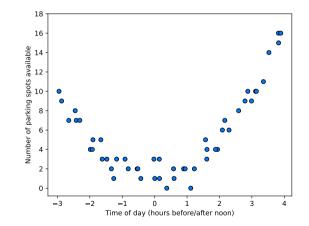


Lecture 8 | Part 1 Feature Maps

Problem

- Patterns in real world data are often non-linear.
- But we only know how to train **linear predictors**.

Example: Regression



Example: Classification

 $x_1 = \text{time of day}$

Today

Solution: non-linear feature maps.

Will allow us to:

- fit complex, non-linear patterns;
- while still using linear models (least squares, SVM, ...)

But we'll need to be careful about overfitting.

Feature Map

- A feature map $\vec{\phi}$: $\mathbb{R}^d \to \mathbb{R}^k$ is a function that takes in a *d*-dimensional vector and outputs a *k*-dimensional feature vector.
- I.e., it creates new features from the old ones.
 Maybe in a non-linear way.

Example

Basis Functions

- ► A **basis function** is a function $\phi_i : \mathbb{R}^d \to \mathbb{R}$.
- It takes in an old feature vector and outputs a single new feature.
- We can think of a feature map $\vec{\phi} : \mathbb{R}^d \to \mathbb{R}^k$ as being made up of k basis functions.

$$\vec{\phi}(\vec{x}) = (\phi_1(\vec{x}), \phi_2(\vec{x}), \dots, \phi_k(\vec{x}))^T$$

Example

► Let
$$\vec{\phi}$$
 : $\mathbb{R}^2 \rightarrow \mathbb{R}^5$ be defined as:
 $\vec{\phi}(x_1, x_2) = (x_1, x_2, x_1^2, x_2^2, x_1 x_2)^T$

The corresponding basis functions are:

$$\phi_1(x_1, x_2) = x_1 \qquad \phi_2(x_1, x_2) = x_2 \phi_3(x_1, x_2) = x_1^2 \qquad \phi_4(x_1, x_2) = x_2^2 \phi_5(x_1, x_2) = x_1 x_2$$

A New Data Set

Say we have a training set with *d* features:

$$(\vec{x}^{(1)}, y_1), \dots, (\vec{x}^{(n)}, y_n)$$

• A feature map $\vec{\phi}$: $\mathbb{R}^d \to \mathbb{R}^k$ gives us a **new** training set with *k* features:

$$(\vec{\phi}(\vec{x}^{(1)}), y_1), \dots, (\vec{\phi}(\vec{x}^{(n)}), y_n)$$

Why?

A (good) feature map can turn non-linear patterns in the old data into linear patterns in the new data.

Example: Parking Classification

Original features:

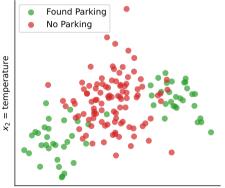
 $\vec{x} = (time, temp.)^{T}$

Feature map:

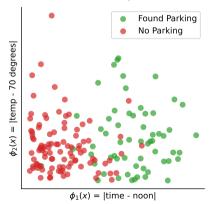
 $\vec{\phi}(\vec{x}) = (|\text{time} - \text{Noon}|, |\text{temp.} - 70|)^{T}$

Example: Parking Classification

Input Space

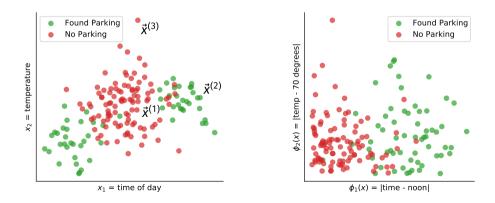


Feature Space

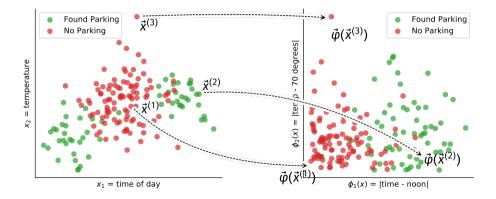


Exercise

(Approximately) where do $\vec{x}^{(1)}$, $\vec{x}^{(2)}$, and $\vec{x}^{(3)}$ get mapped to in feature space?



Solution



Idea

- Feature maps turned non-linear patterns in input space into linear patterns in feature space.
- Idea: train a linear model in feature space.

Procedure: Learning with Feature Maps

- First, pick a feature map $\vec{\phi} : \mathbb{R}^d \to \mathbb{R}^k$.
- ► To train:
 - Given training set $(\vec{x}^{(1)}, y_1), ..., (\vec{x}^{(n)}, y_n)$.
 - 1. Map each $\vec{x}^{(i)}$ to feature space, creating a new data set $(\vec{\phi}(\vec{x}^{(1)}), y_1), \dots, (\vec{\phi}(\vec{x}^{(n)}), y_n)$.
 - 2. Train linear model (least squares, SVM, perceptron...) on the new data in feature space to get \vec{w}^* .

► To predict:

- **Given new input** \vec{x} .
- 1. Map \vec{x} to feature space: $\vec{\phi}(\vec{x})$.
- 2. Predict $H(\vec{x}; \vec{w}^*) = \vec{w}^* \cdot \text{Aug}(\vec{\phi}(\vec{x}))$.

Exercise

Suppose the original feature vectors are in \mathbb{R}^2 and the feature map is defined as

$$\vec{\phi}(x_1, x_2) = (x_1, x_2, x_1^2, x_2^2, x_1 x_2)^T$$

We train an SVM in feature space. What is the dimensionality of \vec{w}^* ?

Example: Least Squares

Let's train a least squares classifier using a feature map.

Step 1: Pick a Feature Map

In the input space, we have features (x_1, x_2) .

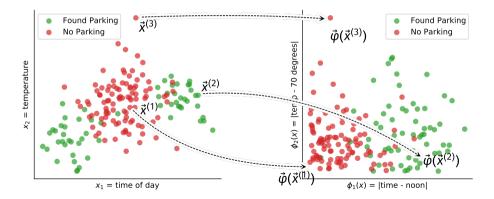
$$x_1 = time$$
, $x_2 = temperature$.

We'll use the same feature map as before:

$$\vec{\phi}(x_1, x_2) = (|x_1 - 12|, |x_2 - 70|)^T$$

Step 2(a): Map to Feature Space

Map every data point to feature space.



Step 2(b): Train in Feature Space

Recall: we train a least squares classifier in input space by computing:

$$\vec{w}^* = (\vec{X}^T \vec{X})^{-1} \vec{X}^T \vec{y}$$

Here, X is the (augmented) (n × d) design matrix:

$$X = \begin{pmatrix} \operatorname{Aug}(\vec{x}^{(1)})^T \longrightarrow \\ \operatorname{Aug}(\vec{x}^{(2)})^T \longrightarrow \\ \vdots \\ \operatorname{Aug}(\vec{x}^{(n)})^T \longrightarrow \end{pmatrix} = \begin{pmatrix} 1 & x_1^{(1)} & x_2^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} \\ \vdots & \vdots & \vdots \\ 1 & x_1^{(n)} & x_2^{(n)} \end{pmatrix}$$

Step 2(b): Train in Feature Space

► In feature space, our feature vectors are $\vec{\phi}(\vec{x}^{(1)}), ..., \vec{\phi}(\vec{x}^{(n)}).$

So the design matrix becomes the $(n \times k)$ matrix:

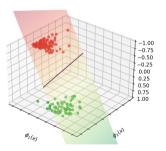
$$\Phi = \begin{pmatrix} \vec{\phi}(\vec{x}^{(1)})^T \longrightarrow \\ \vec{\phi}(\vec{x}^{(2)})^T \longrightarrow \\ \vdots \\ \vec{\phi}(\vec{x}^{(n)})^T \longrightarrow \end{pmatrix} = \begin{pmatrix} 1 & |x_1^{(1)} - 12| & |x_2^{(1)} - 70| \\ 1 & |x_1^{(2)} - 12| & |x_2^{(2)} - 70| \\ \vdots & \vdots \\ 1 & |x_1^{(n)} - 12| & |x_2^{(n)} - 70| \end{pmatrix}$$

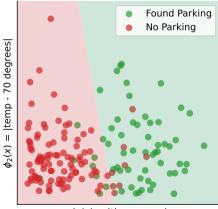
Step 2(b): Train in Feature Space

The least squares solution in feature space is:

$$\vec{w}^* = (\Phi^T \Phi)^{-1} \Phi^T \vec{y}$$

Solution in Feature Space





 $\phi_1(x) = |\text{time - noon}|$

Step 3: Predict

• Given a new example \vec{x} in input space:

- 1. Map \vec{x} to feature space: $\vec{\phi}(\vec{x})$.
- 2. Predict sign($\vec{w}^* \cdot \text{Aug}(\vec{\phi}(\vec{x}))$).

Exercise

Let $\vec{\phi}(x_1, x_2) = (|x_1 - 12|, |x_2 - 70|)^T$. Suppose we train a least squares classifier in feature space and find $\vec{w}^* = (3, -1, 2)^T$.

Given a new point $\vec{x} = (10, 65)^T$ in input space, what is the prediction, $H(\vec{x})$?

The Prediction Function(s)

- There are, in a sense, two prediction functions to consider.
- First, the prediction function in feature space:

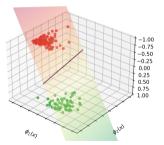
$$H_{\phi}(\vec{z}) = \vec{w} \cdot \text{Aug}(\vec{z})$$

= $W_0 + W_1 z_1 + W_2 z_2 + ... + W_k z_k$

This function takes in a vector z that is already in feature space.

${\cal H}_\phi$ in Feature Space

$$H_{\phi}(\vec{z}) = w_0 + w_1 z_1 + w_2 z_2$$





 $\phi_1(x) = |\text{time - noon}|$

The Prediction Function

There is also the prediction function $H(\vec{x})$ that takes in vectors in input space.

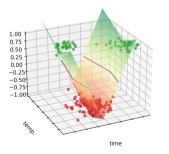
$$H(\vec{x}) = H_{\phi}(\vec{\phi}(\vec{x}))$$

= $\vec{w} \cdot \text{Aug}(\vec{\phi}(\vec{x}))$
= $w_0 + w_1\phi_1(\vec{x}) + w_2\phi_2(\vec{x}) + ... + w_k\phi_k(\vec{x})$

When plotted, this function will look non-linear.

H in Input Space

$$H(\vec{x}) = w_0 + w_1 | x_1 - 12 | + w_2 | x_2 - 70 |$$



Exercise

Let $\vec{\phi}(x_1, x_2) = (|x_1 - 12|, |x_2 - 70|)^T$. Suppose we train a least squares classifier in feature space and find $\vec{w}^* = (3, -1, 2)^T$.

Given a new point $\vec{x} = (10, 65)^T$ in input space, what is the prediction, $H(\vec{x})$? This time, compute the answer without explicitly computing $\vec{\phi}(\vec{x})$.

Lecture 8 | Part 2

Example: Non-Linear Regression

Non-Linear Regression

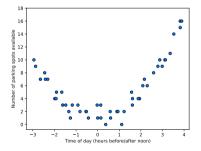
▶ With a feature map $\vec{\phi}(\vec{x}) = (\phi_1(\vec{x}), ..., \phi_k(\vec{x}))^T$, our prediction function becomes:

$$H(\vec{x}) = w_0 + w_1 \phi_1(\vec{x}) + w_2 \phi_2(\vec{x}) + \dots + w_k \phi_k(\vec{x})$$

In other words, we're not constrained to only fitting straight lines/planes:

$$H(x) = w_0 + w_1 x$$

Example: Parking Regression



- Data looks like a quadratic function.
- Idea: fit a function of the form:

$$H(t) = w_0 + w_1 t + w_2 t^2$$

Exercise

Suppose we wish to fit a function of the form $H(t) = w_0 + w_1 t + w_2 t^2$ to the data.

What feature map $\vec{\phi}$ should we use to get this form of prediction function?

Answer

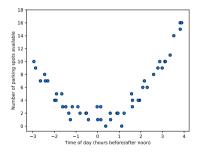
► Use
$$\vec{\phi}(t) = (t, t^2)^T$$
.

► Then the prediction function is:

$$H(t) = \vec{w} \cdot \text{Aug}(\vec{\phi}(t))$$

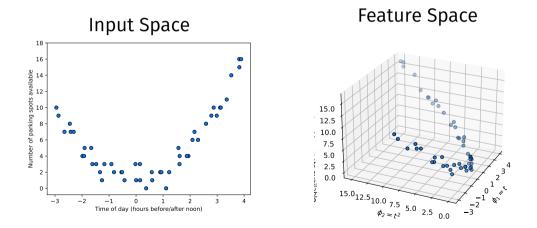
= $(w_0, w_1, w_2) \cdot (1, t, t^2)^T$
= $w_0 + w_1 t + w_2 t^2$

Example: Parking Regression



- Original features:
 - $\vec{x} = (\text{time})^T$
- Feature map:
 - $\vec{\phi}(\vec{x}) = (\text{time, time}^2)^T$

Example: Parking Regression



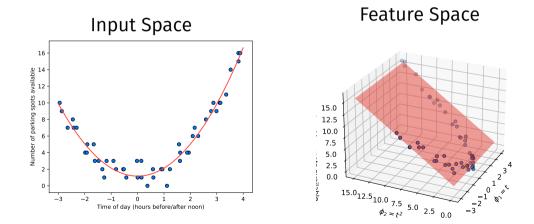
Least Squares

After mapping to feature space, we fit a plane with least squares.

The design matrix becomes:

$$\Phi = \begin{pmatrix} \operatorname{Aug}(t^{(1)})^T \longrightarrow \\ \operatorname{Aug}(t^{(2)})^T \longrightarrow \\ \vdots \\ \operatorname{Aug}(t^{(n)})^T \longrightarrow \end{pmatrix} = \begin{pmatrix} 1 & t^{(1)} & (t^{(1)})^2 \\ 1 & t^{(2)} & (t^{(2)})^2 \\ \vdots & \vdots \\ 1 & t^{(n)} & (t^{(n)})^2 \end{pmatrix}$$

Example: Parking Regression



Lecture 8 | Part 3

ERM with Feature Maps

Learning with Feature Maps

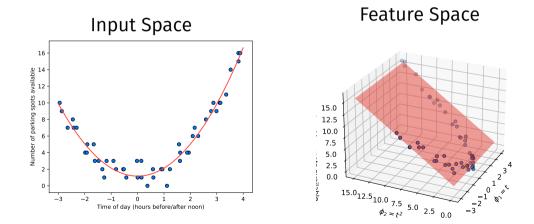
- We've developed a procedure for fitting non-linear patterns with linear models.
 Map to feature space, learn there.
- Is this the "best" approach?

Empirical Risk Minimization

Step 1: choose a **hypothesis class**

- Functions of the form $H(\vec{x}) = \vec{w} \cdot \text{Aug}(\vec{\phi}(\vec{x}))$.
- Step 2: choose a loss function
 - Square loss, perceptron loss, hinge loss, etc.
- Step 3: find H minimizing empirical risk
 - Do we get the same H if we train in feature space?

Example: Parking Regression



Yes

The H_{\$\phi\$} that minimizes risk in feature space is the same as the H that minimizes risk in input space.
 As long as H is a linear function of the **parameters**.

Argument

► Take, for example, square loss.

The risk is:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \vec{w} \cdot \text{Aug}(\vec{\phi}(\vec{x}^{(i)})))^2$$

• Minimizer is $\vec{w}^* = (\Phi^T \Phi)^{-1} \Phi^T \vec{y}$.

In General

Assume prediction function is of the form:

$$H(\vec{x}) = w_0 + w_1 \phi_1(\vec{x}) + w_2 \phi_2(\vec{x}) + \dots + w_k \phi_k(\vec{x})$$

- ► To find w that minimizes risk:
 - Map data to feature space;
 - Train a linear model in feature space.
- Works for least squares, perceptron, SVM, etc.

Takeaway

- The "linear" in "linear prediction function" refers to the **parameters**, not the features!
- We can fit any function of the form:

$$H(x) = w_1 \phi_1(x) + w_2 \phi_2(x) + \dots + w_k \phi_k(x)$$

Lecture 8 | Part 4

Gaussian Radial Basis Functions

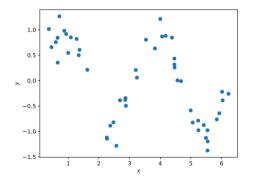
General Basis Functions

We can fit any function of the form:

$$H(x) = w_1 \phi_1(x) + w_2 \phi_2(x) + \dots + w_k \phi_k(x)$$

- Before: we chose ϕ_i carefully based on the problem.
- Is there an easier way?
 - Are there basis functions that work well for many problems?

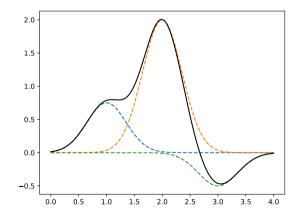
Example



- Suppose we want to fit a function H to this data.
- Locally, each part of the curve looks like a "bump".
- Idea: let H be a sum of bumps.

A Sum of Bumps

 $H(x) = w_1 \text{bump}_1(x) + w_2 \text{bump}_2(x) + w_3 \text{bump}_3(x)$



Gaussian Basis Functions

One way to make a bump: a Gaussian

$$\phi_i(x) = \exp\left(-\frac{(x-\mu_i)^2}{\sigma_i^2}\right)$$

• Must specify¹ **center** μ_i and **width** σ_i for each Gaussian basis function.

¹You pick these; they are not learned!

Exercise

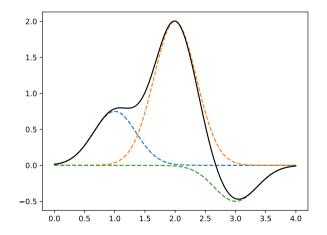
Suppose we have a Gaussian of the form:

$$\phi(x) = \exp\left(-\frac{(x-2)^2}{3}\right)$$

What is the value of $\phi(2)$? What is the value of $\phi(100)$, approximately?

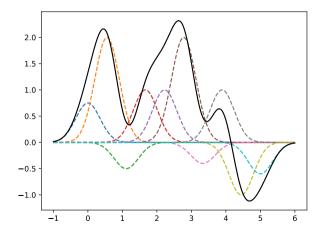
Example: *k* = 3

A function of the form: $H(x) = w_1\phi_1(x) + w_2\phi_2(x) + w_3\phi_3(x)$, using 3 Gaussian basis functions.



Example: *k* = 10

▶ The more basis functions, the more complex *H* can be.



Learning with Gaussian Basis Functions

Gaussians make for very general basis functions.

By adjusting w₁,..., w_k, we can fit complex patterns.

https://dsc140a.com/static/vis/
gaussian-basis-functions-1d

Procedure: Learning with Gaussian Basis Functions

1. Pick number and location of Gaussians. μ_1, \dots, μ_k and $\sigma_1, \dots, \sigma_k$.

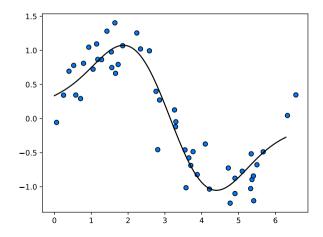
2. Make *k* basis functions:

$$\phi_i(x) = \exp\left(-\frac{(x-\mu_i)^2}{\sigma_i^2}\right).$$

3. Map data to feature space and train a linear model as before.

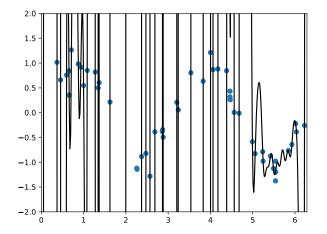
Demo: Sinusoidal Data

- Fit curve to 50 noisy data points.
- Use k = 4 Gaussian basis functions.



Demo: Sinusoidal Data

- Fit curve to 50 noisy data points.
- Use k = 50 Gaussian basis functions.



Next Time

How to control overfitting.