DSC 140A - Midterm 01 Review

Problem 1.

Suppose $f(\vec{x})$ is a **convex** function of \vec{x} and that the gradient of f at the point $\vec{x}^{(1)} = (0,5)^T$ is $(-3,5)^T$.

Let $\vec{x}^* = (x_1^*, x_2^*)$ be the minimizer of f; you can assume that $\vec{x}^* \neq \vec{x}^{(1)}$, which implies that $f(\vec{x}^*) < f(\vec{x}^{(1)})$. True or False: it must be the case that $x_2^* \ge 5$.

Problem 2.

Recall that a subgradient of the absolute loss is:

$$\begin{cases} \operatorname{Aug}(\vec{x}), & \text{if } \operatorname{Aug}(\vec{x}) \cdot \vec{w} - y > 0, \\ -\operatorname{Aug}(\vec{x}), & \text{if } \operatorname{Aug}(\vec{x}) \cdot \vec{w} - y < 0, \\ \vec{0}, & \text{otherwise.} \end{cases}$$

Suppose you are running subgradient descent to minimize the risk with respect to the absolute loss in order to train a function $H(x) = w_0 + w_1 x_1 + w_2 x_2$ on the following data set:

Suppose that the initial weight vector is $\vec{w} = (0, 0, 0)^T$ and that the learning rate $\eta = 1$. What will be the weight vector after one iteration of subgradient descent?

Problem 3.

Let $X = \{\vec{x}^{(i)}, y_i\}$ be a data set of *n* points where each $\vec{x}^{(i)} \in \mathbb{R}^d$.

Let $Z = \{\overline{z}^{(i)}, y_i\}$ be the data set obtained from the original by standardizing each feature. That is, if a matrix were created with the *i*-th row being $\overline{z}^{(i)}$, then the mean of each column would be 0, and the variance would be 1.

a) Suppose linear predictors H_1 and H_2 are fit on X and Z by minimizing the MSE, respectively.

True or False: $H_1(\vec{x}^{(i)}) = H_2(\vec{z}^{(i)})$ for every i = 1, ..., n.

b) Suppose that X and Z are both linearly-separable. Suppose Hard-SVMs H_1 and H_2 are trained on X and Z, respectively.

True or False: $H_1(\vec{x}^{(i)}) = H_2(\vec{z}^{(i)})$ for every $i = 1, \ldots, n$.

Problem 4.

Consider the image below:

The blue points have label +1, and the red points have label -1. Suppose H is a linear prediction function, and when H is applied to the point A in the above image, $H(\vec{x}) = 4$. The black line in the middle of the image is the decision boundary H = 0.

You may assume that H is exactly in the middle of the points, and that all points are equidistant from the decision boundary.

- a) What is the mean square loss of this prediction function, H?
- b) True or false: there exists a linear prediction function H which has a mean square loss of zero on this data.

Problem 5.

- a) True or false: Assume $f(x) = f_1(x) + f_2(x) + \ldots + f_k(x)$. If f is convex, then all f_1, \ldots, f_k are convex.
- **b)** True or false: Assume f(x) = g(h(x)). If f is convex, then both g and h are convex.
- c) True or false: If f is convex, then -f is non-convex.