DSC 140A Probabilistic Modeling & Machine Kearning

Math Review

Math for Machine Learning

- DSC 140A is a course in machine learning.
- In ML, we often turn the problem of learning into a math problem.
- So, to deeply understand an ML algorithm, you need to understand the math behind it.

Math Prerequisites

- MATH 20A-B-C: Multivariate Calculus
 - Especially the gradient!
- MATH 18: Linear Algebra
- MATH 183: Probability / Statistics
- DSC 40A: Mathematical Foundations of ML

This Review

- We'll review some of the math we'll need in the first part of the course.
- It's OK to not remember everything!
- Paired with a worksheet:

http://dsc140a.com/materials/default/supplementary/math_review/worksheet.pdf

This Review

- Four parts:
 - Summation Notation
 - Vectors
 - Matrices
 - What type of object?

Facts

We'll highlight some important facts throughout this discussion with a box like this:

Fact #1

This is a fact.

Here are all of the facts in these slides:

Fact #1

Fact #2 Constant Factors in a Summation

Fact #3 Proving Properties

Fact #4 Splitting a Summation

Fact #5 Vector Norm

Fact #6 Vector Addition

Fact #7 Scalar Multiplication of a Vector

Fact #8 Dot Product (Coordinate Definition)

Fact #9 Dot Product (Geometric Definition)

Fact #10 Properties of the Dot Product

Fact #11 Matrix-Vector Mult., View 1

Fact #12 Matrix-Vector Mult., View 2

Fact #13 Matrix-Vector Mult., View 3

Fact #14 Matrix-Matrix Mult., View 1

Fact #15 Matrix-Matrix Mult., View 2

Fact #16 Matrix Multiplication Properties

Fact #17 Transpose of a product

Fact #18 $\vec{u}\cdot\vec{v}$ as Matrix Multiplication

Fact #19 Matrix Inverse

Fact #20 Types of objects

DSC 140A Probabilistic Modeling & Machine Kearning

Summation Notation

Summation Notation

- We use summation notation a lot in data science.
- If $x_1, x_2, ..., x_n$ are numbers (or vectors), then:

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$

Constant Factors

Fact #2 Constant Factors in a Summation

Constants can be pulled out of a summation. That is, if a is a constant (independent of i), then:

$$\sum_{i=1}^{n} ax_i = a \sum_{i=1}^{n} x_i$$

Fact #3 Proving Properties

We can prove properties of summations by expanding the sum using ... notation. For example,

to prove Fact 2:

$$\sum_{i=1}^{n} ax_{i} = ax_{1} + ax_{2} + ... + ax_{n}$$

$$= a(x_{1} + x_{2} + ... + x_{n})$$

Fact #4 Splitting a Summation

We can "split" a summation. That is:

$$\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$$

DSC 140A Probabilistic Modeling & Machine Kearning

Vectors

Vectors

- ightharpoonup A vector \vec{x} is a list of numbers.
- ► The dimensionality of the vector is the number of entries it has.

Example: a 3-vector:

$$\vec{x} = \begin{pmatrix} 8 \\ -2 \\ 3 \end{pmatrix}$$

Vector Notation

We write $x \in \mathbb{R}^d$, to denote that \vec{x} is a d-dimensional vector whose entries are real numbers. 1 2

Pronounced "x is in R-d".

 $^{{}^{1}\}mathbb{R}$ is the symbol for the set of real numbers.

 $^{^{2}}$ In $\Delta T_{F}X$, you can write $\ensuremath{\mbox{vec}}\{x\} \in\mbox{mathbb } R^{d}$

Vector Notation

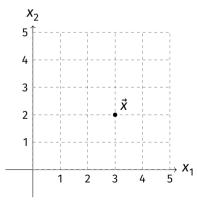
We use subscripts to denote particular elements of a vector.

Example: x_1 is the first element of \vec{x} , x_2 is the section element, etc.

Points vs. Arrows

We often think of vectors as points in space.

Example: $\vec{x} = (3, 2)^T$



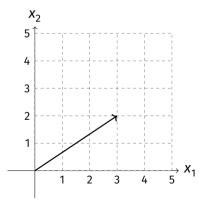
Vector Notation

- We'll often be working with sets of vectors.
- We'll use a superscript to denote the ith vector in the set.
- $\vec{x}^{(1)}$ is the first vector in the set, $\vec{x}^{(2)}$ is the second, etc.

Points vs. Arrows

We can also think of vectors as arrows.

Example: $\vec{x} = (3, 2)^T$



Vector Norm (Length)

Fact #5 Vector Norm

The **norm** (length) of a vector \vec{x} , written $||\vec{x}||$, is the Euclidean distance from the origin to the point represented by \vec{x} :

$$\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_d^2}$$
$$= \sqrt{\sum_{i=1}^d x_i^2}$$

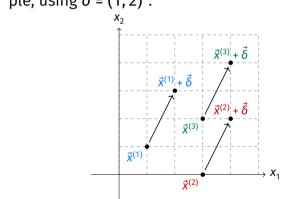
Vector Addition

- Two vectors \vec{x} and \vec{y} can be added together.
- ► The result is a vectors whose entries are the *elementwise* sum of the two vectors.
- Example:

$$\underbrace{\begin{pmatrix} 1\\2\\3 \end{pmatrix}}_{\vec{x}} + \underbrace{\begin{pmatrix} 4\\5\\6 \end{pmatrix}}_{\vec{y}} = \begin{pmatrix} 1+4\\2+5\\3+6 \end{pmatrix} = \underbrace{\begin{pmatrix} 5\\7\\9 \end{pmatrix}}_{\vec{x}+\vec{y}}$$

Fact #6 Vector Addition

Adding (or subtracting) $\vec{\delta}$ to \vec{x} "shifts" \vec{x} . For example, using $\vec{\delta} = (1,2)^T$:



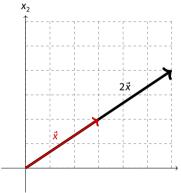
Scalar Multiplication

- We can multiply a vector by a scalar, c.
- The result is a vector whose entries are the original entries multiplied by c.
- Example:

$$3\begin{pmatrix}1\\2\\3\end{pmatrix} = \begin{pmatrix}3\cdot1\\3\cdot2\\3\cdot3\end{pmatrix} = \begin{pmatrix}3\\6\\9\end{pmatrix}$$

Fact #7 Scalar Multiplication of a Vector

Multiplying \vec{x} by c "stretches" \vec{x} by a factor of c. For example, using c=2:



Vector Products

We can "multiply" two vectors together using the dot product.

Fact #8 Dot Product (Coordinate Definition)

The **dot product** of two *d*-vectors \vec{u} and \vec{v} is defined

to be:

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + ... + u_d v_d$$

Dot Product

► The dot product has a geometric interpretation, too.

Fact #9 Dot Product (Geometric Definition)

The dot product of two vectors \vec{u} and \vec{v} is:

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$

where θ is the angle between the two vectors.

Fact #10 Properties of the Dot Product

The dot product is:

- ightharpoonup Commutative: $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- Distributive: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$ Linear: $\vec{u} \cdot (\alpha \vec{v} + \beta \vec{w}) = \alpha \vec{u} \cdot \vec{v} + \beta \vec{u} \cdot \vec{w}$

Linear:
$$\vec{u} \cdot (\alpha \vec{v} + \beta \vec{w}) = \alpha \vec{u} \cdot \vec{v} + \beta \vec{u} \cdot \vec{w}$$

DSC 140A Probabilistic Modeling & Machine Kearning

Matrices

Matrices

An $m \times n$ matrix is a table of numbers with m rows, n columns:

► Example: 2 × 3 matrix:

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \end{pmatrix}$$

Matrices

An $m \times n$ matrix is a table of numbers with m rows, n columns:

Example: 3 × 3 "square" matrix:

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$

Matrices

An $m \times n$ matrix is a table of numbers with m rows, n columns:

Example: 3 × 1, a.k.a. a "column vector":

Matrix Notation

We use upper-case letters for matrices.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

Sometimes use subscripts to denote particular elements: $A_{13} = 3$, $A_{21} = 4$

Matrix Transpose

 \triangleright A^T denotes the **transpose** of A:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 $A^{T} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$

Matrix Addition and Scalar Multiplication

- We can add two matrices...
- But only if they are the same shape!
- Addition occurs elementwise:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} 7 & 8 & 9 \\ -1 & -2 & -3 \end{pmatrix} = \begin{pmatrix} 8 & 10 & 12 \\ 3 & 3 & 3 \end{pmatrix}$$

Scalar Multiplication

Scalar multiplication occurs elementwise, too:

$$2 \cdot \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{pmatrix}$$

Matrix-Vector Multiplication

- We can multiply an $m \times n$ matrix A by an n-vector \vec{x} ...
- Note that the number of columns in A must equal the number of entries in \vec{x} !
- ► The result is an *m*-vector.

Fact #11 Matrix-Vector Mult., View 1

Let A be an $m \times n$ matrix and \vec{x} be an n-vector.

The *i*th entry of $A\vec{x}$ can be found by dotting the *i*th row of A with \vec{x} .

 $(A\vec{x})_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = 3 + 4 + 1 = 8$

 $(A\vec{x})_2 = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = 9 + 8 + 5 = 22$

 $A\vec{x} = (8, 22)^T$

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{pmatrix} \qquad \vec{x} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

Fact #12 Matrix-Vector Mult., View 2

Let A be an $m \times n$ matrix and $\vec{x} = (x_1, ..., x_n)$ be an *n*-vector.

 \triangleright x_1 times the first column of A, plus

 $\triangleright x_2$ times the second column of A, plus ▶ ..., plus

 \triangleright x_n times the *n*th column of A.

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{pmatrix} \qquad \vec{x} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$A\vec{x} = 3\begin{pmatrix} 1\\3 \end{pmatrix} + 2\begin{pmatrix} 2\\4 \end{pmatrix} + 1\begin{pmatrix} 1\\5 \end{pmatrix}$$

$$A\vec{x} = 3\begin{pmatrix} 1\\3 \end{pmatrix} + 2\begin{pmatrix} 2\\4 \end{pmatrix} + 1$$
$$= \begin{pmatrix} 3\\9 \end{pmatrix} + \begin{pmatrix} 4\\8 \end{pmatrix} + \begin{pmatrix} 1\\5 \end{pmatrix}$$

Fact #13 Matrix-Vector Mult., View 3

Let A be an $m \times n$ matrix and \vec{x} be an n-vector.

The *i*th entry of
$$A\vec{x}$$
 is given by:

Matrix-Matrix Multiplication

- We can multiply two matrices A and B if (and only if) # cols in A is equal to # rows in B
- If $A = m \times n$ and $B = n \times p$, the result is $m \times p$.
 - ► This is **very useful**. Remember it!

Fact #14 Matrix-Matrix Mult., View 1

Let A be an $m \times n$ matrix and B be an $n \times p$ matrix.

The (i,j)th entry of AB is given by dotting the ith row of A with the jth column of B.

Fact #15 Matrix-Matrix Mult., View 2

Let A be an $m \times n$ matrix and B be an $n \times p$ matrix.

The (i,j)th entry of AB is given by:

$$\sum_{i=1}^{n} A_{ik}$$

Matrix-Matrix Multiplication Example

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 6 \\ 1 & 3 \\ 4 & 8 \end{pmatrix}$$

- What is the size of AB?
- \triangleright What is $(AB)_{12}$?

Fact #16 Matrix Multiplication Properties

Matrix multiplication is:

- ▶ Distributive: A(B + C) = AB + AC
- Associative: (AB)C = A(BC)
- Not commutative in general: AB ≠ BA

Fact #17 Transpose of a product

The transpose of a product of matrices is the product of the transposes, in reverse order:

$$(AB)' = B'A$$

Fact #18 $\vec{u} \cdot \vec{v}$ as Matrix Multiplication

An *n*-vector can be thought of an an $(n \times 1)$ matrix. So the dot product of two *n*-vectors \vec{u} and \vec{v} is the same as the matrix multiplication $\vec{u}^T \vec{v}$.

Identity Matrices

► The *n* × *n* identity matrix *I* has ones along the diagonal:

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

- ▶ If A is $n \times m$, then IA = A.
- ▶ If B is $m \times n$, then BI = B.

Systems of Linear Equations

We often want to solve $A\vec{x} = \vec{b}$ for \vec{x} .

- There are three possible situations:
 - 1. There's no solution.
 - 2. There's exactly one solution.
 - 3. There are infinitely many solutions.

Solving Systems

- ▶ If A is $n \times n$, then it might have an **inverse**.
- The inverse of A, denoted A^{-1} , is the matrix such that $AA^{-1} = I$.

► The inverse, if it exists, is also $n \times n$.

Fact #19 Matrix Inverse

Suppose A is $n \times n$, and we want to solve $A\vec{x} = \vec{b}$ for

 \vec{x} .

If A is **invertible** (has an inverse), then there is a unique solution: $\vec{x} = A^{-1}\vec{b}$.

If *A* is **not invertible** then there is either no solution or infinitely many solutions.

Matrix Inverse

- You don't know how to compute matrix inverses by hand for this class.
- But you do need to know these properties.

DSC 140A Probabilistic Modeling & Machine Kearning

What kind of object?

Debugging for ML

In this class, you'll find yourself doing some long calculations with matrices and vectors.

- It's easy to get lost in the weeds.
- It is helpful to frequently stop and ask yourself:
 - 1. "What kind of object should this be? A scalar, vector, or matrix?"
 - 2. "What type of object is it actually?"
- This can help you debug your ML code, too!

What kind of object?

To answer this, remember:

Fact #20 Types of objects

- ▶ scalar × vector → vector
- vector + vector → vector
- matrix + matrix → matrix
- vector · vector (dot product) → scalar
- vector norm → scalar
- $(m \times n)$ matrix \times n-vector \rightarrow m-vector
- ► $(m \times n)$ matrix $\times (n \times p)$ matrix $\rightarrow (m \times p)$ matrix
- ▶ .

Watch out for...

- The following are not mathematically valid.
 Make sure your calculations don't lead to these:
 - vector + scalar
 - matrix + scalar
 - matrix + vector
 - $(m \times n)$ matrix \times $(p \times q)$ matrix, with $n \neq p$

Let $\vec{x}^{(1)}, ..., \vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a d-dimensional vector. Let $y_1, ..., y_n$ be scalars.

$$\frac{1}{n}\sum_{i=1}^{n}(\vec{x}_i\cdot\vec{w}-y_i)^2$$

Let $\vec{x}^{(1)}, ..., \vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a d-dimensional vector. Let $y_1, ..., y_n$ be scalars.

$$\frac{1}{n}\sum_{i=1}^{n}(\vec{x}_i\cdot\vec{w}-y_i)^2$$

Let $\vec{x}^{(1)}, ..., \vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a d-dimensional vector. Let $y_1, ..., y_n$ be scalars.

$$\frac{1}{n}\sum_{i=1}^{n}(\vec{x}_i\cdot\vec{w}-y_i)^2$$

Let $\vec{x}^{(1)}, ..., \vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a d-dimensional vector. Let $y_1, ..., y_n$ be scalars.

$$\frac{1}{n}\sum_{i=1}^{n} \frac{(\vec{x}_i \cdot \vec{w} - y_i)^2}{\text{scalar}}$$

Let $\vec{x}^{(1)}, ..., \vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a d-dimensional vector. Let $y_1, ..., y_n$ be scalars.

$$\frac{1}{n} \underbrace{\sum_{i=1}^{n} (\vec{x}_i \cdot \vec{w} - y_i)^2}_{\text{scalar}}$$

Let $\vec{x}^{(1)}, ..., \vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a d-dimensional vector. Let $y_1, ..., y_n$ be scalars.

$$\frac{1}{n} \sum_{i=1}^{n} (\vec{x}_i \cdot \vec{w} - y_i)^2$$