
Math Review



Math for Machine Learning

▶ DSC 140A is a course in machine learning.

▶ In ML, we often turn the problem of learning into
a math problem.

▶ So, to deeply understand an ML algorithm, you
need to understand the math behind it.



Math Prerequisites

▶ MATH 20A-B-C: Multivariate Calculus
▶ Especially the gradient!

▶ MATH 18: Linear Algebra

▶ MATH 183: Probability / Statistics

▶ DSC 40A: Mathematical Foundations of ML



This Review

▶ We’ll review some of the math we’ll need in the
first part of the course.

▶ It’s OK to not remember everything!

▶ Paired with a worksheet:
http://dsc140a.com/materials/default/supplementary/math_review/worksheet.pdf

http://dsc140a.com/materials/default/supplementary/math_review/worksheet.pdf


This Review

▶ Four parts:
▶ Summation Notation
▶ Vectors
▶ Matrices
▶ What type of object?



Facts

We’ll highlight some important facts throughout this
discussion with a box like this:

Fact #1

This is a fact.



Here are all of the facts in these slides:
Fact #1
Fact #2 Constant Factors in a Summation
Fact #3 Proving Properties
Fact #4 Splitting a Summation
Fact #5 Vector Norm
Fact #6 Vector Addition
Fact #7 Scalar Multiplication of a Vector
Fact #8 Dot Product (Coordinate Definition)
Fact #9 Dot Product (Geometric Definition)
Fact #10 Properties of the Dot Product
Fact #11 Matrix-Vector Mult., View 1
Fact #12 Matrix-Vector Mult., View 2
Fact #13 Matrix-Vector Mult., View 3
Fact #14 Matrix-Matrix Mult., View 1
Fact #15 Matrix-Matrix Mult., View 2
Fact #16 Matrix Multiplication Properties
Fact #17 Transpose of a product
Fact #18 �⃗� ⋅ ⃗𝑣 as Matrix Multiplication
Fact #19 Matrix Inverse
Fact #20 Types of objects



Summation Notation



Summation Notation

▶ We use summation notation a lot in data science.

▶ If 𝑥1, 𝑥2, … , 𝑥𝑛 are numbers (or vectors), then:
𝑛

∑
𝑖=1
𝑥𝑖 = 𝑥1 + 𝑥2 + … + 𝑥𝑛



Constant Factors

Fact #2 Constant Factors in a Summation

Constants can be pulled out of a summation. That
is, if 𝑎 is a constant (independent of 𝑖), then:

𝑛

∑
𝑖=1
𝑎𝑥𝑖 = 𝑎

𝑛

∑
𝑖=1
𝑥𝑖



Fact #3 Proving Properties

We can prove properties of summations by ex-
panding the sum using … notation. For example,
to prove Fact 2:

𝑛

∑
𝑖=1
𝑎𝑥𝑖 = 𝑎𝑥1 + 𝑎𝑥2 + … + 𝑎𝑥𝑛

= 𝑎(𝑥1 + 𝑥2 + … + 𝑥𝑛)

= 𝑎
𝑛

∑
𝑖=1
𝑥𝑖



Fact #4 Splitting a Summation

We can “split” a summation. That is:
𝑛

∑
𝑖=1
(𝑥𝑖 + 𝑦𝑖) =

𝑛

∑
𝑖=1
𝑥𝑖 +

𝑛

∑
𝑖=1
𝑦𝑖



Vectors



Vectors

▶ A vector ⃗𝑥 is a list of numbers.

▶ The dimensionality of the vector is the number
of entries it has.

▶ Example: a 3-vector:

⃗𝑥 = (
8
−2
3
)



Vector Notation

▶ We write 𝑥 ∈ ℝ𝑑, to denote that ⃗𝑥 is a
𝑑-dimensional vector whose entries are real
numbers.1 2

▶ Pronounced “𝑥 is in R-d”.

1ℝ is the symbol for the set of real numbers.
2In LATEX, you can write \vec{x} \in\mathbb R^d



Vector Notation

▶ We use subscripts to denote particular elements
of a vector.

▶ Example: 𝑥1 is the first element of ⃗𝑥, 𝑥2 is the
section element, etc.



Points vs. Arrows

▶ We often think of vectors as points in space.
▶ Example: ⃗𝑥 = (3, 2)𝑇

𝑥1

𝑥2

1 2 3 4 5

1

2

3

4

5

⃗𝑥



Vector Notation

▶ We’ll often be working with sets of vectors.

▶ We’ll use a superscript to denote the 𝑖th vector
in the set.

▶ ⃗𝑥(1) is the first vector in the set, ⃗𝑥(2) is the
second, etc.



Points vs. Arrows

▶ We can also think of vectors as arrows.
▶ Example: ⃗𝑥 = (3, 2)𝑇

𝑥1

𝑥2

1 2 3 4 5

1

2

3

4

5



Vector Norm (Length)

Fact #5 Vector Norm

The norm (length) of a vector ⃗𝑥, written ‖ ⃗𝑥‖, is the
Euclidean distance from the origin to the point rep-
resented by ⃗𝑥:

‖ ⃗𝑥‖ = √𝑥21 + 𝑥22 + … + 𝑥2𝑑

= √
𝑑

∑
𝑖=1
𝑥2𝑖



Vector Addition
▶ Two vectors ⃗𝑥 and ⃗𝑦 can be added together.

▶ The result is a vectors whose entries are the
elementwise sum of the two vectors.

▶ Example:

(
1
2
3
)

⏟
⃗𝑥

+ (
4
5
6
)

⏟
⃗𝑦

= (
1 + 4
2 + 5
3 + 6

) = (
5
7
9
)

⏟
⃗𝑥+ ⃗𝑦



Fact #6 Vector Addition

Adding (or subtracting) �⃗� to ⃗𝑥 “shifts” ⃗𝑥. For exam-
ple, using �⃗� = (1, 2)𝑇:

𝑥1

𝑥2

⃗𝑥(1)

⃗𝑥(2)

⃗𝑥(3)

⃗𝑥(1) + �⃗�

⃗𝑥(2) + �⃗�

⃗𝑥(3) + �⃗�



Scalar Multiplication

▶ We can multiply a vector by a scalar, 𝑐.

▶ The result is a vector whose entries are the
original entries multiplied by 𝑐.

▶ Example:

3 (
1
2
3
) = (

3 ⋅ 1
3 ⋅ 2
3 ⋅ 3

) = (
3
6
9
)



Fact #7 Scalar Multiplication of a Vector

Multiplying ⃗𝑥 by 𝑐 “stretches” ⃗𝑥 by a factor of 𝑐. For
example, using 𝑐 = 2:

𝑥1

𝑥2

2 ⃗𝑥

⃗𝑥



Vector Products

▶ We can “multiply” two vectors together using the
dot product.



Fact #8 Dot Product (Coordinate Defini-
tion)

The dot product of two 𝑑-vectors �⃗� and ⃗𝑣 is defined
to be:

�⃗� ⋅ ⃗𝑣 = 𝑢1𝑣1 + 𝑢2𝑣2 + … + 𝑢𝑑𝑣𝑑

=
𝑑

∑
𝑖=1
𝑢𝑖𝑣𝑖



Dot Product

▶ The dot product has a geometric interpretation,
too.



Fact #9 Dot Product (Geometric Definition)

The dot product of two
vectors �⃗� and ⃗𝑣 is:

�⃗� ⋅ ⃗𝑣 = ‖�⃗�‖‖ ⃗𝑣‖ cos𝜃

where 𝜃 is the angle
between the two vectors.

�⃗�

⃗𝑣

𝜃



Fact #10 Properties of the Dot Product

The dot product is:
▶ Commutative: �⃗� ⋅ ⃗𝑣 = ⃗𝑣 ⋅ �⃗�
▶ Distributive: �⃗� ⋅ ( ⃗𝑣 + �⃗�) = �⃗� ⋅ ⃗𝑣 + �⃗� ⋅ �⃗�
▶ Linear: �⃗� ⋅ (𝛼 ⃗𝑣 + 𝛽�⃗�) = 𝛼�⃗� ⋅ 𝑣 + 𝛽�⃗� ⋅ �⃗�



Matrices



Matrices

An 𝑚 × 𝑛 matrix is a table of numbers with 𝑚 rows, 𝑛
columns:
▶ Example: 2 × 3 matrix:

(𝑚11 𝑚12 𝑚13
𝑚21 𝑚22 𝑚23

)



Matrices

An 𝑚 × 𝑛 matrix is a table of numbers with 𝑚 rows, 𝑛
columns:
▶ Example: 3 × 3 “square” matrix:

(
𝑚11 𝑚12 𝑚13
𝑚21 𝑚22 𝑚23
𝑚31 𝑚32 𝑚33

)



Matrices

An 𝑚 × 𝑛 matrix is a table of numbers with 𝑚 rows, 𝑛
columns:
▶ Example: 3 × 1, a.k.a. a “column vector”:

(
𝑚11
𝑚21
𝑚31

)



Matrix Notation

▶ We use upper-case letters for matrices.

𝐴 = (1 2 3
4 5 6)

▶ Sometimes use subscripts to denote particular
elements: 𝐴13 = 3, 𝐴21 = 4



Matrix Transpose

▶ 𝐴𝑇 denotes the transpose of 𝐴:

𝐴 = (1 2 3
4 5 6) 𝐴𝑇 = (

1 4
2 5
3 6

)



Matrix Addition and Scalar
Multiplication

▶ We can add two matrices…

▶ But only if they are the same shape!

▶ Addition occurs elementwise:

(1 2 3
4 5 6) + (

7 8 9
−1 −2 −3) = (

8 10 12
3 3 3 )



Scalar Multiplication

▶ Scalar multiplication occurs elementwise, too:

2 ⋅ (1 2 3
4 5 6) = (

2 4 6
8 10 12)



Matrix-Vector Multiplication

▶ We can multiply an 𝑚 × 𝑛 matrix 𝐴 by an 𝑛-vector
⃗𝑥...

▶ Note that the number of columns in 𝐴 must
equal the number of entries in ⃗𝑥!

▶ The result is an 𝑚-vector.



Fact #11 Matrix-Vector Mult., View 1

Let 𝐴 be an 𝑚 × 𝑛 matrix and ⃗𝑥 be an 𝑛-vector.

The 𝑖th entry of 𝐴 ⃗𝑥 can be found by dotting the 𝑖th
row of 𝐴 with ⃗𝑥.



Example

𝐴 = (1 2 1
3 4 5) ⃗𝑥 = (

3
2
1
)

(𝐴 ⃗𝑥)1 = (
1
2
1
) ⋅ (

3
2
1
) = 3 + 4 + 1 = 8

(𝐴 ⃗𝑥)2 = (
3
4
5
) ⋅ (

3
2
1
) = 9 + 8 + 5 = 22

𝐴 ⃗𝑥 = (8, 22)𝑇



Fact #12 Matrix-Vector Mult., View 2

Let 𝐴 be an 𝑚 × 𝑛 matrix and ⃗𝑥 = (𝑥1, … , 𝑥𝑛) be an
𝑛-vector.

𝐴 ⃗𝑥 equals:
▶ 𝑥1 times the first column of 𝐴, plus
▶ 𝑥2 times the second column of 𝐴, plus
▶ …, plus
▶ 𝑥𝑛 times the 𝑛th column of 𝐴.



Example

𝐴 = (1 2 1
3 4 5) ⃗𝑥 = (

3
2
1
)

𝐴 ⃗𝑥 = 3 (13) + 2 (
2
4) + 1 (

1
5)

= (39) + (
4
8) + (

1
5)

= ( 822)



Fact #13 Matrix-Vector Mult., View 3

Let 𝐴 be an 𝑚 × 𝑛 matrix and ⃗𝑥 be an 𝑛-vector.
The 𝑖th entry of 𝐴 ⃗𝑥 is given by:

𝑛

∑
𝑗=1
𝐴𝑖𝑗𝑥𝑗



Matrix-Matrix Multiplication

▶ We can multiply two matrices 𝐴 and 𝐵 if (and
only if) # cols in 𝐴 is equal to # rows in 𝐵

▶ If 𝐴 = 𝑚 × 𝑛 and 𝐵 = 𝑛 × 𝑝, the result is 𝑚 × 𝑝.
▶ This is very useful. Remember it!



Fact #14 Matrix-Matrix Mult., View 1

Let 𝐴 be an 𝑚 × 𝑛 matrix and 𝐵 be an 𝑛 × 𝑝 matrix.

The (𝑖, 𝑗)th entry of 𝐴𝐵 is given by dotting the 𝑖th
row of 𝐴 with the 𝑗th column of 𝐵.



Fact #15 Matrix-Matrix Mult., View 2

Let 𝐴 be an 𝑚 × 𝑛 matrix and 𝐵 be an 𝑛 × 𝑝 matrix.

The (𝑖, 𝑗)th entry of 𝐴𝐵 is given by:
𝑛

∑
𝑘=1
𝐴𝑖𝑘𝐵𝑘𝑗



Matrix-Matrix Multiplication
Example

𝐴 = (1 2 1
3 4 5) 𝐵 = (

3 6
1 3
4 8

)

▶ What is the size of 𝐴𝐵?

▶ What is (𝐴𝐵)12?



Fact #16 Matrix Multiplication Properties

Matrix multiplication is:
▶ Distributive: 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶
▶ Associative: (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶)
▶ Not commutative in general: 𝐴𝐵 ≠ 𝐵𝐴



Fact #17 Transpose of a product

The transpose of a product of matrices is the prod-
uct of the transposes, in reverse order:

(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇



Fact #18 �⃗� ⋅ ⃗𝑣 as Matrix Multiplication

An 𝑛-vector can be thought of an an (𝑛 × 1) matrix.
So the dot product of two 𝑛-vectors �⃗� and ⃗𝑣 is the
same as the matrix multiplication �⃗�𝑇 ⃗𝑣.



Identity Matrices

▶ The 𝑛 × 𝑛 identity matrix 𝐼 has ones along the
diagonal:

(

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ 1

)

▶ If 𝐴 is 𝑛 × 𝑚, then 𝐼𝐴 = 𝐴.

▶ If 𝐵 is 𝑚 × 𝑛, then 𝐵𝐼 = 𝐵.



Systems of Linear Equations

▶ We often want to solve 𝐴 ⃗𝑥 = �⃗� for ⃗𝑥.

▶ There are three possible situations:
1. There’s no solution.
2. There’s exactly one solution.
3. There are infinitely many solutions.



Solving Systems

▶ If 𝐴 is 𝑛 × 𝑛, then it might have an inverse.

▶ The inverse of 𝐴, denoted 𝐴−1, is the matrix such
that 𝐴𝐴−1 = 𝐼.

▶ The inverse, if it exists, is also 𝑛 × 𝑛.



Fact #19 Matrix Inverse

Suppose 𝐴 is 𝑛 × 𝑛, and we want to solve 𝐴 ⃗𝑥 = �⃗� for
⃗𝑥.

If 𝐴 is invertible (has an inverse), then there is a
unique solution: ⃗𝑥 = 𝐴−1�⃗�.

If 𝐴 is not invertible then there is either no solution
or infinitely many solutions.



Matrix Inverse

▶ You don’t know how to compute matrix inverses
by hand for this class.

▶ But you do need to know these properties.



What kind of object?



Debugging for ML

▶ In this class, you’ll find yourself doing some long
calculations with matrices and vectors.

▶ It’s easy to get lost in the weeds.

▶ It is helpful to frequently stop and ask yourself:
1. “What kind of object should this be? A scalar, vector,
or matrix?”

2. “What type of object is it actually?”

▶ This can help you debug your ML code, too!



What kind of object?
▶ To answer this, remember:

Fact #20 Types of objects

▶ scalar × vector→ vector
▶ vector + vector→ vector
▶ matrix + matrix→ matrix
▶ vector ⋅ vector (dot product)→ scalar
▶ vector norm→ scalar
▶ (𝑚 × 𝑛) matrix × 𝑛-vector→𝑚-vector
▶ (𝑚×𝑛)matrix × (𝑛×𝑝)matrix→ (𝑚×𝑝)matrix
▶ ...



Watch out for...

▶ The following are not mathematically valid.
Make sure your calculations don’t lead to these:
▶ vector + scalar
▶ matrix + scalar
▶ matrix + vector
▶ (𝑚 × 𝑛) matrix × (𝑝 × 𝑞) matrix, with 𝑛 ≠ 𝑝



Example

Let ⃗𝑥(1), … , ⃗𝑥(𝑛) be 𝑑-dimensional vectors, and �⃗� be a
𝑑-dimensional vector. Let 𝑦1, … , 𝑦𝑛 be scalars.

What type of object is

1
𝑛

𝑛

∑
𝑖=1
( ⃗𝑥𝑖 ⋅ �⃗� − 𝑦𝑖)2



Example

Let ⃗𝑥(1), … , ⃗𝑥(𝑛) be 𝑑-dimensional vectors, and �⃗� be a
𝑑-dimensional vector. Let 𝑦1, … , 𝑦𝑛 be scalars.

What type of object is

1
𝑛

𝑛

∑
𝑖=1
( ⃗𝑥𝑖 ⋅ �⃗�⏟
scalar

−𝑦𝑖)2



Example

Let ⃗𝑥(1), … , ⃗𝑥(𝑛) be 𝑑-dimensional vectors, and �⃗� be a
𝑑-dimensional vector. Let 𝑦1, … , 𝑦𝑛 be scalars.

What type of object is

1
𝑛

𝑛

∑
𝑖=1
( ⃗𝑥𝑖 ⋅ �⃗� − 𝑦𝑖⏟

scalar

)2



Example

Let ⃗𝑥(1), … , ⃗𝑥(𝑛) be 𝑑-dimensional vectors, and �⃗� be a
𝑑-dimensional vector. Let 𝑦1, … , 𝑦𝑛 be scalars.

What type of object is

1
𝑛

𝑛

∑
𝑖=1
( ⃗𝑥𝑖 ⋅ �⃗� − 𝑦𝑖)2⏟

scalar



Example

Let ⃗𝑥(1), … , ⃗𝑥(𝑛) be 𝑑-dimensional vectors, and �⃗� be a
𝑑-dimensional vector. Let 𝑦1, … , 𝑦𝑛 be scalars.

What type of object is

1
𝑛

𝑛

∑
𝑖=1
( ⃗𝑥𝑖 ⋅ �⃗� − 𝑦𝑖)2

⏟⏟⏟⏟⏟⏟⏟
scalar



Example

Let ⃗𝑥(1), … , ⃗𝑥(𝑛) be 𝑑-dimensional vectors, and �⃗� be a
𝑑-dimensional vector. Let 𝑦1, … , 𝑦𝑛 be scalars.

What type of object is

1
𝑛

𝑛

∑
𝑖=1
( ⃗𝑥𝑖 ⋅ �⃗� − 𝑦𝑖)2

⏟⏟⏟⏟⏟⏟⏟⏟⏟
scalar


