

Math Review

Math for Machine Learning

- ▶ DSC 140A is a course in **machine learning**.
- \blacktriangleright In ML, we often turn the problem of learning into a math problem.
- \triangleright So, to deeply understand an ML algorithm, you need to understand the math behind it.

Math Prerequisites

▶ MATH 20A-B-C: Multivariate Calculus ▶ Especially the **gradient**!

- ▶ MATH 18: Linear Algebra
- ▶ MATH 183: Probability / Statistics
- ▶ DSC 40A: Mathematical Foundations of ML

This Review

- \triangleright We'll review some of the math we'll need in the first part of the course.
- ▶ It's OK to not remember everything!

▶ Paired with a worksheet:

http://dsc140a.com/materials/default/supplementary/math_review/worksheet.pdf

This Review

▶ Four parts:

- ▶ Summation Notation
- ▶ Vectors
- ▶ Matrices
- \blacktriangleright What type of object?

Facts

We'll highlight some important facts throughout this discussion with a box like this:

Here are all of the facts in these slides:

Fact #1 Fact #2 Constant Factors in a Summation Fact #3 Proving Properties Fact #4 Splitting a Summation Fact #5 Vector Norm Fact #6 Vector Addition Fact #7 Scalar Multiplication of a Vector Fact #8 Dot Product (Coordinate Definition) Fact #9 Dot Product (Geometric Definition) Fact #10 Properties of the Dot Product Fact #11 Matrix-Vector Mult., View 1 Fact #12 Matrix-Vector Mult., View 2 Fact #13 Matrix-Vector Mult., View 3 Fact #14 Matrix-Matrix Mult., View 1 Fact #15 Matrix-Matrix Mult., View 2 Fact #16 Matrix Multiplication Properties Fact #17 Transpose of a product Fact #18 $\vec{u} \cdot \vec{v}$ as Matrix Multiplication Fact #19 Matrix Inverse Fact #20 Types of objects

Summation Notation

Summation Notation

 \triangleright We use summation notation a lot in data science.

 \blacktriangleright If $x_1, x_2, ..., x_n$ are numbers (or vectors), then:

$$
\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n
$$

Constant Factors

Fact #2 Constant Factors in a Summation

Constants can be pulled out of a summation. That is, if a is a constant (independent of i), then:

$$
\sum_{i=1}^n a x_i = a \sum_{i=1}^n x_i
$$

Fact #3 Proving Properties

We can prove properties of summations by expanding the sum using … notation. For example, to prove Fact [2:](#page-9-0)

$$
\sum_{i=1}^{n} ax_i = ax_1 + ax_2 + ... + ax_n
$$

= $a(x_1 + x_2 + ... + x_n)$
= $a \sum_{i=1}^{n} x_i$

Fact #4 Splitting a Summation

We can "split" a summation. That is:

$$
\sum_{i=1}^n (x_i + y_i) = \sum_{i=1}^n x_i + \sum_{i=1}^n y_i
$$

Vectors

Vectors

- \triangleright A **vector** \vec{x} is a list of numbers.
- ▶ The **dimensionality** of the vector is the number of entries it has.
- ▶ Example: a 3-vector:

$$
\vec{x} = \begin{pmatrix} 8 \\ -2 \\ 3 \end{pmatrix}
$$

Vector Notation

▶ We write $x \in \mathbb{R}^d$, to denote that \vec{x} is a -dimensional vector whose entries are real numbers 12

 \triangleright Pronounced "x is in R-d".

 $1\mathbb{R}$ is the symbol for the set of real numbers.

²In LTEX,you can write \vec{x} \<mark>in\</mark>mathbb R^d

Vector Notation

- \triangleright We use subscripts to denote particular elements of a vector.
- \blacktriangleright Example: x_1 is the first element of \vec{x} , x_2 is the section element, etc.

Points vs. Arrows

▶ We often think of vectors as **points** in space. Example: $\vec{x} = (3, 2)^T$

Vector Notation

- \triangleright We'll often be working with sets of vectors.
- \triangleright We'll use a superscript to denote the *i*th vector in the set.
- \blacktriangleright $\vec{x}^{(1)}$ is the first vector in the set, $\vec{x}^{(2)}$ is the second, etc.

Points vs. Arrows

 \triangleright We can also think of vectors as arrows. Example: $\vec{x} = (3, 2)^T$

Vector Norm (Length)

Fact #5 Vector Norm

The **norm** (length) of a vector \vec{x} , written $\|\vec{x}\|$, is the Euclidean distance from the origin to the point represented by \vec{x} :

$$
\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_d^2}
$$

$$
= \sqrt{\sum_{i=1}^d x_i^2}
$$

Vector Addition

▶ Two vectors \vec{x} and \vec{y} can be added together.

 \triangleright The result is a vectors whose entries are the *elementwise* sum of the two vectors.

▶ Example:

$$
\left(\frac{1}{2}\right) + \left(\frac{4}{5}\right) = \left(\frac{1+4}{2+5}\right) = \left(\frac{5}{7}\right)
$$

$$
\frac{3}{x} + \frac{3}{y} = \frac{3}{x+5}
$$

Fact #6 Vector Addition

Scalar Multiplication

 \triangleright We can multiply a vector by a scalar, c.

 \triangleright The result is a vector whose entries are the original entries multiplied by c.

▶ Example:

$$
3\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \cdot 1 \\ 3 \cdot 2 \\ 3 \cdot 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix}
$$

Fact #7 Scalar Multiplication of a Vector

Vector Products

 \triangleright We can "multiply" two vectors together using the **dot product**.

Fact #8 Dot Product (Coordinate Definition)

The **dot product** of two d-vectors \vec{u} and \vec{v} is defined to be:

$$
\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_d v_d
$$

$$
= \sum_{i=1}^d u_i v_i
$$

Dot Product

 \blacktriangleright The dot product has a geometric interpretation, too.

Fact #9 Dot Product (Geometric Definition)

The dot product of two vectors \vec{u} and \vec{v} is:

 $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$

where θ is the angle between the two vectors.

Fact #10 Properties of the Dot Product

The dot product is:

- ▶ Commutative: $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- ▶ Distributive: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
- **►** Linear: $\vec{u} \cdot (\alpha \vec{v} + \beta \vec{w}) = \alpha \vec{u} \cdot \vec{v} + \beta \vec{u} \cdot \vec{w}$

An $m \times n$ matrix is a table of numbers with m rows, n columns:

Example: 2×3 matrix:

$$
\begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \end{pmatrix}
$$

An $m \times n$ matrix is a table of numbers with m rows, n columns:

Example: 3×3 "square" matrix:

$$
\begin{pmatrix} m_{11} & m_{12} & m_{13} \ m_{21} & m_{22} & m_{23} \ m_{31} & m_{32} & m_{33} \end{pmatrix}
$$

An $m \times n$ matrix is a table of numbers with m rows, n columns:

Example: 3×1 , a.k.a. a "column vector":

$$
\binom{m_{11}}{m_{21}}_{m_{31}}
$$

Matrix Notation

 \blacktriangleright We use upper-case letters for matrices.

$$
A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}
$$

 \triangleright Sometimes use subscripts to denote particular elements: $A_{13} = 3$, $A_{21} = 4$

Matrix Transpose

 \blacktriangleright A^{T} denotes the $\sf{transpose}$ of A:

$$
A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \qquad A^{T} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}
$$

Matrix Addition and Scalar Multiplication

▶ We can add two matrices…

▶ But **only** if they are the same shape!

▶ Addition occurs elementwise:

$$
\begin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} 7 & 8 & 9 \ -1 & -2 & -3 \end{pmatrix} = \begin{pmatrix} 8 & 10 & 12 \ 3 & 3 & 3 \end{pmatrix}
$$

Scalar Multiplication

▶ Scalar multiplication occurs elementwise, too:

$$
2 \cdot \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{pmatrix}
$$

Matrix-Vector Multiplication

- \triangleright We can multiply an $m \times n$ matrix A by an n-vector \vec{x}
- ▶ Note that the number of columns in A **must** equal the number of entries in \vec{x} !
- \triangleright The result is an *m*-vector.

Fact #11 Matrix-Vector Mult., View 1

Let A be an $m \times n$ matrix and \vec{x} be an n-vector.

The i th entry of A $\vec x$ can be found by dotting the i th row of A with \vec{x} .

$$
A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{pmatrix} \qquad \vec{x} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}
$$

$$
(A\vec{x})_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = 3 + 4 + 1 = 8
$$

$$
(A\vec{x})_2 = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = 9 + 8 + 5 = 22
$$

$$
A\vec{x} = (8, 22)^T
$$

Fact #12 Matrix-Vector Mult., View 2

Let A be an $m \times n$ matrix and $\vec{x} = (x_1, ..., x_n)$ be an n-vector.

Ax² equals:

- \triangleright x_1 times the first column of A, plus
- \triangleright x_2 times the second column of A, plus
- \blacktriangleright ..., plus
- \triangleright x_n times the nth column of A.

$$
A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{pmatrix} \qquad \vec{x} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}
$$

$$
A\vec{x} = 3\begin{pmatrix} 1 \\ 3 \end{pmatrix} + 2\begin{pmatrix} 2 \\ 4 \end{pmatrix} + 1\begin{pmatrix} 1 \\ 5 \end{pmatrix}
$$

$$
= \begin{pmatrix} 3 \\ 9 \end{pmatrix} + \begin{pmatrix} 4 \\ 8 \end{pmatrix} + \begin{pmatrix} 1 \\ 5 \end{pmatrix}
$$

$$
= \begin{pmatrix} 8 \\ 22 \end{pmatrix}
$$

Fact #13 Matrix-Vector Mult., View 3

Let A be an $m \times n$ matrix and \vec{x} be an *n*-vector. The ith entry of $A\vec{x}$ is given by:

$$
\sum_{j=1}^n A_{ij}x_j
$$

Matrix-Matrix Multiplication

- \triangleright We can multiply two matrices A and B if (and only if) # cols in A is equal to # rows in B
- If $A = m \times n$ and $B = n \times p$, the result is $m \times p$. ▶ This is **very useful**. Remember it!

Fact #14 Matrix-Matrix Mult., View 1

Let A be an $m \times n$ matrix and B be an $n \times p$ matrix.

The (i,j) th entry of AB is given by dotting the i th row of A with the jth column of B .

Let A be an $m \times n$ matrix and B be an $n \times p$ matrix.

The (i, j) th entry of AB is given by:

$$
\sum_{k=1}^n A_{ik} B_{kj}
$$

Matrix-Matrix Multiplication Example

$$
A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 6 \\ 1 & 3 \\ 4 & 8 \end{pmatrix}
$$

 \triangleright What is the size of AB?

 \blacktriangleright What is $(AB)_{12}$?

Fact #16 Matrix Multiplication Properties

Matrix multiplication is:

- **•** Distributive: $A(B + C) = AB + AC$
- Associative: $(AB)C = A(BC)$
- \triangleright **Not commutative in general:** $AB \neq BA$

Fact #17 Transpose of a product

The transpose of a product of matrices is the product of the transposes, in reverse order:

 $(AB)^{T} = B^{T}A^{T}$

Fact #18 $\vec{u} \cdot \vec{v}$ as Matrix Multiplication

An *n*-vector can be thought of an an $(n \times 1)$ matrix. So the dot product of two *n*-vectors \vec{u} and \vec{v} is the same as the matrix multiplication $\vec{u}^{\intercal}\vec{v}.$

Identity Matrices

 \triangleright The $n \times n$ **identity matrix** *I* has ones along the diagonal:

$$
\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}
$$

If A is $n \times m$, then $IA = A$.

If B is $m \times n$, then BI = B.

Systems of Linear Equations

 \triangleright We often want to solve $A\vec{x} = \vec{b}$ for \vec{x} .

- \triangleright There are three possible situations:
	- 1. There's no solution.
	- 2. There's exactly one solution.
	- 3. There are infinitely many solutions.

Solving Systems

 \blacktriangleright If A is $n \times n$, then it might have an **inverse**.

 \blacktriangleright The inverse of A, denoted A $^{-1}$, is the matrix such that $AA^{-1} = I$

 \triangleright The inverse, if it exists, is also $n \times n$.

Fact #19 Matrix Inverse

Suppose A is $n \times n$, and we want to solve $A\vec{x} = \vec{b}$ for \vec{x} .

If A is **invertible** (has an inverse), then there is a unique solution: $\vec{x} = A^{-1}\vec{b}$.

If A is **not invertible** then there is either no solution or infinitely many solutions.

Matrix Inverse

- ▶ You don't know how to compute matrix inverses by hand for this class.
- \triangleright But you do need to know these properties.

What kind of object?

Debugging for ML

- \blacktriangleright In this class, you'll find yourself doing some long calculations with matrices and vectors.
- \blacktriangleright It's easy to get lost in the weeds.
- \blacktriangleright It is helpful to frequently stop and ask yourself:
	- 1. "What kind of object *should* this be? A scalar, vector, or matrix?"
	- 2. "What type of object is it actually?"
- \triangleright This can help you debug your ML code, too!

What kind of object?

 \blacktriangleright To answer this, remember:

Fact #20 Types of objects

- ▶ scalar × vector → vector
- $vector + vector \rightarrow vector$
- matrix + matrix \rightarrow matrix
- ▶ vector ⋅ vector (dot product) → scalar
- vector norm \rightarrow scalar

▶ ...

- $(m \times n)$ matrix \times n-vector \rightarrow m-vector
- ▶ $(m \times n)$ matrix $\times (n \times p)$ matrix $\rightarrow (m \times p)$ matrix

Watch out for...

- ▶ The following are **not mathematically valid**. Make sure your calculations don't lead to these:
	- ▶ vector + scalar
	- \triangleright matrix + scalar
	- \blacktriangleright matrix + vector
	- ▶ (*m* × *n*) matrix × (*p* × *q*) matrix, with *n* ≠ *p*

Let $\vec{x}^{(1)}$, ..., $\vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a *d-*dimensional vector. Let $y_1, ..., y_n$ be scalars.

$$
\frac{1}{n}\sum_{i=1}^n (\vec{x}_i \cdot \vec{w} - y_i)^2
$$

Let $\vec{x}^{(1)}$, ..., $\vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a *d-*dimensional vector. Let $y_1, ..., y_n$ be scalars.

$$
\frac{1}{n}\sum_{i=1}^n(\vec{x}_i\cdot\vec{w}-y_i)^2
$$
scalar

Let $\vec{x}^{(1)}, \dots, \vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a *d-*dimensional vector. Let $y_1, ..., y_n$ be scalars.

$$
\frac{1}{n}\sum_{i=1}^n(\vec{x}_i\cdot\vec{w}-y_i)^2
$$
scalar

Let $\vec{x}^{(1)}$, ..., $\vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a *d-*dimensional vector. Let $y_1, ..., y_n$ be scalars.

$$
\frac{1}{n}\sum_{i=1}^n\frac{(\vec{x}_i\cdot\vec{w}-y_i)^2}{\text{scalar}}
$$

Let $\vec{x}^{(1)}$, ..., $\vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a *d-*dimensional vector. Let $y_1, ..., y_n$ be scalars.

$$
\frac{1}{n}\underbrace{\sum_{i=1}^{n}(\vec{x}_i\cdot\vec{w}-y_i)^2}_{\text{scalar}}
$$

Let $\vec{x}^{(1)}$, ..., $\vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a *d-*dimensional vector. Let $y_1, ..., y_n$ be scalars.

