
DSC 140A - Discussion 03

Problem 1.

A subgradient of the absolute loss is:
Aug(~x), if Aug(~x) · ~w − y > 0,

−Aug(~x), ifAug(~x) · ~w − y < 0,
~0, otherwise.

Suppose you are running subgradient descent to minimize the risk with respect to the absolute loss in order
to train a function H(x) = w0 + w1x on the following data set:

x y

1 3
2 5
3 7

Suppose that the initial weight vector is ~w = (0, 0)T and that the learning rate η = 1. What will be the
weight vector after one iteration of subgradient descent?

Solution: (1, 2)T

To perform subgradient descent, we need to compute the subgradient of the risk. The main thing to
remember is that the subgradient of the risk is the average of the subgradient of the loss on each data
point.

So to start this problem, calculuate the subgradient of the loss for each of the three points. Our formula
for the subgradient of the absolute loss tells us to compute Aug(~x) ·w− y for each point and see if this
is positive or negative. If it is positive, the subgradient is Aug(~x); if it is negative, the subgradient is
−Aug(~x).

Now, the initial weight vector ~w was conveniently chosen to be ~0, meaning that Aug(~x) · ~w = 0 for all
of our data points. Therefore, when we compute Aug(~x) · ~w − y, we get −y for every data point, and
so we fall into the second case of the subgradient formula for every data point. This means that the
subgradient of the loss at each data point is −Aug(~x). Or, more concretely, the subgradient of the loss
at each of the three data points is:

• (−1,−1)T

• (−1,−2)T

• (−1,−3)T

This means that the subgradient of the risk is the average of these three:

1

3

([
−1
−1

]
+

[
−1
−2

]
+

[
−1
−3

])
=

[
−1
−2

]

The subgradient descent update rule says that ~w(1) = ~w(0) − η~g, where ~g is the subgradient of the risk.

The learning rate η was given as 1, so we have ~w(1) = ~w(0) − ~g = ~0−
[
−1
−2

]
=

[
1
2

]
.

Problem 2.

1



Consider the function f(~z) = f(z1, z2) = max(z1, z2).

a) Using the definition of the subgradient, check if (1, 1)T is a subgradient at the point (2, 2)T .

Solution: The definition says that ~s is a subgradient if

fs(~z) = f(~z(0)) + ~s · (~z − ~z(0)) ≤ f(~z),

for all ~z.

In this case, we are testing ~s = (1, 1)T and ~z(0) = (2, 2)T . So:

fs(~z) = f(~z(0)) + ~s · (~z − ~z(0))

= f(2, 2) + (1, 1)T · ((z1, z2)− (2, 2))

= 2 + (1, 1)T · (z1 − 2, z2 − 2)

= 2 + (z1 − 2 + z2 − 2)

= z1 + z2 − 2

Is fs(~z) = z1 + z2 − 2 ≤ f(~z) for all ~z? To check, we can consider the two cases for f(~z): when
z1 ≥ z2 and when z2 ≥ z1.

In the first case when z1 ≥ z2, we have f(~z) = max(z1, z2) = z1. Is it true that z1 + z2 − 2 ≤ z1
for all z1 ≥ z2? No, because if z1 = 10 and z2 = 8, then fs(z1, z2) = z1 + z2 − 2 = 16, but
f(z1, z2) = z1 = 10.

Therefore, ~s = (1, 1)T is not a subgradient at (2, 2)T .

b) Show that (1, 0)T is a valid subgradient at (2, 2)T .

Solution: In this case, we’re testing ~s = (1, 0)T and ~z(0) = (2, 2)T . So:

fs(~z) = f(~z(0)) + ~s · (~z − ~z(0))

= f(2, 2) + (1, 0)T · ((z1, z2)− (2, 2))

= 2 + (1, 0)T · (z1 − 2, z2 − 2)

= 2 + (z1 − 2)

= z1

It’s true that z1 ≤ max(z1, z2) for all z1, z2, so fs(~z) = z1 ≤ f(~z) for all ~z.

c) Show that ( 12 ,
1
2 )

T is a subgradient at (2, 2)T .
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Solution: We’re testing ~s = ( 12 ,
1
2 )

T and ~z(0) = (2, 2)T . Therefore:

fs(~z) = f(~z(0)) + ~s · (~z − ~z(0))

= f(2, 2) + (
1

2
,
1

2
)T · ((z1, z2)− (2, 2))

= 2 + (
1

2
,
1

2
)T · (z1 − 2, z2 − 2)

= 2 +
1

2
(z1 − 2) +

1

2
(z2 − 2)

= 2 +
1

2
z1 − 1 +

1

2
z2 − 1

=
1

2
z1 +

1

2
z2

=
z1 + z2

2

Is this always ≤ f(~z)? Let’s break it into two cases: when z1 ≥ z2 and when z2 > z1.

In the first case, max(z1, z2) = z1, so we need to check if z1+z2
2 ≤ z1 for all z1 ≥ z2. This is true

because the largest z2 can be in this case is z1, so:

fs(~z) =
z1 + z2

2

≤ z1 + z1
2

= z1

= f(~z)

So fs(~z) ≤ f(~z) for all z1 ≥ z2.

Likewise, in the second case when z2 > z1, we have max(z1, z2) = z2. Here,

fs(~z) =
z1 + z2

2

≤ z2 + z2
2

= z2

= f(~z)

So in both cases, fs(~z) ≤ f(~z), and ( 12 ,
1
2 )

T is a subgradient at (2, 2)T .

Problem 3.

The absolute loss of a linear predictor is

`abs(Aug(x) · ~w, y) = |Aug(x) · ~w − y|.

We can write this as a piecewise function:

`abs(Aug(x) · ~w, y) =


Aug(x) · ~w − y, if Aug(x) · ~w − y > 0,

y −Aug(x) · ~w, if Aug(x) · ~w − y < 0,

0, if Aug(x) · ~w = y.

This loss function is not differentiable at Aug(x) · ~w = y, but has a well-defined gradient everywhere else.
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a) What is the gradient of the absolute loss with respect to ~w when Aug(x) · ~w − y > 0?

Solution: When Aug(x) · ~w − y > 0, we fall into the first case of the piecewise definition of the
absolute loss. In this case, the loss is Aug(x) · ~w − y, so the gradient of the loss with respect to
~w is just Aug(x).

b) What is the gradient of the absolute loss with respect to ~w when Aug(x) · ~w − y < 0?

Solution: When Aug(x) · ~w − y < 0, we fall into the second case of the piecewise definition of
the absolute loss. In this case, the loss is y −Aug(x) · ~w, so the gradient of the loss with respect
to ~w is −Aug(x).

c) Optional: Show that ~0 is a subgradient of the absolute loss at Aug(x) · ~w = y.

Solution: Showing that ~0 is a subgradient of the absolute loss at Aug(x) · ~w = y is maybe more
straightforward than it seems, though it requires making sure that we know how to set up the
problem correctly.

The definition of subgradient says that a vector ~s is a subgradient of f(~z) at ~z(0) if fs(~z) =
f(~z(0)) + ~s · (~z − ~z(0)) ≤ f(~z) for all ~z.

In this case, the role of f(~z) is played by the absolute loss function. Let’s assume that ~x and y
are fixed, and define f(~w) = `abs(Aug(x) · ~w, y).

The role of fs(~z) is then played by

fs(~w) = f(~w(0)) + ~s · (~w − ~w(0)).

We’re testing ~s = ~0 to see if it makes fs(~w) ≤ f(~w) for all ~w. We’re also assuming that ~w(0) is
such that Aug(x) · ~w(0) = y. Note that this is exactly where the absolute loss is zero; in other
words, f(~w(0)) = 0. So:

fs(~w) = 0 +~0 · (~w − ~w(0)) = 0 + 0 = 0

Here we used the fact that ~0 dotted with anything is zero. So we’ve found that fs(~w) is simply
0 for all ~w.

Is fs(~w) = 0 ≤ f(~w) for all ~w? Yes, because the absolute loss is always non-negative, and so
f(~w) ≥ 0. Therefore, ~0 is a subgradient of the absolute loss.

Problem 4.

Using the definition, show that the function f(~w) = a~x · ~w − b is convex as a function of ~w, where a, b ∈ R
and ~x, ~w ∈ Rd.

Solution:

∇f(~w) = a~x

Hf (~w) = 0d,d � 0

In the Hessian, Hf (~w), all values are 0. We can see that the eigenvalues will also be 0. Therefore, f(~w)
is convex.
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Problem 5.

Let f1(~w) and f2(~w) be convex functions from Rd to R. Define

f(~w) = max{f1(~w), f2(~w)}.

Show that f(~w) is convex.

Solution:

Take t ∈ [0, 1].

f(t~w1 + (1− t)~w2) = max{f1(t~w1 + (1− t)~w2), f2(t~w1 + (1− t)~w2)}
≤ max{tf1(~w1) + (1− t)f1(~w2), tf2(~w1) + (1− t)f2(~w2)} (due to convexity of f1, f2)
≤ max{tf1(~w1), tf2(~w1)}+max{(1− t)f1(~w2), (1− t)f2(~w2)}
= tmax{f1(~w1), f2(~w1)}+ (1− t)max{f1(~w2), f2(~w2)}
= tf(w1) + (1− t)f(w2)

Problem 6.

Recall that the Perceptron loss is:

Lperc(~w, ~x, y) =

{
0, if sign(~w · ~x) = y (correctly classified),
|~w · ~x|, if sign(~w · ~x) 6= y (misclassified).

Using the trick that −y ~w ·~x = |~w ·~x| in the case of misclassification, this can be be written in the equivalent
form:

Lperc(~w, ~x, y) = max{0,−y ~w · ~x}

Argue that the perceptron loss is convex as a function of ~w.

Solution: We’ll argue that the loss is the maximum of two convex functions, which (by Problem 2
above) is convex.

Let f1(~w) = 0 and f2(~w) = −y ~w · ~x. Recognize that

Lperc(~w, ~x, y) = max{f1(~w), f2(~w)}

f2 is convex by the result of Problem 1 (with a = y and b = 0). f1 is constant, and trivially convex.
Therefore Lperc is convex by the result of Problem 2.
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