

Lecture 7 | Part 1

Maximum Margin Classifiers

Recall: Perceptrons

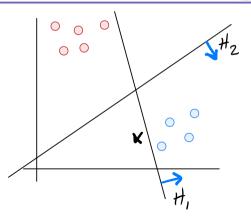
0

Linear classifier fit using loss function:

$$\ell_{\text{tron}}(H(\vec{x}), y) = \begin{cases} 0, & \text{sign}(H(\vec{x})) = y \\ |H(\vec{x})|, & \text{sign}(H(\vec{x})) \neq y \end{cases}$$

Exercise

What is the empirical risk with respect to the perceptron loss of H_1 ? What about H_2 ?

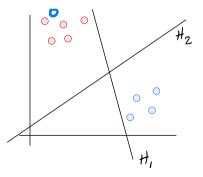


A Problem with the Perceptron

- Recall: the perceptron loss assigns no penalty to points that are correctly classified.
- No matter how close the point is to the boundary.
- Problem: we might learn decision boundary that is very close to the data (overfitting).

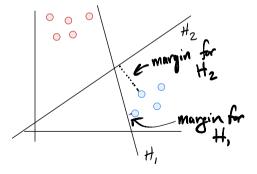
Linear Separability

Data are linearly separable if there exists a linear classifier which perfectly classifies the data.



Margin

The margin is the smallest distance between the decision boundary and a training point.



Maximum Margin Classifier

- If training data are linearly separable, there are many classifiers with zero error.
- We prefer classifiers with larger margins.
 Better generalization performance.
- Can we find the maximum margin classifier?
 I.e., the classifier with the largest possible margin?

Lecture 7 | Part 2

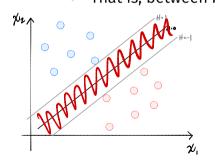
Hard SVM Optimization Problem

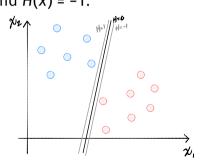
Write down an optimization problem that, assuming linear separability, ensures:

 All points are classified correctly.
 The margin is as large as possible.

The Exclusion Zone |H(🖘) < 1

Define the exclusion zone as the region where |H(x)| < 1.
 ▶ That is, between H(x) = 1 and H(x) = -1.





Maximizing the Margin

The margin and the exclusion zone are related.
 Width of exclusion zone ≤ the margin.

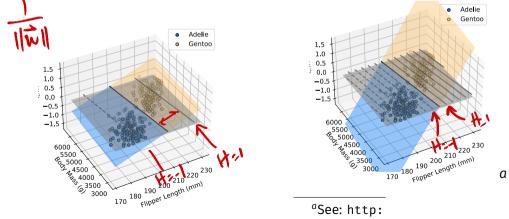
Maximizing the margin is **equivalent** to maximizing the width of the exclusion zone.

- We want to find a linear predictor H that:
 - 1. Classifies all points correctly.
 - 2. Has no training points in the exclusion zone.
 - 3. Has the widest exclusion zone possible.

Claim

 $\vec{w} = (w_{\bullet}, w_{\bullet}, w_{z})$

The width of the exc. zone is controlled by ||w||. Larger ||w|| ⇒ steeper H ⇒ narrower exclusion zone. Smaller ||w|| ⇒ shallower H ⇒ wider exclusion zone.



//dec1/02 com/etatic/via/avm/

- ▶ We want to find a linear predictor *H* that:
 - 1. Classifies all points correctly.
 - 2. Has no training points in the exclusion zone.
 - 3. Has the widest exclusion zone possible.
 - ► That is, has the smallest possible $\|\vec{w}\|$.

- We want to find a linear predictor H that:
 - 1. Classifies all points correctly.
 - 2. Has no training points in the exclusion zone.
 - 3. Has the widest exclusion zone possible.

► That is, has the smallest possible $\|\vec{w}\|$.

Now let's write down a formal optimization problem.

We want to find a H(x) = w ⋅ Aug(x) that: 1. Classifies all points correctly. ▶ That is, sign(H(x⁽ⁱ⁾)) = y_i for all i.

- We want to find a H(x̃) = w̃ · Aug(x̃) that:
 1. Classifies all points correctly.
 ▶ That is, sign(H(x̃⁽ⁱ⁾)) = y_i for all i.
 - 2. Has no training points in the exclusion zone. ► That is, $|H(\vec{x}^{(i)})| \ge 1$ for all *i*.

- We want to find a H(x) = w · Aug(x) that:
 1. Classifies all points correctly.
 - That is, sign($H(\vec{x}^{(i)})$) = y_i for all *i*.
 - 2. Has no training points in the exclusion zone. ► That is, $|H(\vec{x}^{(i)})| \ge 1$ for all *i*.
 - 3. Has the widest exclusion zone possible.
 - That is, has the smallest possible $\|\vec{w}\|$.

- Out of all w satisfying:

 sign(H(x⁽ⁱ⁾)) = y_i for all i. (all predictions correct)
 |H(x⁽ⁱ⁾)| ≥ 1 for all i. (no points in exclusion zone)
- ▶ Find one with smallest ||w̄||
 ▶ (Largest exclusion zone)

Hard-SVM Optimization Problem

The Hard Support Vector Machine optimization problem is:

subject to:

$$sign(\vec{w} \cdot Aug(\vec{x}^{(i)})) = y_i;$$
$$|\vec{w} \cdot Aug(\vec{x}^{(i)})| \ge 1$$

for all *i*.

Modifications

The Hard-SVM problem is often stated slightly differently.

Observation #1

A point is classified correctly when:

$$\begin{cases} \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) > 0, & \text{if } y_i = 1 \\ \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) < 0, & \text{if } y_i = -1 \end{cases}$$

Equivalently, classification is correct if:

$$y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) > 0$$

Hard-SVM Optimization Problem

The Hard Support Vector Machine optimization problem is:

subject to:

$$y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) > 0$$
$$|\vec{w} \cdot \text{Aug}(\vec{x}^{(i)})| \ge 1$$

for all *i*.

Observation #2

Since $y_i = \pm 1$, we can simplify the constraints:

 $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) > 0$

 $|\vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)})| \ge 1$

becomes simply:

 $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1$

Simpler Constraints

► That is, $\vec{x}^{(i)}$ is 1) correctly classified and 2) outside of the exclusion zone if and only if:

Observation #3

Minimizing ||w||² or ||w|| gives same solution.
 allows us to use quadratic programming solvers.

Hard-SVM Optimization Problem

The Hard-SVM optimization problem is:

$$\vec{w}^* = \underset{\vec{w}}{\operatorname{arg\,min}} \|\vec{w}\|^2$$

subject to: $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1$ for all *i*.

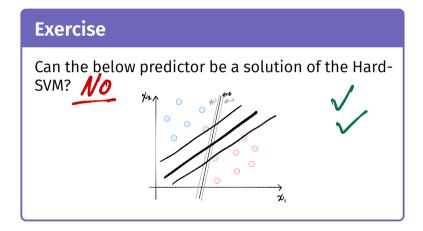
Hard-SVM

This optimization problem is called the Hard Support Vector Machine classifier problem.

- Only makes sense if data are linearly separable.
- ▶ In a moment, we'll see the Soft-SVM.

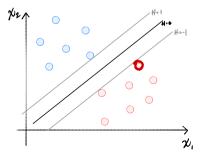
How?

- Turn it into a convex quadratic optimization problem:
 - ▶ Minimize $\|\vec{w}\|^2$ subject to $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1$ for all *i*.
- Can be solved efficiently with quadratic programming.
 - But there is no exact general formula for the solution



SVMs are Maximum Margin Classifiers

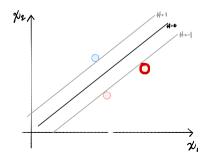
- Intuition says solutions of Hard-SVM will have large margins.
- ► Fact: they maximize the margin.



Support Vectors

• A support vector is a training point $\vec{x}^{(i)}$ such that

 $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) = 1$



Support Vectors

- Fact: the solution to Hard-SVM is always a linear combination of the support vectors.
- That is, let S be the set of support vectors. Then

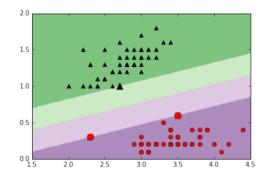
$$\vec{w}^* = \sum_{i \in S} y_i \alpha_i \operatorname{Aug}(\vec{x}^{(i)})$$

Example: Irises

- 3 classes: iris setosa, iris versicolor, iris virginica
- 4 measurements: petal width/height, sepal width/height

Example: Irises

- Using only sepal width/petal width
- Two classes: versicolor (black), setosa (red)

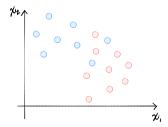


Lecture 7 | Part 3 Soft-Margin SVMs

Non-Separability

So far we've assumed data is linearly separable.

▶ What if it isn't?

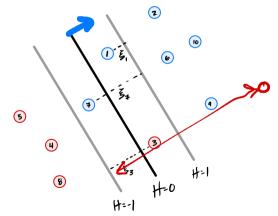


The Problem

- ▶ **Old Goal**: Minimize $\|\vec{w}\|^2$ subject to $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1$ for all *i*.
- ► This **no longer makes sense**.

Cut Some Slack

 Idea: allow some classifications to be ξ_i wrong, but not too wrong.



Cut Some Slack

New problem. Fix some number $C \ge 0$.

$$\min_{\vec{w}\in\mathbb{R}^{d+1},\vec{\xi}\in\mathbb{R}^n}\|\vec{w}\|^2+C\sum_{i=1}^n\xi_i$$

subject to $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1 - \xi_i$ for all $i, \xi_i \ge 0$.

The Slack Parameter, C

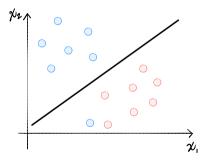
C controls how much slack is given. C > O

$$\min_{\vec{w}\in\mathbb{R}^{d+1},\vec{\xi}\in\mathbb{R}^n}\|\vec{w}\|^2+C\sum_{i=1}^n\xi_i$$

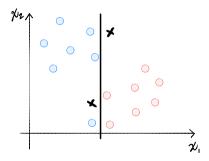
subject to $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1 - \xi_i$ for all $i, \vec{\xi} \ge 0$.

- Large C: don't give much slack. Avoid misclassifications.
- Small C: allow more slack at the cost of misclassifications.

Example: Small C



Example: Large C



Soft and Hard Margins

- Max-margin SVM from before has hard margin.
- Now: the **soft margin** SVM.
- ► As $C \rightarrow \infty$, the margin hardens.

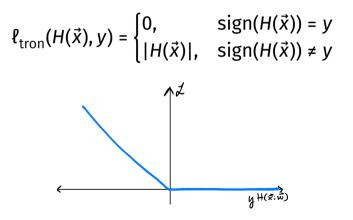
Lecture 7 | Part 4

Loss Functions?

So far, we've learned predictors by minimizing expected loss via ERM.

- But this isn't what we did with Hard-SVM and Soft-SVM.
- It turns out, we can frame Soft-SVM as an ERM problem.

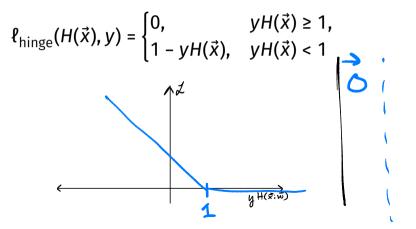
Recall: Perceptron Loss



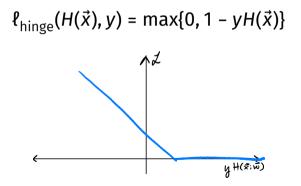
Perceptron Loss

- Perceptron loss did not penalize correct classifications.
- Even if they were very close to boundary.
- Idea: penalize predictions that are close to the boundary, too.

The Hinge Loss



The Hinge Loss



Equivalence

Recall the Soft-SVM problem:

$$\min_{\vec{w}\in\mathbb{R}^{d+1},\vec{\xi}\in\mathbb{R}^n}\|\vec{w}\|^2+C\sum_{i=1}^n\xi_i$$

subject to $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1 - \xi_i$ for all $i, \vec{\xi} \ge 0$.

Note: if $\vec{x}^{(i)}$ is misclassified, then

$$\xi_i = 1 - y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)})$$

Equivalence

The Soft-SVM problem is equivalent to finding w that minimizes:

$$R_{\text{svm}}(\vec{w}) = \|\vec{w}\|^2 + C \sum_{i=1}^n \max\{0, 1 - y_i \vec{w} \cdot \vec{x}^{(i)}\}$$

- *R*_{svm} is the regularized risk.
- C is a parameter affecting "softness" of boundary; chosen by you.

Another Way to Optimize

In practice, SGD is often used to train soft SVMs.

Lecture 7 | Part 5

Demo: Sentiment Analysis

Why use linear predictors?

Linear classifiers look to be very simple.

- That can be both good and bad.
 - Good: the math is tractable, less likely to overfit
 - Bad: may be too simple, underfit
- They can work surprisingly well.

Sentiment Analysis

- **Given**: a piece of text.
- Determine: if it is postive or negative in tone
- Example: "Needless to say, I wasted my money."

The Data

- Sentences from reviews on Amazon, Yelp, IMDB.
- Each labeled (by a human) positive or negative.
- Examples:
 - "Needless to say, I wasted my money."
 - "I have to jiggle the plug to get it to line up right."
 - "Will order from them again!"
 - "He was very impressed when going from the original battery to the extended battery."

The Plan

- ▶ We'll train a soft-margin SVM.
- Problem: SVMs take fixed-length vectors as inputs, not sentences.

Bags of Words

To turn a document into a fixed-length vector:

First, choose a **dictionary** of words:

E.g.: ["wasted", "impressed", "great", "bad", "again"]

- Count number of occurrences of each dictionary word in document.
 - ▶ "It was bad. So bad that I was impressed at how bad it was." $\rightarrow (0, 1, 0, 3, 0)^T$
- This is called a bag of words representation.

Choosing the Dictionary

Many ways of choosing the dictionary.

- Easiest: take all of the words in the training set.
 Perhaps throw out stop words like "the", "a", etc.
- Resulting dimensionality of feature vectors: large.

Experiment

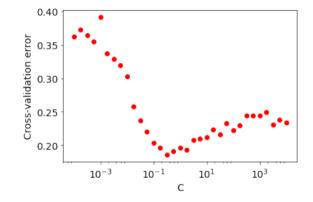
Bag of words features with 4500 word dictionary.

- 2500 training sentences, 500 test sentences.
- ► Train a soft margin SVM.

Choosing C

- ▶ We have to choose the slack parameter, *C*.
- Use cross validation!

Cross Validation



Results

▶ With C = 0.32, test error $\approx 15.6\%$.

С	training error (%)	test error (%)	# support vectors
0.01	23.72	28.4	2294
0.1	7.88	18.4	1766
1	1.12	16.8	1306
10	0.16	19.4	1105
100	0.08	19.4	1035
1000	0.08	19.4	950