DSC 140A - Discussion 03

Problem 1.

Recall that the regularized least squares risk is

$$
\tilde{R}(\vec{w})=\frac{1}{n} \sum_{i=1}^{n}\left(\vec{w} \cdot \vec{\phi}\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2}+\lambda\|\vec{w}\|^{2}
$$

Show that

$$
\tilde{R}(\vec{w})=\frac{1}{n}\left(\vec{w}^{T} \Phi^{T} \Phi \vec{w}-2 \vec{w}^{T} \Phi^{T} \vec{y}+\vec{y}^{T} \vec{y}\right)+\lambda \vec{w}^{T} \vec{w}
$$

where Φ is the matrix whose i th row is $\vec{\phi}\left(\vec{x}^{(i)}\right.$, and where $\vec{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$.

Problem 2.

In lecture, we defined a kernel function to be a function k which computes the dot product of vectors after they are mapped to some high-dimensional space. The useful thing about kernel functions is that they allow us to compute these dot products without actually mapping vectors them to the high-dimensional space, which can be costly. In this problem, we will consider the the 2nd-order polynomial kernel, defined to be

$$
k\left(\vec{x}, \vec{x}^{\prime}\right)=\left(1+\vec{x} \cdot \vec{x}^{\prime}\right)^{2}
$$

Let $\vec{\phi}(\vec{x}): \mathbb{R}^{3} \rightarrow \mathbb{R}^{10}$ be the mapping:

$$
\vec{\phi}(\vec{x})=\left(1, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \sqrt{2} x_{3}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1} x_{3}, \sqrt{2} x_{2} x_{3}\right)^{T}
$$

where x_{1}, x_{2}, x_{3} are the components of the input vector, \vec{x}. That is, $\vec{\phi}$ is a feature map which maps a vector into a higher-dimensional space.
Show that $k(\vec{x}, \vec{y})=\vec{\phi}(\vec{x}) \cdot \vec{\phi}(\vec{y})$. That is, that k indeed computes the inner product of vectors in the higher-dimensional space.

