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Problem 1.

A subgradient of the absolute loss is:
Aug(~x), if Aug(~x) · ~w − y > 0,

−Aug(~x), ifAug(~x) · ~w − y < 0,
~0, otherwise.

Suppose you are running subgradient descent to minimize the risk with respect to the absolute loss in order
to train a function H(x) = w0 + w1x on the following data set:

x y

1 3
2 5
3 7

Suppose that the initial weight vector is ~w = (0, 0)T and that the learning rate η = 1. What will be the
weight vector after one iteration of subgradient descent?

Problem 2.

Consider the function f(~z) = f(z1, z2) = max(z1, z2).

a) Using the definition of the subgradient, check if (1, 1)T is a subgradient at the point (2, 2)T .

b) Show that (1, 0)T is a valid subgradient at (2, 2)T .

c) Show that ( 12 ,
1
2 )

T is a subgradient at (2, 2)T .

Problem 3.

The absolute loss of a linear predictor is

`abs(Aug(x) · ~w, y) = |Aug(x) · ~w − y|.

We can write this as a piecewise function:

`abs(Aug(x) · ~w, y) =


Aug(x) · ~w − y, if Aug(x) · ~w − y > 0,

y −Aug(x) · ~w, if Aug(x) · ~w − y < 0,

0, if Aug(x) · ~w = y.

This loss function is not differentiable at Aug(x) · ~w = y, but has a well-defined gradient everywhere else.

a) What is the gradient of the absolute loss with respect to ~w when Aug(x) · ~w − y > 0?

b) What is the gradient of the absolute loss with respect to ~w when Aug(x) · ~w − y < 0?

c) Optional: Show that ~0 is a subgradient of the absolute loss at Aug(x) · ~w = y.

1



Problem 4.

Using the definition, show that the function f(~w) = a~x · ~w − b is convex as a function of ~w, where a, b ∈ R
and ~x, ~w ∈ Rd.

Problem 5.

Let f1(~w) and f2(~w) be convex functions from Rd to R. Define

f(~w) = max{f1(~w), f2(~w)}.

Show that f(~w) is convex.

Problem 6.

Recall that the Perceptron loss is:

Lperc(~w, ~x, y) =

{
0, if sign(~w · ~x) = y (correctly classified),
|~w · ~x|, if sign(~w · ~x) 6= y (misclassified).

Using the trick that −y ~w ·~x = |~w ·~x| in the case of misclassification, this can be be written in the equivalent
form:

Lperc(~w, ~x, y) = max{0,−y ~w · ~x}

Argue that the perceptron loss is convex as a function of ~w.
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