DSC 140A - Discussion 03

Problem 1.

A subgradient of the absolute loss is:

Aug(@), if Aug(@)-w—y >0,
— Aug(%), ifAug(®) -W—y <0,

—

0, otherwise.

Suppose you are running subgradient descent to minimize the risk with respect to the absolute loss in order
to train a function H(x) = wy + w1z on the following data set:
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Suppose that the initial weight vector is @ = (0,0)” and that the learning rate n = 1. What will be the
weight vector after one iteration of subgradient descent?

Problem 2.
Consider the function f(2) = f(z1, 22) = max(z1, 22).

a) Using the definition of the subgradient, check if (1,1)7 is a subgradient at the point (2,2)7.
b) Show that (1,0)7 is a valid subgradient at (2,2)7.

c) Show that (3,2)7 4s a subgradient at (2,2)7.

Problem 3.

The absolute loss of a linear predictor is
Cas(Aug(z) - @, y) = | Aug(z) - & — y].
We can write this as a piecewise function:

Aug(z) - W —y, if Aug(z) - W—y
Cavs(Aug(z) - @, y) = § y — Aug(z) - @, if Aug(z)-w—y
0, if Aug(z) - W=y

This loss function is not differentiable at Aug(z) - @ = y, but has a well-defined gradient everywhere else.

a) What is the gradient of the absolute loss with respect to @ when Aug(z) - W —y > 07
b) What is the gradient of the absolute loss with respect to @ when Aug(z) - @ —y < 07

c) Optional: Show that 0 is a subgradient of the absolute loss at Aug(z) -0 =y.



Problem 4.

Using the definition, show that the function f(w) = aZ - @ — b is convex as a function of W, where a,b € R
and 7, € RY.

Problem 5.
Let f1(w) and fo(1) be convex functions from R? to R. Define
f(@) = max{ fi (@), f2(w)}.

Show that f(w) is convex.

Problem 6.

Recall that the Perceptron loss is:

oL 0, if sign(w - &) = y (correctly classified),
LPerc(wvxay) = { 5 ( ) v ( v )

|- Z|, if sign(w- ) # y (misclassified).

Using the trick that —y @ - & = |- Z| in the case of misclassification, this can be be written in the equivalent
form:
Lperc (U_ja -’f, y) = max{07 —yu_j . j’}

Argue that the perceptron loss is convex as a function of .



