
Lecture 7 | Part 1

Maximum Margin Classifiers

Recall: Perceptrons▶ Linear classifier fit using loss function:ℓtron(𝐻(⃗𝑥), 𝑦) = {0, sign(𝐻(⃗𝑥)) = 𝑦|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ 𝑦

Exercise
What is the empirical risk with respect to the per-
ceptron loss of 𝐻1? What about 𝐻2?

O A

O

[

A Problem with the Perceptron▶ Recall: the perceptron loss assigns no penalty to
points that are correctly classified.▶ No matter how close the point is to the
boundary.▶ Problem: we might learn decision boundary that
is very close to the data (overfitting).

Linear Separability▶ Data are linearly separable if there exists a linear
classifier which perfectly classifies the data.

Margin▶ The margin is the smallest distance between the
decision boundary and a training point.

#

Y

Maximum Margin Classifier▶ If training data are linearly separable, there are
many classifiers with zero error.▶ We prefer classifiers with larger margins.▶ Better generalization performance.▶ Can we find the maximum margin classifier?▶ I.e., the classifier with the largest possible margin?

Goal▶ Write down an optimization problem that,
assuming linear separability, ensures:
1. All points are classified correctly.
2. The margin is as large as possible.

Step #1▶ Goal: all points are classified correctly.▶ Goal: Find �⃗� such that, for each ⃗𝑥(𝑖):sign(𝐻(⃗𝑥(𝑖))) = sign(�⃗� ⋅ Aug(⃗𝑥(𝑖))) = 𝑦𝑖▶ Too easy!▶ Perceptron already does this.▶ Does not force margin to be maximized.

Step #2▶ It isn’t sufficient to just classify all points
correctly.▶ We also want to ensure that points aren’t “too
close” to the boundary.▶ Recall: |𝐻(⃗𝑥)| measures how far ⃗𝑥 is from
boundary.▶ Not actual distance! Measured in “prediction units”.▶ Idea: require that |𝐻(⃗𝑥(𝑖))| is not “too small”.

Step #2▶ Goal: ensure that every point is classified
correctly, and sufficiently far from the boundary▶ Goal: Find �⃗� such that, for every 𝑖:
1. sign(𝐻(⃗𝑥(𝑖))) = sign(�⃗� ⋅ Aug(⃗𝑥(𝑖))) = 𝑦𝑖
2. |𝐻(⃗𝑥(𝑖))| ≥ 1▶ See: http://dsc140a.com/static/vis/svm/

Step #2▶ Requiring |𝐻(⃗𝑥(𝑖))| ≥ 1 ensures that no point is
within the “exclusion zone.”

H=H=0
H=-1

Exercise
Suppose𝐻 is a linear predictor with parameter vec-
tor �⃗�. Shown are the lines one “prediction unit”
away from the decision boundary.

How will the decision boundary and these lines
change if �⃗� is doubled?

H=H=0
H=-1 in Ci = (zwo

,
zw
, zwe)

Answer▶ The decision boundary remains unchanged.▶ The lines one “prediction unit” away move closer.
H+HF1

Problem▶ We can easily ensure |𝐻(⃗𝑥(𝑖))| ≥ 1 by making the
prediction plane very steep.▶ That is, by making 𝑤0, 𝑤1, … very large.▶ This is not the solution we had in mind!

Step #3▶ Goal: Find �⃗� such that, for every 𝑖:
1. sign(𝐻(⃗𝑥(𝑖))) = sign(�⃗� ⋅ Aug(⃗𝑥(𝑖))) = 𝑦𝑖
2. |𝐻(⃗𝑥(𝑖))| ≥ 1
3. ‖�⃗�‖ is as small as possible

Observation▶ A point is classified correctly when:{�⃗� ⋅ Aug(⃗𝑥(𝑖)) > 0, if 𝑦𝑖 = 1�⃗� ⋅ Aug(⃗𝑥(𝑖)) < 0, if 𝑦𝑖 = −1▶ Equivalently, classification is correct if:𝑦𝑖 �⃗� ⋅ Aug(⃗𝑥(𝑖)) > 0
-

Y:
H(() > 0

Step #3▶ Goal: out of all �⃗� satisfying 𝑦𝑖 �⃗� ⋅ Aug(⃗𝑥(𝑖)) ≥ 1 for
all data points, find that with minimum ‖�⃗�‖▶ That is, find: �⃗�∗ = argmin�⃗� ‖�⃗�‖
subject to: ∀𝑖, 𝑦𝑖�⃗� ⋅ Aug(⃗𝑥) ≥ 1

Hard-SVM▶ This optimization problem is called the Hard
Support Vector Machine classifier problem.▶ Only makes sense if data are linearly separable.▶ In a moment, we’ll see the Soft-SVM.

How?▶ Turn it into a convex quadratic optimization
problem:▶ Minimize ‖�⃗�‖2 subject to 𝑦𝑖�⃗� ⋅ Aug(⃗𝑥(𝑖)) ≥ 1 for all 𝑖.▶ Can be solved efficiently with quadratic
programming.▶ But there is no exact general formula for the solution

Exercise
Can the below predictor be a solution of the Hard-
SVM?

H+HF1

X
No

SVMs are Maximum Margin
Classifiers▶ Intuition says solutions of Hard-SVM will have

large margins.▶ Fact: they maximize the margin.
H=1

H=0

A=- 1

O

Support Vectors▶ A support vector is a training point ⃗𝑥(𝑖) such that𝑦𝑖�⃗� ⋅ Aug(⃗𝑥(𝑖)) = 1
H=1

H=0

A=- 1m
n

Support Vectors▶ Fact: the solution to Hard-SVM is always a linear
combination of the support vectors.▶ That is, let 𝑆 be the set of support vectors. Then�⃗�∗ = ∑𝑖∈𝑆 𝑦𝑖𝛼𝑖 Aug(⃗𝑥(𝑖))

Example: Irises

▶ 3 classes: iris setosa, iris versicolor, iris virginica▶ 4 measurements: petal width/height, sepal width/height

Example: Irises▶ Using only sepal width/petal width▶ Two classes: versicolor (black), setosa (red)

Lecture 7 | Part 2

Soft-Margin SVMs

Non-Separability▶ So far we’ve assumed data is linearly separable.▶ What if it isn’t?

The Problem▶ Old Goal: Minimize ‖�⃗�‖2 subject to𝑦𝑖�⃗� ⋅ Aug(⃗𝑥(𝑖)) ≥ 1 for all 𝑖.▶ This no longer makes sense.

Cut Some Slack▶ Idea: allow some classifications to be 𝜉𝑖 wrong,
but not too wrong.

Xi 3

....

Cut Some Slack▶ New problem. Fix some number 𝐶 ≥ 0.min�⃗�∈ℝ𝑑+1, ⃗𝜉∈ℝ𝑛 ‖�⃗�‖2 + 𝐶 𝑛∑𝑖=1 𝜉𝑖
subject to 𝑦𝑖�⃗� ⋅ Aug(⃗𝑥(𝑖)) ≥ 1 − 𝜉𝑖 for all 𝑖, 𝜉𝑖 ≥ 0.

The Slack Parameter, C▶ 𝐶 controls how much slack is given.min�⃗�∈ℝ𝑑+1, ⃗𝜉∈ℝ𝑛 ‖�⃗�‖2 + 𝐶 𝑛∑𝑖=1 𝜉𝑖
subject to 𝑦𝑖�⃗� ⋅ Aug(⃗𝑥(𝑖)) ≥ 1 − 𝜉𝑖 for all 𝑖, ⃗𝜉 ≥ 0.▶ Large 𝐶: don’t give much slack. Avoid

misclassifications.▶ Small 𝐶: allow more slack at the cost of
misclassifications.

Example: Small C

Example: Large C

I

Soft and Hard Margins▶ Max-margin SVM from before has hard margin.▶ Now: the soft margin SVM.▶ As 𝐶 → ∞, the margin hardens.

Lecture 7 | Part 3

Hinge Loss

Loss Functions?▶ So far, we’ve learned predictors by minimizing
expected loss via ERM.▶ But this isn’t what we did with Hard-SVM and
Soft-SVM.▶ It turns out, we can frame Soft-SVM as an ERM
problem.

Recall: Perceptron Loss

ℓtron(𝐻(⃗𝑥), 𝑦) = {0, sign(𝐻(⃗𝑥)) = 𝑦|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ 𝑦
↑
-

Perceptron Loss▶ Perceptron loss did not penalize correct
classifications.▶ Even if they were very close to boundary.▶ Idea: penalize predictions that are close to the
boundary, too.

The Hinge Loss

ℓhinge(𝐻(⃗𝑥), 𝑦) = {0, 𝑦𝐻(⃗𝑥) ≥ 1,1 − 𝑦𝐻(⃗𝑥), 𝑦𝐻(⃗𝑥) < 1
L

It

The Hinge Loss

ℓhinge(𝐻(⃗𝑥), 𝑦) = max{0, 1 − 𝑦𝐻(⃗𝑥)}

Equivalence▶ Recall the Soft-SVM problem:min�⃗�∈ℝ𝑑+1, ⃗𝜉∈ℝ𝑛 ‖�⃗�‖2 + 𝐶 𝑛∑𝑖=1 𝜉𝑖
subject to 𝑦𝑖�⃗� ⋅ Aug(⃗𝑥(𝑖)) ≥ 1 − 𝜉𝑖 for all 𝑖, ⃗𝜉 ≥ 0.▶ Note: if ⃗𝑥(𝑖) is misclassified, then𝜉𝑖 = 1 − 𝑦𝑖�⃗� ⋅ Aug(⃗𝑥(𝑖))

Equivalence▶ The Soft-SVM problem is equivalent to finding �⃗�
that minimizes:𝑅svm(�⃗�) = ‖�⃗�‖2 + 𝐶 𝑛∑𝑖=1 max{0, 1 − 𝑦𝑖�⃗� ⋅ ⃗𝑥(𝑖)}▶ 𝑅svm is the regularized risk.▶ 𝐶 is a parameter affecting “softness” of
boundary; chosen by you.

Another Way to Optimize▶ In practice, SGD is often used to train soft SVMs.

Lecture 7 | Part 4

Demo: Sentiment Analysis

Why use linear predictors?▶ Linear classifiers look to be very simple.▶ That can be both good and bad.▶ Good: the math is tractable, less likely to overfit▶ Bad: may be too simple, underfit▶ They can work surprisingly well.

Sentiment Analysis▶ Given: a piece of text.▶ Determine: if it is postive or negative in tone▶ Example: “Needless to say, I wasted my money.”

The Data▶ Sentences from reviews on Amazon, Yelp, IMDB.▶ Each labeled (by a human) positive or negative.▶ Examples:▶ “Needless to say, I wasted my money.”▶ “I have to jiggle the plug to get it to line up right.”▶ “Will order from them again!”▶ “He was very impressed when going from the original
battery to the extended battery.”

The Plan▶ We’ll train a soft-margin SVM.▶ Problem: SVMs take fixed-length vectors as
inputs, not sentences.

Bags of Words
To turn a document into a fixed-length vector:▶ First, choose a dictionary of words:▶ E.g.: [”wasted”, ”impressed”, ”great”, ”bad”, ”again”]▶ Count number of occurrences of each dictionary word in

document.▶ “It was bad. So bad that I was impressed at how bad
it was.” → (0, 1, 0, 3, 0)𝑇▶ This is called a bag of words representation.

Choosing the Dictionary▶ Many ways of choosing the dictionary.▶ Easiest: take all of the words in the training set.▶ Perhaps throw out stop words like “the”, “a”, etc.▶ Resulting dimensionality of feature vectors:
large.

Experiment▶ Bag of words features with 4500 word dictionary.▶ 2500 training sentences, 500 test sentences.▶ Train a soft margin SVM.

d

-&

Choosing C▶ We have to choose the slack parameter, 𝐶.▶ Use cross validation!

Cross Validation

I

Results▶ With 𝐶 = 0.32, test error ≈ 15.6%.

