the same expansion for the other term, we will get:

(~x− ~µ1)
TC−1(~x− ~µ1) =

(x1 − µ11)
2

σ2
1

+
(x2 − µ12)

2

σ2
2

.
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Plugging these expansions back into Equation (1), we get:

−1

2

(
(x1 − µ01)

2

σ2
1

+
(x2 − µ02)

2

σ2
2

)
+ log P̂(Y = 0) = −1

2

(
(x1 − µ11)

2

σ2
1

+
(x2 − µ12)

2

σ2
2

)
+ log P̂(Y = 1).

Since we wish to solve for x2 in terms of x1, we expand the squares and simplify:

− 1

2

(
x2
1 − 2µ01x1 + µ2

01

σ2
1

+
x2
2 − 2µ02x2 + µ2

02

σ2
2

)
+ log P̂(Y = 0)

= −1

2

(
x2
1 − 2µ11x1 + µ2

11

σ2
1

+
x2
2 − 2µ12x2 + µ2

12

σ2
2

)
+ log P̂(Y = 1).

We recognize some terms that appear on both sides of the equation, namely x2
1/σ

2
1 and x2

2/σ
2
2 . We can

cancel these terms:

− 1

2

(
−2µ01x1

σ2
1

+
µ2
01

σ2
1

− 2µ02x2

σ2
2

+
µ2
02

σ2
2

)
+ log P̂(Y = 0)

= −1

2

(
−2µ11x1

σ2
1

+
µ2
11

σ2
1

− 2µ12x2

σ2
2

+
µ2
12

σ2
2

)
+ log P̂(Y = 1).

We now try to solve for x2 in terms of x1. We start by moving all of the terms involving x2 to the
left-hand side of the equation, and all of the other terms to the right-hand side:(

−µ02

σ2
2

+
µ12

σ2
2

)
x2 =

(
−µ01

σ2
1

+
µ11

σ2
1

)
x1 +

µ2
01

2σ2
1

− µ2
11

2σ2
1

+
µ2
02

2σ2
2

− µ2
12

2σ2
2

− log P̂(Y = 0) + log P̂(Y = 1).

This is a linear function of x1 and x2, and so the decision boundary is linear. We can see this a little
more clearly if we give names to the coefficients of x1 and x2 and the constants:(

−µ02

σ2
2

+
µ12

σ2
2

)
︸ ︷︷ ︸

α

x2 =

(
−µ01

σ2
1

+
µ11

σ2
1

)
︸ ︷︷ ︸

β

x1 +
µ2
01

2σ2
1

− µ2
11

2σ2
1

+
µ2
02

2σ2
2

− µ2
12

2σ2
2

− log P̂(Y = 0) + log P̂(Y = 1)︸ ︷︷ ︸
γ

.

Therefore: αx2 = βx1 + γ, or: x2 = β
αx1 +

γ
α , which is the equation of a line.

Problem 3.

You’ve been hired by a generic online retailer named after a rainforest named after a river. Your job is
to build a model to predict whether or not a particular item will sell. You are provided with a dataset of
outcomes for a collection of products:
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Brand Price Range Condition Sold
A High Used No
A High New Yes
B Low New Yes
C Medium New Yes
B Low Used No
A High New No
C High Used Yes
A Medium Used Yes
B Medium Used No
C Low New No
B Low Used Yes

Using a Naïve Bayes classifier and the data above, predict if a product with Brand = B, Price Range =
Medium, Condition = Used will sell or not. Show your calculations.

Solution:

We start by calculating the class conditional probabilities:

P (Brand = B |Sold = Yes) = 2

6

P (Brand = B |Sold = No) = 2

5

P (Price Range = Medium |Sold = Yes) = 2

6

P (Price Range = Medium |Sold = No) = 1

5

P (Condition = Used |Sold = Yes) = 3

6

P (Condition = Used |Sold = No) = 3

5

The prior probabilities are P (Sold = Yes) = 6/11 and P (Sold = No) = 5/11. Therefore:
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P (Sold = Yes |Brand = B,Price Range = Medium,Condition = Used)

∝ 2

6
· 2
6
· 3
6
· 6

11

=
72

2376
≈ 0.03

P (Sold = No |Brand = B,Price Range = Medium,Condition = Used)

∝ 2

5
· 1
5
· 3
5
· 5

11

=
30

1375
≈ 0.021

Because the former is larger, we predict that the product will be sold.

6


