
Lecture 7 | Part 1

Maximum Margin Classifiers



Recall: Perceptrons▶ Linear classifier fit using loss function:ℓtron(𝐻( ⃗𝑥), 𝑦) = {0, sign(𝐻( ⃗𝑥)) = 𝑦|𝐻( ⃗𝑥)|, sign(𝐻( ⃗𝑥)) ≠ 𝑦



Exercise
What is the empirical risk with respect to the per-
ceptron loss of 𝐻1? What about 𝐻2?
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A Problem with the Perceptron▶ Recall: the perceptron loss assigns no penalty to
points that are correctly classified.▶ No matter how close the point is to the
boundary.▶ Problem: we might learn decision boundary that
is very close to the data (overfitting).



Linear Separability▶ Data are linearly separable if there exists a linear
classifier which perfectly classifies the data.



Margin▶ The margin is the smallest distance between the
decision boundary and a training point.
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Maximum Margin Classifier▶ If training data are linearly separable, there are
many classifiers with zero error.▶ We prefer classifiers with larger margins.▶ Better generalization performance.▶ Can we find the maximum margin classifier?▶ I.e., the classifier with the largest possible margin?



Goal▶ Write down an optimization problem that,
assuming linear separability, ensures:
1. All points are classified correctly.
2. The margin is as large as possible.



Step #1▶ Goal: all points are classified correctly.▶ Goal: Find �⃗� such that, for each ⃗𝑥(𝑖):sign(𝐻( ⃗𝑥(𝑖))) = sign(�⃗� ⋅ Aug( ⃗𝑥(𝑖))) = 𝑦𝑖▶ Too easy!▶ Perceptron already does this.▶ Does not force margin to be maximized.



Step #2▶ It isn’t sufficient to just classify all points
correctly.▶ We also want to ensure that points aren’t “too
close” to the boundary.▶ Recall: |𝐻( ⃗𝑥)| measures how far ⃗𝑥 is from
boundary.▶ Not actual distance! Measured in “prediction units”.▶ Idea: require that |𝐻( ⃗𝑥(𝑖))| is not “too small”.



Step #2▶ Goal: ensure that every point is classified
correctly, and sufficiently far from the boundary▶ Goal: Find �⃗� such that, for every 𝑖:
1. sign(𝐻( ⃗𝑥(𝑖))) = sign(�⃗� ⋅ Aug( ⃗𝑥(𝑖))) = 𝑦𝑖
2. |𝐻( ⃗𝑥(𝑖))| ≥ 1▶ See: http://dsc140a.com/static/vis/svm/



Step #2▶ Requiring |𝐻( ⃗𝑥(𝑖))| ≥ 1 ensures that no point is
within the “exclusion zone.”
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Exercise
Suppose𝐻 is a linear predictor with parameter vec-
tor �⃗�. Shown are the lines one “prediction unit”
away from the decision boundary.

How will the decision boundary and these lines
change if �⃗� is doubled?
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Answer▶ The decision boundary remains unchanged.▶ The lines one “prediction unit” away move closer.
H+HF1



Problem▶ We can easily ensure |𝐻( ⃗𝑥(𝑖))| ≥ 1 by making the
prediction plane very steep.▶ That is, by making 𝑤0, 𝑤1, … very large.▶ This is not the solution we had in mind!



Step #3▶ Goal: Find �⃗� such that, for every 𝑖:
1. sign(𝐻( ⃗𝑥(𝑖))) = sign(�⃗� ⋅ Aug( ⃗𝑥(𝑖))) = 𝑦𝑖
2. |𝐻( ⃗𝑥(𝑖))| ≥ 1
3. ‖�⃗�‖ is as small as possible



Observation▶ A point is classified correctly when:{�⃗� ⋅ Aug( ⃗𝑥(𝑖)) > 0, if 𝑦𝑖 = 1�⃗� ⋅ Aug( ⃗𝑥(𝑖)) < 0, if 𝑦𝑖 = −1▶ Equivalently, classification is correct if:𝑦𝑖 �⃗� ⋅ Aug( ⃗𝑥(𝑖)) > 0
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Step #3▶ Goal: out of all �⃗� satisfying 𝑦𝑖 �⃗� ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 for
all data points, find that with minimum ‖�⃗�‖▶ That is, find: �⃗�∗ = argmin�⃗� ‖�⃗�‖
subject to: ∀𝑖, 𝑦𝑖�⃗� ⋅ Aug( ⃗𝑥) ≥ 1



Hard-SVM▶ This optimization problem is called the Hard
Support Vector Machine classifier problem.▶ Only makes sense if data are linearly separable.▶ In a moment, we’ll see the Soft-SVM.



How?▶ Turn it into a convex quadratic optimization
problem:▶ Minimize ‖�⃗�‖2 subject to 𝑦𝑖�⃗� ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 for all 𝑖.▶ Can be solved efficiently with quadratic
programming.▶ But there is no exact general formula for the solution



Exercise
Can the below predictor be a solution of the Hard-
SVM?
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SVMs are Maximum Margin
Classifiers▶ Intuition says solutions of Hard-SVM will have

large margins.▶ Fact: they maximize the margin.
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Support Vectors▶ A support vector is a training point ⃗𝑥(𝑖) such that𝑦𝑖�⃗� ⋅ Aug( ⃗𝑥(𝑖)) = 1
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Support Vectors▶ Fact: the solution to Hard-SVM is always a linear
combination of the support vectors.▶ That is, let 𝑆 be the set of support vectors. Then�⃗�∗ = ∑𝑖∈𝑆 𝑦𝑖𝛼𝑖 Aug( ⃗𝑥(𝑖))



Example: Irises

▶ 3 classes: iris setosa, iris versicolor, iris virginica▶ 4 measurements: petal width/height, sepal width/height



Example: Irises▶ Using only sepal width/petal width▶ Two classes: versicolor (black), setosa (red)
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Soft-Margin SVMs



Non-Separability▶ So far we’ve assumed data is linearly separable.▶ What if it isn’t?



The Problem▶ Old Goal: Minimize ‖�⃗�‖2 subject to𝑦𝑖�⃗� ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 for all 𝑖.▶ This no longer makes sense.



Cut Some Slack▶ Idea: allow some classifications to be 𝜉𝑖 wrong,
but not too wrong.
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Cut Some Slack▶ New problem. Fix some number 𝐶 ≥ 0.min�⃗�∈ℝ𝑑+1, ⃗𝜉∈ℝ𝑛 ‖�⃗�‖2 + 𝐶 𝑛∑𝑖=1 𝜉𝑖
subject to 𝑦𝑖�⃗� ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 − 𝜉𝑖 for all 𝑖, 𝜉𝑖 ≥ 0.



The Slack Parameter, C▶ 𝐶 controls how much slack is given.min�⃗�∈ℝ𝑑+1, ⃗𝜉∈ℝ𝑛 ‖�⃗�‖2 + 𝐶 𝑛∑𝑖=1 𝜉𝑖
subject to 𝑦𝑖�⃗� ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 − 𝜉𝑖 for all 𝑖, ⃗𝜉 ≥ 0.▶ Large 𝐶: don’t give much slack. Avoid

misclassifications.▶ Small 𝐶: allow more slack at the cost of
misclassifications.



Example: Small C



Example: Large C
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Soft and Hard Margins▶ Max-margin SVM from before has hard margin.▶ Now: the soft margin SVM.▶ As 𝐶 → ∞, the margin hardens.
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Hinge Loss



Loss Functions?▶ So far, we’ve learned predictors by minimizing
expected loss via ERM.▶ But this isn’t what we did with Hard-SVM and
Soft-SVM.▶ It turns out, we can frame Soft-SVM as an ERM
problem.



Recall: Perceptron Loss

ℓtron(𝐻( ⃗𝑥), 𝑦) = {0, sign(𝐻( ⃗𝑥)) = 𝑦|𝐻( ⃗𝑥)|, sign(𝐻( ⃗𝑥)) ≠ 𝑦
↑
-



Perceptron Loss▶ Perceptron loss did not penalize correct
classifications.▶ Even if they were very close to boundary.▶ Idea: penalize predictions that are close to the
boundary, too.



The Hinge Loss

ℓhinge(𝐻( ⃗𝑥), 𝑦) = {0, 𝑦𝐻( ⃗𝑥) ≥ 1,1 − 𝑦𝐻( ⃗𝑥), 𝑦𝐻( ⃗𝑥) < 1
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The Hinge Loss

ℓhinge(𝐻( ⃗𝑥), 𝑦) = max{0, 1 − 𝑦𝐻( ⃗𝑥)}



Equivalence▶ Recall the Soft-SVM problem:min�⃗�∈ℝ𝑑+1, ⃗𝜉∈ℝ𝑛 ‖�⃗�‖2 + 𝐶 𝑛∑𝑖=1 𝜉𝑖
subject to 𝑦𝑖�⃗� ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 − 𝜉𝑖 for all 𝑖, ⃗𝜉 ≥ 0.▶ Note: if ⃗𝑥(𝑖) is misclassified, then𝜉𝑖 = 1 − 𝑦𝑖�⃗� ⋅ Aug( ⃗𝑥(𝑖))



Equivalence▶ The Soft-SVM problem is equivalent to finding �⃗�
that minimizes:𝑅svm(�⃗�) = ‖�⃗�‖2 + 𝐶 𝑛∑𝑖=1 max{0, 1 − 𝑦𝑖�⃗� ⋅ ⃗𝑥(𝑖)}▶ 𝑅svm is the regularized risk.▶ 𝐶 is a parameter affecting “softness” of
boundary; chosen by you.



Another Way to Optimize▶ In practice, SGD is often used to train soft SVMs.
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Demo: Sentiment Analysis



Why use linear predictors?▶ Linear classifiers look to be very simple.▶ That can be both good and bad.▶ Good: the math is tractable, less likely to overfit▶ Bad: may be too simple, underfit▶ They can work surprisingly well.



Sentiment Analysis▶ Given: a piece of text.▶ Determine: if it is postive or negative in tone▶ Example: “Needless to say, I wasted my money.”



The Data▶ Sentences from reviews on Amazon, Yelp, IMDB.▶ Each labeled (by a human) positive or negative.▶ Examples:▶ “Needless to say, I wasted my money.”▶ “I have to jiggle the plug to get it to line up right.”▶ “Will order from them again!”▶ “He was very impressed when going from the original
battery to the extended battery.”



The Plan▶ We’ll train a soft-margin SVM.▶ Problem: SVMs take fixed-length vectors as
inputs, not sentences.



Bags of Words
To turn a document into a fixed-length vector:▶ First, choose a dictionary of words:▶ E.g.: [”wasted”, ”impressed”, ”great”, ”bad”, ”again”]▶ Count number of occurrences of each dictionary word in

document.▶ “It was bad. So bad that I was impressed at how bad
it was.” → (0, 1, 0, 3, 0)𝑇▶ This is called a bag of words representation.



Choosing the Dictionary▶ Many ways of choosing the dictionary.▶ Easiest: take all of the words in the training set.▶ Perhaps throw out stop words like “the”, “a”, etc.▶ Resulting dimensionality of feature vectors:
large.



Experiment▶ Bag of words features with 4500 word dictionary.▶ 2500 training sentences, 500 test sentences.▶ Train a soft margin SVM.
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Choosing C▶ We have to choose the slack parameter, 𝐶.▶ Use cross validation!



Cross Validation
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Results▶ With 𝐶 = 0.32, test error ≈ 15.6%.




