
DSC 140A - Discussion 05

Problem 1.
Recall that the regularized least squares risk is

R̃(~w) =
1

n

n∑
i=1

(~w · ~φ(~x(i))− yi)
2 + λ‖~w‖2

Show that
R̃(~w) =

1

n

(
~wTΦTΦ~w − 2~wTΦT~y + ~yT~y

)
+ λ~wT ~w,

where Φ is the matrix whose ith row is ~φ(~x(i), and where ~y = (y1, . . . , yn)
T .

Solution:

R̃(~w) =
1

n

n∑
i=1

(~w · ~φ(~x(i))− yi)
2 + λ‖~w‖2

=
1

n

n∑
i=1

((~w · ~φ(~x(i)))2 − 2yi ~w · ~φ(~x(i)) + y2i ) + λ‖~w‖2

=
1

n
(

n∑
i=1

(~w · ~φ(~x(i)))2 − 2

n∑
i=1

yi ~w · ~φ(~x(i)) +

n∑
i=1

y2i ) + λ~wT ~w

=
1

n

(
~wTΦTΦ~w − 2~wTΦT~y + ~yT~y

)
+ λ~wT ~w

Problem 2.
In class, we discussed how L1 regularization encourages sparse solutions and can be seen as a method
for feature selection. In this problem, we will explore why L1 regularization promotes sparsity from the
perspective of gradient descent.

a) First, write down the partial derivatives of the L1 and L2 regularization terms with respect to a
specific weight wj (you may ignore the case where wj = 0, as the gradient might be undefined there).

• The L1 regularization term is given by:

R1(~w) = λ

d∑
j=1

|wj |

• The L2 regularization term is given by:

R2(~w) = λ

d∑
j=1

w2
j

b) Based on these derivatives, which regularizer is more effective at pushing wj to zero?
Hint: Consider the behavior of the gradients when wj is already small. For simplicity, assume that
the partial derivative ∂

∂wj
of the Mean Squared Error (MSE) term is zero.
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Solution: A) Partial Derivatives of L1 and L2 Regularization Terms

• L1 Regularization:

R1(~w) = λ

d∑
j=1

|wj |,
∂R1(~w)

∂wj
= λ · sign(wj)

where sign(wj) = 1 if wj > 0 and −1 if wj < 0.
• L2 Regularization:

R2(~w) = λ

d∑
j=1

w2
j ,

∂R2(~w)

∂wj
= 2λwj

• L1 Regularization applies a constant force λ · sign(wj), pushing weights to exactly zero and
promoting sparsity.

• L2 Regularization applies a force proportional to wj . When wj is small, the gradient becomes
small, making it less effective at driving weights to zero.
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