Dsc /40A

Prbabifiste Meihry ¢ Wachine ,e;m,»g,

Lecture 8 Part1

Feature Maps News_
AN




Problem
Patterns in real world data are often non-linear.

But we only know how to train linear predictors.

HED = w4 x 4y L.



Example:

Number of parking spots available

Regression

-2 -1 0 1 2
Time of day (hours before/after noon)




Example: Classification

temperature

X2 =

® Found Parking @
® No Parking

X, = time of day



Today
Solution: non-linear feature maps.

Will allow us to:
fit complex, non-linear patterns;
while still using linear models (least squares, SVM, ...)

But we'll need to be careful about overfitting.



Feature Map

A feature map 43 : RY = RFis a function that
takes in a d-dimensional vector and outputs a
k-dimensional feature vector.

l.e., it creates new features from the old ones.
Maybe in a non-linear way.



Example

Define ¢ : R2 - RS as:
(I’(thz) = (X9, X1 X3, X3, X9 %)
If X = (2,3), then:

$(X) = (2, 3,22, 3% 2x3)7

(2,3,4,9,6)



Basis Functions
A basis function is a function ¢; : R - R,

It takes in an old feature vector and outputs a
single new feature.

We can think of a feature map (f) : RY > Rk as
being made up of k basis functions.

B(X) = (d1(X), §5(X), ..., $o (X))



Example

Let § : R?2 - RS be defined as:
DX, %) = (Xq, X, X3, X5, X1 X5)T
The corresponding basis functions are:

b1(x4, %) = X4 b5(x1, X3) = X,
b3(xq,X;) = X3 b4(x1,%5) = X3
bs(Xq, X3) = X1 X%,



A New Data Set

Say we have a training set with d features:

()?(1),)/1 )v eeey ()?(n)iyn)

A feature map ¢ : RY — R gives us a new
training set with k features:

(B(ED), y1), ey (E™), y,)



Why?

A (good) feature map can turn non-linear
patterns in the old data into linear patterns in
the new data.



temperature

X2

Example: Parking Classification

® Found Parking @

o NoParking Original features:

© wo X = (time, temp.)"
° ?‘:‘ '..020 9@
° W "3:,"'% o Feature map:
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.3 ¢(X) = (|time - Noon|, [temp. - 70|)7

x1 = time of day



temperature

X2 =

Example: Parking Classification

Input Space
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® No Parking
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Feature Space

bd ® Found Parking
® No Parking
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x1 = time of day

¢1(x) =‘|time - noon|



X2 = tem‘)erature

(Approximately) where do XV, @, and X©® get

mapped to in feature space?

p—
@ Found Parking .*(3)
@ No Parking X

ﬁ L4 @ Found Parking

@ No Parking

X1 = time of day

¢1(x) = |time - noon|



temperature

X3 =
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® Found Parking .4(3) """" > ©® @ Found Parking
@ No Parking X 2 )-2(3)) @ No Parking
° T
% N 4
e @O 3 -
© ... .. o
Y 04 Y S ‘ )-2(2) 'T
% % r .“~ [ Y <)
oM O e 5 F
° '. ..’ X e o =
R ‘. I
. o° ( 0 ‘)E
L) .‘ © ° ® e <
Qe Tl
e o ey
¢ s ( (DY
4 / $1(x) = |time - noon|

x; = time of day




Idea

Feature maps turned non-linear patterns in
input space into linear patterns in feature space.

Idea: train a linear model in feature space.



Procedure: Learning with Feature Maps

First, pick a feature map ¢ : RY —» Rk.

To train:
Given training set (X, y,), ..., (X", y,).
Map each X to feature space, creating a new data
set (¢()_€(1))t y1 )r ey (¢()'Z(n))' yn)
Train linear model (least squares, SVM, perceptron...)
on the new data in feature space to get w*.

To predict:
Given new input X.

Map X to feature space: ¢(X).
Predict H(X; W*) = w* - Aug(¢p(X)).



Suppose the original feature vectors are in R? and
the feature map is defined as

¢(X1' XZ) = (X1, X5, X%, X%, X4 XZ)T

We train an SVM in feature space. What is the di-

mensionality of w*? 2 {be(aw ﬂ‘ﬁ""”"‘ﬂ




Example: Least Squares

Let’s train a least squares classifier using a
feature map.

temperature

X2 =

® Found Parking @
® No Parking
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x1 = time of day



Step 1: Pick a Feature Map

In the input space, we have features (x, X,).

X, =time, x, =temperature.

We'll use the same feature map as before:

$(x1 %) = (1%, - 12], |x, - 70])7



temperature

X2 =

Step 2(a): Map to Feature Space

Map every data point to feature space.
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Step 2(b): Train in Feature Space

Recall: we train a least squares classifier in input
space by computing:

Here, X is the (augmented) (n x d) design matrix:

Aug(XM)T —\ (1 XD X
X Aug()?z) — | _ 1 X%z) X(%z)

AugE)T — | \1 X



Step 2(b): Train in Feature Space

In feature Space, our feature vectors are

(xM), ..., p(xM).

So the design matrix becomes the (n x R) matrix:

dMT —\ (1 xV-12] | -70]
EANT — | [1 X =121 1% - 70

¢(x<n>) —/ 1 A" -12) XM - 70



Step 2(b): Train in Feature Space

The least squares solution in feature space is:

W* = (CDTCD)_1 cDTV



Solution in Feature Space
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Step 3: Predict

Given a new example X in input space:
Map X to feature space: ¢(X).
Predict sign(w* - Aug(¢(X))).

|temp - 70 degrees|

$2(x)
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H(%)< W Ag(q3) < (3,-1,2)" (1,2,5)"

= %-24+10 =11 20

Let 4;(X1.X2) = (|x, - 12|,|x, - 70])". Suppose we
train a least squares classifier in feature space and
find w* = (3,-1,2)".

Given a new point X = (10, 65)" in input space, what
. L N
is the prediction, H(X)? V :

(=12, 5)



The Prediction Function(s)

There are, in a sense, two prediction functions to
consider.

First, the prediction function in feature space:
Hy(Z) = W - Aug(2)

= WO + W1 21 + szz + oo + Wka

This function takes in a vector Z that is already in
feature space.



H, in Feature Space

Hy(2) = wy + w, 2,

|temp - 70 degrees|
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The Prediction Function

There is also the prediction function H(X) that
takes in vectors in input space.

H(X) = Hy((X))
= W - Aug($(X))
= Wo + W @q(X) + W5 (X) + .. + Wy dp(X)

When plotted, this function will look non-linear.



H in Input Space

H(X) = wg + wq | X, - 12]
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Let (X, X,) = (|X; - 12[,]X, - 70|)". Suppose we
train a least squares classifier in feature space and
find w* = (3,-1,2)".

Given a new point X = (10, 65)" in input space, what
is the prediction, H(X)? This time, compute the an-
swer without explicitly computing ¢(X).

- W w X 2] 4 W) X, - Fol
= 2 +(.()\\o-lz\41\é;5-4o‘ = A1
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Example: Non-Linear Regression



Non-Linear Regression

With a feature map ¢(X) = (941(X), ..., PR(X))T, our
prediction function becomes:

H(X) = wg + WP (X) + Wy, (X) + ... + WP (X)

In other words, we're not constrained to only
fitting straight lines/planes:

H(x) = wy + w; X



vailable

Number of parking spots a

Example: Parking Regression

Data looks like a quadratic
function.

Idea: fit a function of the form:

H(t) = wy + w,t + w,t?



v > (t, %)

Suppose we wish to fit a function of the form H(t) =
w, + w,t + w,t* to the data.

What feature map 43 should we use to get this form
of prediction function?




Answer

Use ¢(t) = (t, t2)". 2
o, 2% et
Then the prediction function is:
H(t) = W - Aug(é(t))

= (Wo, W1, W2) * (1, t, tz)T

_ 2
= Wy + Wt +w,t



Example: Parking Regression

Original features:

X = (time)’

Feature map:

(time, time?)”
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Number of parking spots available

Example: Parking Regression

Input Space

-3 -2 -1 0 1 2
Time of day (hours before/after noon)
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Least Squares

After mapping to feature space, we fit a plane
with least squares.

The design matrix becomes:

Aug(tT —s 1t (tM)?

© - Aug(t(z))T—> [ () (t(2))2

Aug(tiM)T —s 1t ()2
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Number of parking spots available

Example: Parking Regression
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ERM with Feature Maps



Learning with Feature Maps

We've developed a procedure for fitting

non-linear patterns with linear models.
Map to feature space, learn there.

Is this the “best” approach?



Empirical Risk Minimization

Step 1: choose a hypothesis class
Functions of the form H(X) = W - Aug(¢(X)).

Step 2: choose a loss function
Square loss, perceptron loss, hinge loss, etc.

Step 3: find H minimizing empirical risk
Do we get the same H if we train in feature space?



Number of parking spots available

Example: Parking Regression

Input Space

-3 -2 -1 0 1 2 3 4
Time of day (hours before/after noon)
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Feature Space




Yes

The Hy that minimizes risk in feature space is the

same as the H that minimizes risk in input space.
As long as H is a linear function of the parameters.



Argument
Take, for example, square loss.

The risk is:

R(T) = = > (v, - W - Aug(@(R))?
i=1

Minimizer is W* = (®'d) 'dTy.



In General
Assume prediction function is of the form:
H(X) = wg + WP (X) + Wy (X) + ... + WP (X)

To find w that minimizes risk:
Map data to feature space;
Train a linear model in feature space.

Works for least squares, perceptron, SVM, etc.



B w,d wtt wit®

Takeaway

The “linear” in “linear prediction function” refers
to the parameters, not the features!

We can fit any function of the form:

H(x) = W¢(X) + Wyy(X) + ... + Wy (X)
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Gaussian Radial Basis Functions



General Basis Functions

We can fit any function of the form:
H(X) = Wy (X) + Wop(X) + .. + Wy, Pp(X)

Before: we chose ¢, carefully based on the
problem.

Is there an easier way?

Are there basis functions that work well for many
problems?



1.04

0.54

0.0

—0.51

-1.01

Suppose we want to fit a
function H to this data.

Locally, each part of the
curve looks like a “bump”.

Idea: let H be a sum of
bumps.



A Sum of Bumps

H(x) = w,bump_(x) + w, + Wy

2.01

1.5

1.0

0.51

0.0 1

-0.5




Gaussian Basis Functions

One way to make a bump: a Gaussian

—_ . 2
$(x) = exp (M)

i

Must specify' center p; and width g; for each
Gaussian basis function.

"You pick these; they are not learned!



Suppose we have a Gaussian of the form:

#() 1xp(—(x =8

What is the value of ¢(2)? What is the value of
¢$(100), approximately?

]
’
’

yA

(6o



Example: k = 3

A function of the form: H(x) = w,¢,(x) + w,$,(x) + w;¢;(x),
using 3 Gaussian basis functions.
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Example: k =10

The more basis functions, the more complex H can be.

2.01

1.5

1.01
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—0.51

-1.01




Learning with Gaussian Basis
Functions

Gaussians make for very general basis functions.

By adjusting wy, ..., W, we can fit complex
patterns.

https://dscl40a.com/static/vis/
gaussian-basis-functions-1d



Procedure: Learning with Gaussian
Basis Functions

Pick number and location of Gaussians.
Uqyeeey Hp @Nd Oy, ..., Op.

Make R basis functions:
#/(x) = exp (-2 ).

Map data to feature space and train a linear
model as before.



Demo: Sinusoidal Data

Fit curve to 50 noisy data points.
Use kR = 4 Gaussian basis functions.
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Demo: Sinusoidal Data

Fit curve to 50 noisy data points.
Use k = 50 Gaussian basis functions.
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Next Time

How to control overfitting.



