
Lecture 6 | Part 1

Linear Classification
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Classification

▶ We’ve been talking about regression.
▶ Label is a continuous value.

▶ What about classification?
▶ Label is a discrete value.
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Example: Penguins
▶ Given a new penguin’s measurements, predict its
species.
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Looking Back

▶ We know one classification algorithm already.
▶ 𝑘-Nearest Neighbors.

▶ But 𝑘-NN does not “learn”, it “memorizes”.

▶ Can we use linear predictors for classification?

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1(flipper length) + 𝑤2(body mass)

▶ Train by minimizing risk?
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Linear Classifiers

▶ Problem: output of 𝐻( ⃗𝑥) is a real number; we
want the output to be a species.

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1(flipper length) + 𝑤2(body mass)

▶ Idea: turn species into a number.
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Label Encodings
▶ There are two natural ways to encode a label 𝑦
as a number in binary classification.

▶ 𝑦 ∈ {0, 1}:
▶ 𝑦 = 0 for one class, 𝑦 = 1 for the other.
▶ Example: 0 for Adelie, 1 for Gentoo.

▶ 𝑦 ∈ {−1, 1}:
▶ 𝑦 = −1 for one class, 𝑦 = 1 for the other.
▶ Example: -1 for Adelie, 1 for Gentoo.

▶ Unless otherwise specified, we’ll use 𝑦 ∈ {−1, 1}.
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Linear Classifiers

▶ Assume the labels are encoded as 𝑦 ∈ {−1, 1}.

▶ Another problem: 𝐻( ⃗𝑥) can be any real number.
▶ Output is not necessarily −1 or 1.

▶ We need to turn output of 𝐻( ⃗𝑥) into -1 or 1.
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Sign Function

▶ Idea: use the sign function.

sign(𝑧) = {
1 if 𝑧 > 0
−1 if 𝑧 < 0
0 if 𝑧 = 0
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Linear Classifiers

▶ We will still use linear predictors.
▶ 𝐻( ⃗𝑥; �⃗�) = Aug( ⃗𝑥) ⋅ �⃗�.

▶ But our final predicted label will be sign(𝐻( ⃗𝑥; �⃗�)).
▶ If 𝐻( ⃗𝑥) = 0, predict either 1 or -1 (it’s arbitrary).

▶ sign(𝐻( ⃗𝑥; �⃗�)) is called a linear classifier.
▶ Takes in a feature vector and outputs a discrete label.
▶ Sometimes called a linear decision function.
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Interpretation: Weighted Vote

▶ A linear classifier is like a weighted vote.

▶ Each term 𝑤𝑖𝑥𝑖 “votes” on the label.

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

▶ If the sum is:
▶ positive: predict 1.
▶ negative: predict −1.
▶ zero: toss a coin, it’s arbitrary!
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The Prediction Surface
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▶ The place where 𝐻( ⃗𝑥) = 0 is
the decision boundary.

▶ On one side, we predict 1.

▶ On the other, we predict −1.
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Decision Boundary

▶ The decision boundary is the place where the
output of 𝐻( ⃗𝑥) switches from “yes” to “no”.

▶ If 𝐻 is a linear predictor and1
▶ ⃗𝑥 ∈ 𝑅1, then the decision boundary is just a number.
▶ ⃗𝑥 ∈ ℝ2, the boundary is a straight line.
▶ ⃗𝑥 ∈ ℝ𝑑, the boundary is a 𝑑 − 1 dimensional (hyper)
plane.

1when plotted in the original feature coordinate space!
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Magnitude of 𝐻
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▶ The magnitude of 𝐻( ⃗𝑥)
is proportional to the
distance from the
decision boundary.
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Exercise

True or False: it’s possible for two different linear
prediction functions 𝐻1( ⃗𝑥) and 𝐻2( ⃗𝑥) to have the
exact same decision boundary.
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True
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Another Useful Fact

▶ �⃗� controls the orientation of the decision
boundary.
▶ A different �⃗� gives a different decision boundary.

▶ Let �⃗�′ = (𝑤1, … , 𝑤𝑑).
▶ In other words, it is �⃗� without the bias term 𝑤0.

▶ Fact: the decision boundary of 𝐻( ⃗𝑥) = Aug( ⃗𝑥) ⋅ �⃗� is
orthogonal to �⃗�′.
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Finding a Linear Classifier

▶ How do we find a good linear classifier?
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ERM for Classification

▶ Step 1: choose a hypothesis class
▶ We’ve chosen linear classifiers, sign(Aug( ⃗𝑥) ⋅ �⃗�).

▶ Step 2: choose a loss function

▶ Step 3: find 𝐻 minimizing empirical risk
▶ In case of linear predictors, equivalent to finding �⃗�.
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A First Idea

▶ Let’s try using the same, familiar square loss.
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Lecture 6 | Part 2

Least Squares Classifiers
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Classification as Regression

▶ We can think of classification as a special case of
regression where the labels are always 1 or -1.

▶ Goal: find a prediction function 𝐻( ⃗𝑥) whose
output is:
▶ close to 1 for points from positive class.
▶ close to -1 for points from negative class.
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Least Squares Classifier

▶ Idea: least squares regression can be used for
classification, too.

▶ The resulting algorithm is called the least
squares classifier.
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Linear Least Squares Classification

▶ To train:
▶ Given training data ( ⃗𝑥1, 𝑦1), … , ( ⃗𝑥𝑛, 𝑦𝑛), with 𝑦𝑖 ∈ {−1, 1}.
1. Construct 𝑛 × (𝑑 + 1) augmented design matrix, 𝑋.
2. Solve the normal equations: �⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦.

▶ To predict:
▶ Given a new point ⃗𝑥, predict sign(Aug( ⃗𝑥) ⋅ �⃗�∗).
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Square Loss for Classification

▶ We designed square loss for regression

▶ We can use it for classification.

▶ But it might not be the best choice.
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Exercise

What is the total square
loss of the predictor on
the data?

Assume is class -1 and
is class 1.
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Observation

▶ The square loss penalizes points that are far
from the decision boundary.

▶ Even if they are correctly classified!

27 / 72



Least Squares and Outliers

2

2Bishop, Pattern Recognition and Machine Learning
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Another Loss?

▶ Least squares classifiers can work well in practice.
▶ Easy to implement!

▶ But maybe a loss designed for classification will
work better.
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Lecture 6 | Part 3

0-1 Loss
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Empirical Risk Minimization

▶ Step 1: choose a hypothesis class
▶ Let’s assume we’ve chosen linear predictors

▶ Step 2: choose a loss function

▶ Step 3: minimize expected loss (empirical risk)
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Another Loss Function

▶ What about the 0-1 loss?
▶ Loss = 0 if prediction is correct.
▶ Loss = 1 if prediction is incorrect.

▶ More formally:

ℓ0-1(𝐻( ⃗𝑥
(𝑖)), 𝑦𝑖) = {

0 if sign(𝐻( ⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻( ⃗𝑥(𝑖))) ≠ 𝑦𝑖

32 / 72



Expected 0-1 Loss

▶ The expected 0-1 loss (empirical risk) has a nice
interpretation:

𝑅0-1(𝐻) =
1
𝑛

𝑛

∑
𝑖=1
{
0 if sign(𝐻( ⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻( ⃗𝑥(𝑖))) ≠ 𝑦𝑖

Exercise

What is it?
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Answer

▶ The empirical risk with respect to the 0-1 loss is
the misclassification rate of the classifier.
▶ That is, (1 - the accuracy)

𝑅0-1(𝐻) =
1
𝑛

𝑛

∑
𝑖=1
{
0 if sign(𝐻( ⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻( ⃗𝑥(𝑖))) ≠ 𝑦𝑖

=
# of incorrect predictions

𝑛
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ERM for the 0-1 Loss

▶ Minimizing the empirical risk with respect to the
0-1 loss is equivalent to maximizing the accuracy.

▶ That’s exactly what we want!

▶ But there’s a problem...
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Exercise

What is the gradient of
𝑅0-1(𝐻)with respect to the
current �⃗�?
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Answer

▶ The gradient of 𝑅0-1 is 0⃗ almost everywhere.

▶ In other words, 𝑅0-1 is flat almost everywhere.

▶ This is a problem because gradient descent
needs slope information to make progress.
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Computationally Difficult

▶ It is not feasible to minimize 0-1 risk in general.

▶ More formally: NP-Hard to optimize expected 0-1
loss in general.3

3It is efficiently doable if the classes are linearly separable by finding
convex hulls of each class. If non-separable, it is difficult.
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Main Idea

It is computationally difficult (NP-Hard) to find a
linear classifier with maximum accuracy, in gen-
eral.
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Lecture 6 | Part 4

Perception Loss
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Surrogate Loss

▶ We’d like to use the 0-1 loss, but it’s not feasible.

▶ Instead, we use a surrogate loss.

▶ That is, a loss that is similar in spirit, but leads to
easier optimization problems.
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A New Loss

▶ No penalty if point is correctly classified.
▶ Like the 0-1 loss.

▶ A penalty that grows with distance to decision
boundary if point is incorrectly classified.
▶ Unlike the 0-1 loss.
▶ This will give us a non-zero gradient.
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Perceptron Loss

▶ We call this loss the perceptron loss.

ℓtron(𝐻( ⃗𝑥), 𝑦) = {
0, sign(𝐻( ⃗𝑥)) = 𝑦
|𝐻( ⃗𝑥)|, sign(𝐻( ⃗𝑥)) ≠ 𝑦

▶ Remember, |𝐻( ⃗𝑥)| is proportional to distance
from decision boundary.
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Exercise

What is the total percep-
tron loss of the predictor
on the data?

Assume is class -1 and
is class 1.
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Convexity?

▶ Is the perceptron loss convex in �⃗�?

▶ Trick:

ℓtron(Aug( ⃗𝑥) ⋅ �⃗�, 𝑦) = {
0, sign(Aug( ⃗𝑥) ⋅ �⃗�) = 𝑦
|Aug( ⃗𝑥) ⋅ �⃗�|, sign(Aug( ⃗𝑥) ⋅ �⃗�) ≠ 𝑦

= max(0, −𝑦Aug( ⃗𝑥) ⋅ �⃗�)

▶ Fact: Max of convex functions is convex.
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ERM for the Perceptron

▶ Goal: minimize empirical risk w.r.t. perceptron
loss for a linear predictor 𝐻( ⃗𝑥) = Aug( ⃗𝑥) ⋅ �⃗�.

𝑅tron(�⃗�) =
1
𝑛

𝑛

∑
𝑖=1
ℓtron(𝐻( ⃗𝑥

(𝑖)), 𝑦𝑖)

= 1
𝑛

𝑛

∑
𝑖=1
{0, sign(Aug( ⃗𝑥(𝑖)) ⋅ �⃗�) = 𝑦𝑖
|Aug( ⃗𝑥(𝑖)) ⋅ �⃗�|, sign(Aug( ⃗𝑥(𝑖)) ⋅ �⃗�) ≠ 𝑦𝑖
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Minimizing Perceptron Risk

▶ 𝑅tron is not differentiable.
▶ Because of the absolute value.

▶ But it is convex.
▶ Since ℓtron is convex.

▶ We can minimize using subgradient descent.
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A Subgradient of the Loss
▶ We need a subgradient of ℓtron.

ℓtron(Aug( ⃗𝑥) ⋅ �⃗�, 𝑦) = max(0, −𝑦Aug( ⃗𝑥) ⋅ �⃗�)

21012
w1

21
0
1

2

w
2

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

tron

48 / 72



A Subgradient of the Loss

▶ We need a subgradient of ℓtron.

ℓtron(Aug( ⃗𝑥) ⋅ �⃗�, 𝑦) = max(0, −𝑦Aug( ⃗𝑥) ⋅ �⃗�)

▶ If −𝑦Aug( ⃗𝑥) ⋅ �⃗� > 0, the gradient is −𝑦Aug( ⃗𝑥).

▶ If −𝑦Aug( ⃗𝑥) ⋅ �⃗� < 0, the gradient is 0⃗.

▶ Claim: at −𝑦Aug( ⃗𝑥) ⋅ �⃗� = 0, 0⃗ is a subgradient.
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Subgradient of the Loss
▶ We’ve found:

subgrad ℓtron(Aug( ⃗𝑥) ⋅ �⃗�, 𝑦)

= {
0⃗, if −𝑦Aug( ⃗𝑥) ⋅ �⃗� < 0
−𝑦Aug( ⃗𝑥), if −𝑦Aug( ⃗𝑥) ⋅ �⃗� > 0

▶ Or, equivalently:
subgrad ℓtron(Aug( ⃗𝑥) ⋅ �⃗�, 𝑦)

= {
0⃗, if sign(Aug( ⃗𝑥) ⋅ �⃗�) = 𝑦
−𝑦Aug( ⃗𝑥), if sign(Aug( ⃗𝑥) ⋅ �⃗�) ≠ 𝑦
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Subgradient of the Risk

▶ A subgradient of the risk is then:

subgrad𝑅tron(�⃗�) =

1
𝑛

𝑛

∑
𝑖=1
{
0⃗, sign(Aug( ⃗𝑥(𝑖)) ⋅ �⃗�) = 𝑦𝑖
−𝑦𝑖 Aug( ⃗𝑥

(𝑖)), sign(Aug( ⃗𝑥(𝑖)) ⋅ �⃗�) ≠ 𝑦𝑖
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The Perceptron

▶ To train:
▶ Given training data ( ⃗𝑥1, 𝑦1), … , ( ⃗𝑥𝑛, 𝑦𝑛), with 𝑦𝑖 ∈ {−1, 1}.
1. Minimize 𝑅tron(�⃗�) with, e.g., subgradient descent:

�⃗�(𝑡+1) = �⃗�(𝑡)−𝜂(𝑡)×1
𝑛

𝑛

∑
𝑖=1

{
0⃗, sign(Aug( ⃗𝑥(𝑖)) ⋅ �⃗�) = 𝑦𝑖
−𝑦𝑖 Aug( ⃗𝑥

(𝑖)), sign(Aug( ⃗𝑥(𝑖)) ⋅ �⃗�) ≠ 𝑦𝑖

▶ To predict:
▶ Given a new point ⃗𝑥, predict sign(Aug( ⃗𝑥) ⋅ �⃗�∗).
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Lecture 6 | Part 5

Perceptron Demo: MNIST
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Demo: MNIST

▶ MNIST is a classic machine learning data set.

▶ Many images of handwritten digits, 0-9.

▶ Multiclass classification problem.

▶ But we can make it binary: 3 vs. 7.
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Example MNIST Digit

▶ Grayscale

▶ 28 x 28 pixels

56 / 72



MNIST Feature Vectors

▶ 28 × 28 = 784 pixels

▶ Each image is a vector in ℝ784

▶ Each feature is intensity of single pixel
▶ black→ 0, white→ 255

▶ A very simple representation.
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Demo: MNIST

▶ Use only images of 3s and 7s.

▶ 4132 training images.

▶ 680 testing images.

▶ Some minor tuning.
▶ Added random noise for robustness.
▶ Picked classification threshold automatically.
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Perceptron Learning

▶ Linear prediction function parameterized by �⃗�.

▶ In this case, we can “reshape” �⃗� to be same size
as input image.
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Weight Vector

▶ Recall that the prediction is a weighted vote:

𝐻( ⃗𝑥) = sign(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + …𝑤784𝑥784)

▶ Positive→ 7, Negative→ 3

▶ 𝑤𝑖 is the weight of pixel 𝑖
▶ positive: if this pixel is bright, I think this is a 7
▶ negative: if this pixel is bright, I think this is a 3
▶ magnitude: confidence in prediction
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Perceptron Training
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Perceptron Weight Vector
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Perceptron Results

▶ Test accuracy: 97.3%
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Square Loss for Classification

▶ What if we use square loss for classification?

▶ We can, but will it work well?
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Results: Least Squares

▶ Test Accuracy: 96.7% (marginally worse)
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Results: Least Squares

▶ Misclassifications are telling.
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Least Squares Weight Vector

▶ Can visualize weight of each pixel as an image.
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Least Squares Weight Vector
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Some History

▶ Perceptrons were one of the first “machine
learning” models.

▶ The basis of modern neural networks.
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Rosenblatt’s Perceptron
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Next Time

▶ We solve linear classification, once and for all.

72 / 72


