
DSC 140A - Homework 05
Due: Wednesday, May 8

Instructions: Write your solutions to the following problems either by typing them or handwriting
them on another piece of paper. Show your work or provide justification unless otherwise noted. If
you write code to solve a problem, include the code by copy/pasting or as a screenshot. You may
use numpy, matplotlib (or another plotting library), and any standard library module, but no other
third-party libraries unless specified. Submit homeworks via Gradescope by 11:59 PM.

Problem 1.

In this problem, you will derive the solution to the ridge regression optimization problem.

Recall that the ridge regression regularized risk function is

R̃(~w) =
1

n

n∑
i=1

(~φ(~x(i)) · ~w − yi)
2 + λ‖~w‖2.

Here, ~φ(~x) is a feature map. Also recall that this risk function can be equivalently written in matrix-vector
form as

R̃(~w) =
1

n
‖Φ~w − ~y‖2 + λ‖~w‖2,

where Φ is the design matrix; its ith row is ~φ(~x(i)).

a) Show that R̃(~w) = 1
n

(
~wTΦTΦ~w − 2~wTΦT~y + ~yT~y

)
+ λ~wT ~w.

Solution: Using the fact that, for any vector ~u, ‖vecu‖2 = ~uT~u, we have:

R̃(~w) =
1

n
‖Φ~w − ~y‖2 + λ‖~w‖

=
1

n
(Φ~w − ~y)T (Φ~w − ~y) + λ~wT ~w

=
1

n
(~wTΦT − ~yT)(Φ~w − ~y) + λ~wT ~w

=
1

n

(
~wTΦTΦ~w − ~wTΦT~y − ~yTΦ~w + ~yT~y

)
+ λ~wT ~w

~yTΦ~w is a scalar, and any scalar transposed is just itself. So (yTΦ~w)T = ~wTΦT~y, and we have:

=
1

n

(
~wTΦTΦ~w − 2~wTΦT~y − ~yT~y

)
+ λ~wT ~w

b) So far this quarter, we have seen a few vector calculus identities. For example, we know that
d
d~w (~wT ~w) = 2~w.

Using these identities, show that

d

d~w
R̃(~w) =

1

n

(
2ΦTΦ~w − 2ΦT~y

)
+ 2λ~w.

1

Solution:

d

d~w

[
1

n

(
~wTΦTΦ~w − 2~wTΦT~y − ~yT~y

)
+ λ~wT ~w

]
=

[
1

n

(
d

d~w
~wTΦTΦ~w − d

d~w
2~wTΦT~y − d

d~w
~yT~y

)
+

d

d~w
λ~wT ~w

]
=

1

n

(
2ΦTΦ~w − ΦT~y −~0

)
+ 2λ~w

c) Show that the minimizer of R̃(~w) is ~w∗ = (ΦTΦ+ nλI)−1ΦT~y.

Solution: Setting the gradient to sero and solving for ~w, we have:

1

n

(
2ΦTΦ~w − 2ΦT~y

)
+ 2λ~w = ~0 (multiply both sides by n)

⇒ 2ΦTΦ~w − 2ΦT~y + 2λn~w = ~0 (grouping terms with ~w)
⇒ 2ΦTΦ~w + 2λn~w = 2ΦT~y (dividing both sides by 2)
⇒ ΦTΦ~w + λn~w = ΦT~y (factoring out ~w)
⇒ (ΦTΦ+ nλI)~w = ΦT~y (solving for ~w)
⇒ ~w = (ΦTΦ+ nλI)−1ΦT~y

Problem 2.

The data set linked below contains data for performing non-linear regression. The first column is x (the
independent variable), and the second column is y (the dependent variable).

https://f000.backblazeb2.com/file/jeldridge-data/010-nonlinear_regression/data.csv

Plotting the data shows that there is a non-linear relationship between x and y:

a) Fit a function of the form H(~x) = w1φ1(~x)+w2φ2(~x)+ . . .+w50φ50(~x), where each φi(~x) is a Gaussian

2

https://f000.backblazeb2.com/file/jeldridge-data/010-nonlinear_regression/data.csv

basis function. Your 50 Gaussian basis functions should be equally-spaced, with the first at µ1 = −10
and the last at µ50 = 10. The width of each Gaussian should be σ = 1. You should not augment ~x.

For your answer, report only w1 (the first component of ~w), and show your code.

Solution: You should find w0 ≈ −51.

The code to find this is shown below:

data = np.loadtxt('./data.csv', delimiter=',')
data_x, data_y = data.T

def make_phi(mu, sigma=1):
def phi(x):

return np.exp(-(x - mu)**2 / sigma**2)
return phi

k = 50

phis = [make_phi(mu) for mu in np.linspace(-10, 10, k)]

def phi_transformation(x):
return np.array([phi(x) for phi in phis])

Phi = np.vstack([phi_transformation(x) for x in data_x])

w_unreg = np.linalg.solve(Phi.T @ Phi, Phi.T @ data_y)

b) Plot the prediction function H(~x) that you trained in the previous part, on top of the data. Provide
your plot and the code used to generate it.

Solution:

This overfits the data slightly.

c) You should see that the prediction function H(~x) slighly overfits the data. Now perform ridge regres-
sion on the same data, using the same Gaussian basis functions. Choose the regularization parameter
λ to reduce overfitting (you may do so by trial and error – no need to perform cross-validation). For

3

your answer, state λ and plot your new prediction function on top of the data. Also provide your
code.

Solution: By eye, a regularization parameter of λ = 0.02 seems to work well. Anything around
this value is acceptable.

When we plot the new prediction function on top of the data, we see that it generalizes better
(overfits less):

The code for training this regularized model is shown below:

add a regularization term to the least squares problem
w_reg_1 = np.linalg.solve(Phi.T @ Phi + n * .02 * np.eye(k), Phi.T @ data_y)

def h_unreg(x):
return w_unreg @ phi_transformation(x)

def h_reg_1(x):
return w_reg_1 @ phi_transformation(x)

4

