
DSC 140A - Homework 06
Due: Wednesday, May 15

Instructions: Write your solutions to the following problems either by typing them or handwriting
them on another piece of paper. Show your work or provide justification unless otherwise noted. If
you write code to solve a problem, include the code by copy/pasting or as a screenshot. You may
use numpy, matplotlib (or another plotting library), and any standard library module, but no other
third-party libraries unless specified. Submit homeworks via Gradescope by 11:59 PM.

Problem 1.

In this problem, you will demonstrate that kernel ridge regression is equivalent to ridge regression performed
in feature space by showing that they make the same predictions on a concrete data set.

We’ll use the toy data set:

i ~x(i) yi

1 (0, 2)T 1
2 (1, 0)T 1
3 (0,−2)T 1
4 (−1, 0)T 1
5 (0, 0)T -1

We will define
~φ(~x) = (1, x2

1, x
2
2,
√
2x1,

√
2x2,

√
2x1x2)

T .

It turns out that κ(~x, ~x′) = (1 + ~x · ~x′)2 is a kernel for ~φ.

You can write code to perform any and all calculations in this problem. If you do, please show your code.

a) Learn a prediction rule H1(~x) by performing ridge regression in the 6-dimensional feature space and report
the optimal parameter vector ~w. Use a regularization parameter of λ = 2.

Solution:

To perform ridge regression in feature space, we compute ~w∗ = (ΦTΦ + nλI)−1ΦT~y, where Φ is the
design matrix whose ith row is ~φ(~x).

The below code does exactly that:

import numpy as np

def phi(x):
x_1, x_2 = x
c = np.sqrt(2)
return np.array([

1,
x_1**2,
x_2**2,
c * x_1,
c * x_2,
c * x_1 * x_2

])
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X = np.array([
[0, 2],
[1, 0],
[0, -2],
[-1, 0],
[0, 0]

])

y = np.array([1, 1, 1, 1, -1])

n = len(X)

ell = 2
Phi = np.array([phi(x) for x in X])
w = np.linalg.inv((Phi.T @ Phi + n * ell * np.eye(Phi.shape[1]))) @ Phi.T @ y

We find:
~w ≈ (0.086, 0.152, 0.174, 0, 0, 0)T

b) Given a new point, ~x = (1, 1)T , what is the prediction made by your ridge regressor? That is, what is H1(~x)?
Show your calculations / code.

Solution: To predict H1(~x), we need to map ~x to feature space with ~φ(~x) and dot it with ~w. That is,
we need to compute ~phi(~x, ~w).

To do so in code, we first define x = np.array([1, 1]), and then compute phi(x) @ w. Our answer
is approximately 0.413.

c) Compute the kernel matrix, K, for this data.

Solution: We define a python function for computing the kernel and apply it to every pair of training
points:

def k(x, z):
return (1 + x @ z)**2

K = np.zeros((n, n))
for i in range(n):

for j in range(i, n):
K[i,j] = K[j,i] = k(X[i], X[j])his is done with the code

>>> K
array([[25., 1., 9., 1., 1.],

[ 1., 4., 1., 0., 1.],
[ 9., 1., 25., 1., 1.],
[ 1., 0., 1., 4., 1.],
[ 1., 1., 1., 1., 1.]])

d) Learn a prediction function H2(~x) by solving the kernel ridge regression dual problem; that is, by finding
the optimal vector ~α. Recall that there is an exact solution: ~α = (K+nλI)−1~y. Report the ~α that you find.

Note: the lecture slides had originally stated the solution without the n in nλI. This was a typo and has
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been fixed.

Solution: alpha = np.linalg.inv(K + n * ell * np.eye(n)) @ y

We find ~α ≈ (0.022, 0.077, 0.022, 0.077, −0.11)T

e) Let ~x = (1, 1)T , as before. What does your kernel ridge regressor predict for this point? That is, what is
H2(~x)?

Hint: H2(~x) should be the same as H1(~x).

Solution: To compute H2(~x), we use the dual solution ~α. From lecture, we have:

H2(~x) =

n∑
i=1

αik(~x
(i), x)

In code: [k(x_i, x) for x_i in X] @ alpha

We get 0.41, which is the same as H1(~x), as expected.

Problem 2.

Let X be a continuous random variable, and let Y be a binary random variable. Suppose the class conditional
densities are know to be:

pX(x |Y = 0) =


1/5, if 0 ≤ x ≤ 2

1/3, if 2 < x ≤ 3

1/15, if 3 < x ≤ 7

pX(x |Y = 1) =


1/6, if 0 ≤ x ≤ 1

1/8, if 1 < x ≤ 5

1/6, if 5 < x ≤ 7

Suppose also that P(Y = 0) = 0.4 and P(Y = 1) = 0.6.

For what values of x ∈ [0, 7] will the Bayes classifier predict y = 1?

Solution: The Bayes classifier will predict y = 1 for all x ∈ [0, 1] ∪ (3, 7].

The Bayes classifier tells us to predict whichever is larger: pX(x |Y = 1)P(Y = 1) or pX(x |Y =
0)P(Y = 0). To determine this, we can draw both plots:
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We see that the red curve is larger than the blue curve on the intervals [0, 1] and (3, 7], and this is
exactly where the Bayes classifier will predict y = 1.

Problem 3.

Let X be a continuous random variable, and let Y be a random class label (1 or 0). Recall that the Gaussian
probability density function (pdf) is given by:

N (x |µ, σ2) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
Suppose pX(x |Y = 1) is a Gaussian pdf with µ = 2 and σ = 3 and that pX(x |Y = 0) is also Gaussian with
µ = 5 and σ = 3. Suppose, too, that P(Y = 1) = P(Y = 0) = 1

2 .

Recall that the Bayes error is the probability that the Bayes classifier makes an incorrect prediction. What
is the Bayes error for this distribution? Show your work.

Hint: you’ll want some way to compute the area under a Gaussian. You can use the tables that appear
in the back of your statistics book, or you can use something like scipy.stats.norm.cdf. We’ll let you
read the documentation to see how to use it, but it may be helpful to remember that if F is the cumulative
density function for a distribution with density f , then

∫ b

a
f(x) dx = F (b)− F (a).

Solution: Because the Gaussians have the same width and the classes are equally probable, the decision
boundary is exactly halfway between their means, at x = 3.5. Any point to the left of 3.5 is predicted
Class 0, and everything to the right is predicted Class 1.

The Bayes error is the probability that a point is misclassified. This can occur in two ways: either the
point came from class Y = 1, but the prediction is for class 0, or the point came from class Y = 0 but
was predicted to be class 1. The total probability of an error is the sum of the probabilities of either
case occurring.

Consider the first case, where the point came from class Y = 1 but is predicted to be Class 0. This will
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occur when the point is to the left of 3.5. What is the probability that a point comes from Y = 1 and
is to the left of 3.5? It is:

P(x < 3.5 and Y = 1) = P(x < 3.5 |Y = 1)P(Y = 1)

= P(x < 3.5 |Y = 1)× 0.5

The probability that x < 3.5 given that it comes from Class 1 is computed as the area under the curve of
the Gaussian for Class 1’s distribution from −∞ to 3.5. This can be computed with scipy.stats.norm.cdf(3.5, 5, 3)
the result is 0.308. Therefore:

P(x < 3.5 and Y = 1) = P(x < 3.5 |Y = 1)P(Y = 1)

= 0.308× 0.5

= 0.154

Likewise, the probability of the second case is:

P(x > 3.5 and Y = 0) = P(x > 3.5 |Y = 0)P(Y = 0)

= P(x > 3.5 |Y = 0)× 0.5

The probability that x > 3.5 when drawn from the Gaussian with mean µ = 2 is:

1 - scipy.stats.norm.cdf(3.5, 2, 3)

This is also 0.308, which could have been recognized from symmetry.

Therefore:

P(x > 3.5 and Y = 0) = P(x > 3.5 |Y = 0)P(Y = 0)

= .308× 0.5

All together, then, the Bayes error is 0.308.
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