## DSC 140A - Discussion 04

## Problem 1.

Suppose the following data are observed:

| $x$ | $y$ |
| :---: | :---: |
| 2.1 | 1 |
| 4.7 | 1 |
| 2.3 | 0 |
| 0.8 | 0 |
| 1.3 | 1 |
| 5.2 | 1 |
| 7.4 | 0 |
| 9.4 | 1 |
| 3.9 | 1 |

You may assume that the $x$-values were drawn from a continuous distribution, and the $y$-values represent the label of each point.
To estimate all probabilities below, use a histogram estimator with 5 equally-sized bins spanning the interval from 0 to 10 . The bins should include their starting point and exclude their ending point.
a) What is the estimated density $p_{X}(x)$ at $x=3$ ?
b) What is the estimated probability that a new point $x$ is in the interval $[3,4]$ ?
c) What is the estimated conditional density $p(x \mid Y=1)$ at the point $x=2$ ?
d) Using the Bayes classification rule, what is the predicted label $y$ of a new point $x=2.5$ ?

## Problem 2.

The Rayleigh distribution has pdf:

$$
p(x)=\frac{x}{\sigma^{2}} e^{-x^{2} /\left(2 \sigma^{2}\right)},
$$

where $\sigma$ is a parameter.
Suppose a data set of independent points $x_{1}, \ldots, x_{n}$ is drawn from a Rayleigh distribution with unknown parameter $\sigma$. Show that the $\log$-likelihood of $\sigma$ given this data is:

$$
L\left(\sigma \mid x_{1}, \ldots, x_{n}\right)=n \log \frac{1}{\sigma^{2}}+\sum_{i=1}^{n} \log x_{i}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} x_{i}^{2}
$$

