
Lecture 6 | Part 1

Linear Classification

1 / 72

Classification

▶ We’ve been talking about regression.
▶ Label is a continuous value.

▶ What about classification?
▶ Label is a discrete value.

2 / 72

Example: Penguins
▶ Given a new penguin’s measurements, predict its
species.

170 180 190 200 210 220 230
Flipper Length (mm)

3000

3500

4000

4500

5000

5500

6000

Bo
dy

 M
as

s (
g)

Adelie
Gentoo

3 / 72

Looking Back

▶ We know one classification algorithm already.
▶ 𝑘-Nearest Neighbors.

▶ But 𝑘-NN does not “learn”, it “memorizes”.

▶ Can we use linear predictors for classification?

𝐻(⃗𝑥) = 𝑤0 + 𝑤1(flipper length) + 𝑤2(body mass)

▶ Train by minimizing risk?
4 / 72

Linear Classifiers

▶ Problem: output of 𝐻(⃗𝑥) is a real number; we
want the output to be a species.

𝐻(⃗𝑥) = 𝑤0 + 𝑤1(flipper length) + 𝑤2(body mass)

▶ Idea: turn species into a number.

5 / 72

Label Encodings
▶ There are two natural ways to encode a label 𝑦
as a number in binary classification.

▶ 𝑦 ∈ {0, 1}:
▶ 𝑦 = 0 for one class, 𝑦 = 1 for the other.
▶ Example: 0 for Adelie, 1 for Gentoo.

▶ 𝑦 ∈ {−1, 1}:
▶ 𝑦 = −1 for one class, 𝑦 = 1 for the other.
▶ Example: -1 for Adelie, 1 for Gentoo.

▶ Unless otherwise specified, we’ll use 𝑦 ∈ {−1, 1}.
6 / 72

Linear Classifiers

▶ Assume the labels are encoded as 𝑦 ∈ {−1, 1}.

▶ Another problem: 𝐻(⃗𝑥) can be any real number.
▶ Output is not necessarily −1 or 1.

▶ We need to turn output of 𝐻(⃗𝑥) into -1 or 1.

7 / 72

Sign Function

▶ Idea: use the sign function.

sign(𝑧) = {
1 if 𝑧 > 0
−1 if 𝑧 < 0
0 if 𝑧 = 0

8 / 72

Linear Classifiers

▶ We will still use linear predictors.
▶ 𝐻(⃗𝑥; �⃗�) = Aug(⃗𝑥) ⋅ �⃗�.

▶ But our final predicted label will be sign(𝐻(⃗𝑥; �⃗�)).
▶ If 𝐻(⃗𝑥) = 0, predict either 1 or -1 (it’s arbitrary).

▶ sign(𝐻(⃗𝑥; �⃗�)) is called a linear classifier.
▶ Takes in a feature vector and outputs a discrete label.
▶ Sometimes called a linear decision function.

9 / 72

Interpretation: Weighted Vote

▶ A linear classifier is like a weighted vote.

▶ Each term 𝑤𝑖𝑥𝑖 “votes” on the label.

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑

▶ If the sum is:
▶ positive: predict 1.
▶ negative: predict −1.
▶ zero: toss a coin, it’s arbitrary!

10 / 72

The Prediction Surface

170 180 190 200 210 220 230
Flipper Length (mm)

3000
3500
4000
4500
5000
5500
6000

Body M
ass (g)

1.51.00.50.00.51.01.5

H(x)

Adelie
Gentoo ▶ 𝐻(⃗𝑥) is a (hyper) plane.

▶ The place where 𝐻(⃗𝑥) = 0 is
the decision boundary.

▶ On one side, we predict 1.

▶ On the other, we predict −1.

11 / 72

Decision Boundary

▶ The decision boundary is the place where the
output of 𝐻(⃗𝑥) switches from “yes” to “no”.

▶ If 𝐻 is a linear predictor and1
▶ ⃗𝑥 ∈ 𝑅1, then the decision boundary is just a number.
▶ ⃗𝑥 ∈ ℝ2, the boundary is a straight line.
▶ ⃗𝑥 ∈ ℝ𝑑, the boundary is a 𝑑 − 1 dimensional (hyper)
plane.

1when plotted in the original feature coordinate space!
12 / 72

Magnitude of 𝐻

170 180 190 200 210 220 230
Flipper Length (mm)

3000
3500
4000
4500
5000
5500
6000

Bo
dy

 M
as

s (
g)

2.01.51.00.50.00.51.01.5

H(x) Adelie
Gentoo

▶ The magnitude of 𝐻(⃗𝑥)
is proportional to the
distance from the
decision boundary.

13 / 72

Exercise

True or False: it’s possible for two different linear
prediction functions 𝐻1(⃗𝑥) and 𝐻2(⃗𝑥) to have the
exact same decision boundary.

14 / 72

True

170 180 190 200 210 220 230

Flipper Length (mm)
3000

3500
4000

4500
5000

5500
6000

Body Mass (g)

2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5

H(x)

Adelie
Gentoo

15 / 72

True

170 180 190 200 210 220 230

Flipper Length (mm)
3000

3500
4000

4500
5000

5500
6000

Body Mass (g)

1.5
1.0
0.5

0.0
0.5
1.0
1.5

H(x)

Adelie
Gentoo

15 / 72

True

170 180 190 200 210 220 230

Flipper Length (mm)
3000

3500
4000

4500
5000

5500
6000

Body Mass (g)

1.5
1.0
0.5

0.0
0.5
1.0
1.5

H(x)

Adelie
Gentoo

15 / 72

Another Useful Fact

▶ �⃗� controls the orientation of the decision
boundary.
▶ A different �⃗� gives a different decision boundary.

▶ Let �⃗�′ = (𝑤1, … , 𝑤𝑑).
▶ In other words, it is �⃗� without the bias term 𝑤0.

▶ Fact: the decision boundary of 𝐻(⃗𝑥) = Aug(⃗𝑥) ⋅ �⃗� is
orthogonal to �⃗�′.

16 / 72

Finding a Linear Classifier

▶ How do we find a good linear classifier?

17 / 72

ERM for Classification

▶ Step 1: choose a hypothesis class
▶ We’ve chosen linear classifiers, sign(Aug(⃗𝑥) ⋅ �⃗�).

▶ Step 2: choose a loss function

▶ Step 3: find 𝐻 minimizing empirical risk
▶ In case of linear predictors, equivalent to finding �⃗�.

18 / 72

A First Idea

▶ Let’s try using the same, familiar square loss.

19 / 72

Lecture 6 | Part 2

Least Squares Classifiers

20 / 72

Classification as Regression

▶ We can think of classification as a special case of
regression where the labels are always 1 or -1.

▶ Goal: find a prediction function 𝐻(⃗𝑥) whose
output is:
▶ close to 1 for points from positive class.
▶ close to -1 for points from negative class.

21 / 72

170 180 190 200 210 220 230
Flipper Length (mm)

3000350040004500500055006000

Body Mass (g)

2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5

H(x)

Adelie
Gentoo

22 / 72

Least Squares Classifier

▶ Idea: least squares regression can be used for
classification, too.

▶ The resulting algorithm is called the least
squares classifier.

23 / 72

Linear Least Squares Classification

▶ To train:
▶ Given training data (⃗𝑥1, 𝑦1), … , (⃗𝑥𝑛, 𝑦𝑛), with 𝑦𝑖 ∈ {−1, 1}.
1. Construct 𝑛 × (𝑑 + 1) augmented design matrix, 𝑋.
2. Solve the normal equations: �⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦.

▶ To predict:
▶ Given a new point ⃗𝑥, predict sign(Aug(⃗𝑥) ⋅ �⃗�∗).

24 / 72

Square Loss for Classification

▶ We designed square loss for regression

▶ We can use it for classification.

▶ But it might not be the best choice.

25 / 72

Exercise

What is the total square
loss of the predictor on
the data?

Assume is class -1 and
is class 1.

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8
𝐻 = 0𝐻 = −1 𝐻 = 1

26 / 72

Observation

▶ The square loss penalizes points that are far
from the decision boundary.

▶ Even if they are correctly classified!

27 / 72

Least Squares and Outliers

2

2Bishop, Pattern Recognition and Machine Learning
28 / 72

Another Loss?

▶ Least squares classifiers can work well in practice.
▶ Easy to implement!

▶ But maybe a loss designed for classification will
work better.

29 / 72

Lecture 6 | Part 3

0-1 Loss

30 / 72

Empirical Risk Minimization

▶ Step 1: choose a hypothesis class
▶ Let’s assume we’ve chosen linear predictors

▶ Step 2: choose a loss function

▶ Step 3: minimize expected loss (empirical risk)

31 / 72

Another Loss Function

▶ What about the 0-1 loss?
▶ Loss = 0 if prediction is correct.
▶ Loss = 1 if prediction is incorrect.

▶ More formally:

ℓ0-1(𝐻(⃗𝑥
(𝑖)), 𝑦𝑖) = {

0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖

32 / 72

Expected 0-1 Loss

▶ The expected 0-1 loss (empirical risk) has a nice
interpretation:

𝑅0-1(𝐻) =
1
𝑛

𝑛

∑
𝑖=1
{
0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖

Exercise

What is it?

33 / 72

Answer

▶ The empirical risk with respect to the 0-1 loss is
the misclassification rate of the classifier.
▶ That is, (1 - the accuracy)

𝑅0-1(𝐻) =
1
𝑛

𝑛

∑
𝑖=1
{
0 if sign(𝐻(⃗𝑥(𝑖))) = 𝑦𝑖
1 if sign(𝐻(⃗𝑥(𝑖))) ≠ 𝑦𝑖

=
of incorrect predictions

𝑛

34 / 72

ERM for the 0-1 Loss

▶ Minimizing the empirical risk with respect to the
0-1 loss is equivalent to maximizing the accuracy.

▶ That’s exactly what we want!

▶ But there’s a problem...

35 / 72

Exercise

What is the gradient of
𝑅0-1(𝐻)with respect to the
current �⃗�?

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8
-
+

36 / 72

Answer

▶ The gradient of 𝑅0-1 is 0⃗ almost everywhere.

▶ In other words, 𝑅0-1 is flat almost everywhere.

▶ This is a problem because gradient descent
needs slope information to make progress.

37 / 72

Computationally Difficult

▶ It is not feasible to minimize 0-1 risk in general.

▶ More formally: NP-Hard to optimize expected 0-1
loss in general.3

3It is efficiently doable if the classes are linearly separable by finding
convex hulls of each class. If non-separable, it is difficult.

38 / 72

Main Idea

It is computationally difficult (NP-Hard) to find a
linear classifier with maximum accuracy, in gen-
eral.

39 / 72

Lecture 6 | Part 4

Perception Loss

40 / 72

Surrogate Loss

▶ We’d like to use the 0-1 loss, but it’s not feasible.

▶ Instead, we use a surrogate loss.

▶ That is, a loss that is similar in spirit, but leads to
easier optimization problems.

41 / 72

A New Loss

▶ No penalty if point is correctly classified.
▶ Like the 0-1 loss.

▶ A penalty that grows with distance to decision
boundary if point is incorrectly classified.
▶ Unlike the 0-1 loss.
▶ This will give us a non-zero gradient.

42 / 72

Perceptron Loss

▶ We call this loss the perceptron loss.

ℓtron(𝐻(⃗𝑥), 𝑦) = {
0, sign(𝐻(⃗𝑥)) = 𝑦
|𝐻(⃗𝑥)|, sign(𝐻(⃗𝑥)) ≠ 𝑦

▶ Remember, |𝐻(⃗𝑥)| is proportional to distance
from decision boundary.

43 / 72

Exercise

What is the total percep-
tron loss of the predictor
on the data?

Assume is class -1 and
is class 1.

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8
𝐻 = 0𝐻 = −1 𝐻 = 1

44 / 72

Convexity?

▶ Is the perceptron loss convex in �⃗�?

▶ Trick:

ℓtron(Aug(⃗𝑥) ⋅ �⃗�, 𝑦) = {
0, sign(Aug(⃗𝑥) ⋅ �⃗�) = 𝑦
|Aug(⃗𝑥) ⋅ �⃗�|, sign(Aug(⃗𝑥) ⋅ �⃗�) ≠ 𝑦

= max(0, −𝑦Aug(⃗𝑥) ⋅ �⃗�)

▶ Fact: Max of convex functions is convex.
45 / 72

ERM for the Perceptron

▶ Goal: minimize empirical risk w.r.t. perceptron
loss for a linear predictor 𝐻(⃗𝑥) = Aug(⃗𝑥) ⋅ �⃗�.

𝑅tron(�⃗�) =
1
𝑛

𝑛

∑
𝑖=1
ℓtron(𝐻(⃗𝑥

(𝑖)), 𝑦𝑖)

= 1
𝑛

𝑛

∑
𝑖=1
{0, sign(Aug(⃗𝑥(𝑖)) ⋅ �⃗�) = 𝑦𝑖
|Aug(⃗𝑥(𝑖)) ⋅ �⃗�|, sign(Aug(⃗𝑥(𝑖)) ⋅ �⃗�) ≠ 𝑦𝑖

46 / 72

Minimizing Perceptron Risk

▶ 𝑅tron is not differentiable.
▶ Because of the absolute value.

▶ But it is convex.
▶ Since ℓtron is convex.

▶ We can minimize using subgradient descent.

47 / 72

A Subgradient of the Loss
▶ We need a subgradient of ℓtron.

ℓtron(Aug(⃗𝑥) ⋅ �⃗�, 𝑦) = max(0, −𝑦Aug(⃗𝑥) ⋅ �⃗�)

21012
w1

21
0
1

2

w
2

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

tron

48 / 72

A Subgradient of the Loss

▶ We need a subgradient of ℓtron.

ℓtron(Aug(⃗𝑥) ⋅ �⃗�, 𝑦) = max(0, −𝑦Aug(⃗𝑥) ⋅ �⃗�)

▶ If −𝑦Aug(⃗𝑥) ⋅ �⃗� > 0, the gradient is −𝑦Aug(⃗𝑥).

▶ If −𝑦Aug(⃗𝑥) ⋅ �⃗� < 0, the gradient is 0⃗.

▶ Claim: at −𝑦Aug(⃗𝑥) ⋅ �⃗� = 0, 0⃗ is a subgradient.

49 / 72

Subgradient of the Loss
▶ We’ve found:

subgrad ℓtron(Aug(⃗𝑥) ⋅ �⃗�, 𝑦)

= {
0⃗, if −𝑦Aug(⃗𝑥) ⋅ �⃗� < 0
−𝑦Aug(⃗𝑥), if −𝑦Aug(⃗𝑥) ⋅ �⃗� > 0

▶ Or, equivalently:
subgrad ℓtron(Aug(⃗𝑥) ⋅ �⃗�, 𝑦)

= {
0⃗, if sign(Aug(⃗𝑥) ⋅ �⃗�) = 𝑦
−𝑦Aug(⃗𝑥), if sign(Aug(⃗𝑥) ⋅ �⃗�) ≠ 𝑦

50 / 72

Subgradient of the Risk

▶ A subgradient of the risk is then:

subgrad𝑅tron(�⃗�) =

1
𝑛

𝑛

∑
𝑖=1
{
0⃗, sign(Aug(⃗𝑥(𝑖)) ⋅ �⃗�) = 𝑦𝑖
−𝑦𝑖 Aug(⃗𝑥

(𝑖)), sign(Aug(⃗𝑥(𝑖)) ⋅ �⃗�) ≠ 𝑦𝑖

51 / 72

The Perceptron

▶ To train:
▶ Given training data (⃗𝑥1, 𝑦1), … , (⃗𝑥𝑛, 𝑦𝑛), with 𝑦𝑖 ∈ {−1, 1}.
1. Minimize 𝑅tron(�⃗�) with, e.g., subgradient descent:

�⃗�(𝑡+1) = �⃗�(𝑡)−𝜂(𝑡)×1
𝑛

𝑛

∑
𝑖=1

{
0⃗, sign(Aug(⃗𝑥(𝑖)) ⋅ �⃗�) = 𝑦𝑖
−𝑦𝑖 Aug(⃗𝑥

(𝑖)), sign(Aug(⃗𝑥(𝑖)) ⋅ �⃗�) ≠ 𝑦𝑖

▶ To predict:
▶ Given a new point ⃗𝑥, predict sign(Aug(⃗𝑥) ⋅ �⃗�∗).

52 / 72

Lecture 6 | Part 5

Perceptron Demo: MNIST

54 / 72

Demo: MNIST

▶ MNIST is a classic machine learning data set.

▶ Many images of handwritten digits, 0-9.

▶ Multiclass classification problem.

▶ But we can make it binary: 3 vs. 7.

55 / 72

Example MNIST Digit

▶ Grayscale

▶ 28 x 28 pixels

56 / 72

MNIST Feature Vectors

▶ 28 × 28 = 784 pixels

▶ Each image is a vector in ℝ784

▶ Each feature is intensity of single pixel
▶ black→ 0, white→ 255

▶ A very simple representation.

57 / 72

Demo: MNIST

▶ Use only images of 3s and 7s.

▶ 4132 training images.

▶ 680 testing images.

▶ Some minor tuning.
▶ Added random noise for robustness.
▶ Picked classification threshold automatically.

58 / 72

Perceptron Learning

▶ Linear prediction function parameterized by �⃗�.

▶ In this case, we can “reshape” �⃗� to be same size
as input image.

59 / 72

Weight Vector

▶ Recall that the prediction is a weighted vote:

𝐻(⃗𝑥) = sign(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + …𝑤784𝑥784)

▶ Positive→ 7, Negative→ 3

▶ 𝑤𝑖 is the weight of pixel 𝑖
▶ positive: if this pixel is bright, I think this is a 7
▶ negative: if this pixel is bright, I think this is a 3
▶ magnitude: confidence in prediction

60 / 72

Perceptron Training

61 / 72

Perceptron Weight Vector

62 / 72

Perceptron Results

▶ Test accuracy: 97.3%

63 / 72

Square Loss for Classification

▶ What if we use square loss for classification?

▶ We can, but will it work well?

64 / 72

Results: Least Squares

▶ Test Accuracy: 96.7% (marginally worse)

65 / 72

Results: Least Squares

▶ Misclassifications are telling.

66 / 72

Least Squares Weight Vector

▶ Can visualize weight of each pixel as an image.

67 / 72

Least Squares Weight Vector

68 / 72

Some History

▶ Perceptrons were one of the first “machine
learning” models.

▶ The basis of modern neural networks.

69 / 72

Rosenblatt’s Perceptron

70 / 72

71 / 72

Next Time

▶ We solve linear classification, once and for all.

72 / 72

