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Linear Classification DDS Capstone
s,Townleen MPR -PanelMPR



Classification▶ We’ve been talking about regression.▶ Label is a continuous value.▶ What about classification?▶ Label is a discrete value.



Example: Penguins▶ Given a new penguin’s measurements, predict its
species.



Looking Back▶ We know one classification algorithm already.▶ 𝑘-Nearest Neighbors.▶ But 𝑘-NN does not “learn”, it “memorizes”.▶ Can we use linear predictors for classification?𝐻( ⃗𝑥) = 𝑤0 + 𝑤1(flipper length) + 𝑤2(body mass)▶ Train by minimizing risk?



Linear Classifiers▶ Problem: output of 𝐻( ⃗𝑥) is a real number; we
want the output to be a species.𝐻( ⃗𝑥) = 𝑤0 + 𝑤1(flipper length) + 𝑤2(body mass)▶ Idea: turn species into a number.



Label Encodings▶ There are two natural ways to encode a label 𝑦
as a number in binary classification.▶ 𝑦 ∈ {0, 1}:▶ 𝑦 = 0 for one class, 𝑦 = 1 for the other.▶ Example: 0 for Adelie, 1 for Gentoo.▶ 𝑦 ∈ {−1, 1}:▶ 𝑦 = −1 for one class, 𝑦 = 1 for the other.▶ Example: -1 for Adelie, 1 for Gentoo.▶ Unless otherwise specified, we’ll use 𝑦 ∈ {−1, 1}.



Linear Classifiers▶ Assume the labels are encoded as 𝑦 ∈ {−1, 1}.▶ Another problem: 𝐻( ⃗𝑥) can be any real number.▶ Output is not necessarily −1 or 1.▶ We need to turn output of 𝐻( ⃗𝑥) into -1 or 1.



Sign Function▶ Idea: use the sign function.

sign(𝑧) = {1 if 𝑧 > 0−1 if 𝑧 < 00 if 𝑧 = 0



Linear Classifiers▶ We will still use linear predictors.▶ 𝐻( ⃗𝑥; 𝑤⃗) = Aug( ⃗𝑥) ⋅ 𝑤⃗.▶ But our final predicted label will be sign(𝐻( ⃗𝑥; 𝑤⃗)).▶ If 𝐻( ⃗𝑥) = 0, predict either 1 or -1 (it’s arbitrary).▶ sign(𝐻( ⃗𝑥; 𝑤⃗)) is called a linear classifier.▶ Takes in a feature vector and outputs a discrete label.▶ Sometimes called a linear decision function.



Interpretation: Weighted Vote▶ A linear classifier is like a weighted vote.▶ Each term 𝑤𝑖𝑥𝑖 “votes” on the label.𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑▶ If the sum is:▶ positive: predict 1.▶ negative: predict −1.▶ zero: toss a coin, it’s arbitrary!



The Prediction Surface

▶ 𝐻( ⃗𝑥) is a (hyper) plane.▶ The place where 𝐻( ⃗𝑥) = 0 is
the decision boundary.▶ On one side, we predict 1.▶ On the other, we predict −1.

-
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Decision Boundary▶ The decision boundary is the place where the
output of 𝐻( ⃗𝑥) switches from “yes” to “no”.▶ If 𝐻 is a linear predictor and1▶ ⃗𝑥 ∈ 𝑅1, then the decision boundary is just a number.▶ ⃗𝑥 ∈ ℝ2, the boundary is a straight line.▶ ⃗𝑥 ∈ ℝ𝑑, the boundary is a 𝑑 − 1 dimensional (hyper)

plane.

1when plotted in the original feature coordinate space!



Magnitude of 𝐻
▶ The magnitude of 𝐻( ⃗𝑥)
is proportional to the
distance from the
decision boundary.
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Magnitude of 𝐻
▶ The magnitude of 𝐻( ⃗𝑥)
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distance from the
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Exercise
True or False: it’s possible for two different linear
prediction functions 𝐻1( ⃗𝑥) and 𝐻2( ⃗𝑥) to have the
exact same decision boundary.
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Another Useful Fact▶ 𝑤⃗ controls the orientation of the decision
boundary.▶ A different 𝑤⃗ gives a different decision boundary.▶ Let 𝑤⃗′ = (𝑤1, … , 𝑤𝑑).▶ In other words, it is 𝑤⃗ without the bias term 𝑤0.▶ Fact: the decision boundary of 𝐻( ⃗𝑥) = Aug( ⃗𝑥) ⋅ 𝑤⃗ is
orthogonal to 𝑤⃗′.

f



Finding a Linear Classifier▶ How do we find a good linear classifier?



ERM for Classification

▶ Step 1: choose a hypothesis class▶ We’ve chosen linear classifiers, sign(Aug( ⃗𝑥) ⋅ 𝑤⃗).▶ Step 2: choose a loss function▶ Step 3: find 𝐻 minimizing empirical risk▶ In case of linear predictors, equivalent to finding 𝑤⃗.



A First Idea▶ Let’s try using the same, familiar square loss.
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Least Squares Classifiers



Classification as Regression▶ We can think of classification as a special case of
regression where the labels are always 1 or -1.▶ Goal: find a prediction function 𝐻( ⃗𝑥) whose
output is:▶ close to 1 for points from positive class.▶ close to -1 for points from negative class.



Y



Least Squares Classifier▶ Idea: least squares regression can be used for
classification, too.▶ The resulting algorithm is called the least
squares classifier.



Linear Least Squares Classification▶ To train:▶ Given training data ( ⃗𝑥1, 𝑦1), … , ( ⃗𝑥𝑛, 𝑦𝑛), with 𝑦𝑖 ∈ {−1, 1}.
1. Construct 𝑛 × (𝑑 + 1) augmented design matrix, 𝑋.
2. Solve the normal equations: 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦.▶ To predict:▶ Given a new point ⃗𝑥, predict sign(Aug( ⃗𝑥) ⋅ 𝑤⃗∗).



Square Loss for Classification▶ We designed square loss for regression▶ We can use it for classification.▶ But it might not be the best choice.



Exercise
What is the total square
loss of the predictor on
the data?

Assume is class -1 and
is class 1.

𝑥1

𝑥2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8
𝐻 = 0𝐻 = −1 𝐻 = 1

O

·

Yet
bu

5 H(x(5)= I

(x(2))=
-

Y5= I
I H 4

- -

H(() =
-2 H(x(4)) =1
3 Yz= Yu= / 6

O +[x()I
I H(X(6) = 2
- l

2 . 25 7,= /
1



Observation▶ The square loss penalizes points that are far
from the decision boundary.▶ Even if they are correctly classified!



Least Squares and Outliers

2

2Bishop, Pattern Recognition and Machine Learning



Another Loss?▶ Least squares classifiers can work well in practice.▶ Easy to implement!▶ But maybe a loss designed for classification will
work better.
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0-1 Loss



Empirical Risk Minimization▶ Step 1: choose a hypothesis class▶ Let’s assume we’ve chosen linear predictors▶ Step 2: choose a loss function▶ Step 3: minimize expected loss (empirical risk)



Another Loss Function▶ What about the 0-1 loss?▶ Loss = 0 if prediction is correct.▶ Loss = 1 if prediction is incorrect.▶ More formally:ℓ0-1(𝐻( ⃗𝑥(𝑖)), 𝑦𝑖) = {0 if sign(𝐻( ⃗𝑥(𝑖))) = 𝑦𝑖1 if sign(𝐻( ⃗𝑥(𝑖))) ≠ 𝑦𝑖



Expected 0-1 Loss▶ The expected 0-1 loss (empirical risk) has a nice
interpretation:𝑅0-1(𝐻) = 1𝑛 𝑛∑𝑖=1 {0 if sign(𝐻( ⃗𝑥(𝑖))) = 𝑦𝑖1 if sign(𝐻( ⃗𝑥(𝑖))) ≠ 𝑦𝑖
Exercise
What is it?



Answer▶ The empirical risk with respect to the 0-1 loss is
the misclassification rate of the classifier.▶ That is, (1 - the accuracy)

𝑅0-1(𝐻) = 1𝑛 𝑛∑𝑖=1 {0 if sign(𝐻( ⃗𝑥(𝑖))) = 𝑦𝑖1 if sign(𝐻( ⃗𝑥(𝑖))) ≠ 𝑦𝑖= # of incorrect predictions𝑛



ERM for the 0-1 Loss▶ Minimizing the empirical risk with respect to the
0-1 loss is equivalent to maximizing the accuracy.▶ That’s exactly what we want!▶ But there’s a problem...



Exercise
What is the gradient of𝑅0-1(𝐻)with respect to the
current 𝑤⃗?
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Answer▶ The gradient of 𝑅0-1 is 0⃗ almost everywhere.▶ In other words, 𝑅0-1 is flat almost everywhere.▶ This is a problem because gradient descent
needs slope information to make progress.

- -

- -

-



Computationally Difficult▶ It is not feasible to minimize 0-1 risk in general.▶ More formally: NP-Hard to optimize expected 0-1
loss in general.3

3It is efficiently doable if the classes are linearly separable by finding
convex hulls of each class. If non-separable, it is difficult.



Main Idea
It is computationally difficult (NP-Hard) to find a
linear classifier with maximum accuracy, in gen-
eral.
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Perception Loss



Surrogate Loss▶ We’d like to use the 0-1 loss, but it’s not feasible.▶ Instead, we use a surrogate loss.▶ That is, a loss that is similar in spirit, but leads to
easier optimization problems.



A New Loss▶ No penalty if point is correctly classified.▶ Like the 0-1 loss.▶ A penalty that grows with distance to decision
boundary if point is incorrectly classified.▶ Unlike the 0-1 loss.▶ This will give us a non-zero gradient.



Perceptron Loss▶ We call this loss the perceptron loss.ℓtron(𝐻( ⃗𝑥), 𝑦) = {0, sign(𝐻( ⃗𝑥)) = 𝑦|𝐻( ⃗𝑥)|, sign(𝐻( ⃗𝑥)) ≠ 𝑦▶ Remember, |𝐻( ⃗𝑥)| is proportional to distance
from decision boundary.



Exercise
What is the total percep-
tron loss of the predictor
on the data?

Assume is class -1 and
is class 1.
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Convexity?▶ Is the perceptron loss convex in 𝑤⃗?▶ Trick:ℓtron(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦) = {0, sign(Aug( ⃗𝑥) ⋅ 𝑤⃗) = 𝑦|Aug( ⃗𝑥) ⋅ 𝑤⃗|, sign(Aug( ⃗𝑥) ⋅ 𝑤⃗) ≠ 𝑦= max(0, −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗)▶ Fact: Max of convex functions is convex.



ERM for the Perceptron▶ Goal: minimize empirical risk w.r.t. perceptron
loss for a linear predictor 𝐻( ⃗𝑥) = Aug( ⃗𝑥) ⋅ 𝑤⃗.
𝑅tron(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 ℓtron(𝐻( ⃗𝑥(𝑖)), 𝑦𝑖)= 1𝑛 𝑛∑𝑖=1 {0, sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) = 𝑦𝑖|Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗|, sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) ≠ 𝑦𝑖



Minimizing Perceptron Risk▶ 𝑅tron is not differentiable.▶ Because of the absolute value.▶ But it is convex.▶ Since ℓtron is convex.▶ We can minimize using subgradient descent.



A Subgradient of the Loss▶ We need a subgradient of ℓtron.ℓtron(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦) = max(0, −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗)
8-yAngCE



A Subgradient of the Loss▶ We need a subgradient of ℓtron.ℓtron(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦) = max(0, −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗)▶ If −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗ > 0, the gradient is −𝑦Aug( ⃗𝑥).▶ If −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗ < 0, the gradient is 0⃗.▶ Claim: at −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗ = 0, 0⃗ is a subgradient.



Subgradient of the Loss▶ We’ve found:subgrad ℓtron(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦)= {0⃗, if −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗ < 0−𝑦Aug( ⃗𝑥), if −𝑦Aug( ⃗𝑥) ⋅ 𝑤⃗ > 0▶ Or, equivalently:subgrad ℓtron(Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝑦)= {0⃗, if sign(Aug( ⃗𝑥) ⋅ 𝑤⃗) = 𝑦−𝑦Aug( ⃗𝑥), if sign(Aug( ⃗𝑥) ⋅ 𝑤⃗) ≠ 𝑦



Subgradient of the Risk▶ A subgradient of the risk is then:subgrad𝑅tron(𝑤⃗) =1𝑛 𝑛∑𝑖=1 {0⃗, sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) = 𝑦𝑖−𝑦𝑖 Aug( ⃗𝑥(𝑖)), sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) ≠ 𝑦𝑖



The Perceptron▶ To train:▶ Given training data ( ⃗𝑥1, 𝑦1), … , ( ⃗𝑥𝑛, 𝑦𝑛), with 𝑦𝑖 ∈ {−1, 1}.
1. Minimize 𝑅tron(𝑤⃗) with, e.g., subgradient descent:𝑤⃗(𝑡+1) = 𝑤⃗(𝑡)−𝜂(𝑡)×1𝑛 𝑛∑𝑖=1 {0⃗, sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) = 𝑦𝑖−𝑦𝑖 Aug( ⃗𝑥(𝑖)), sign(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗) ≠ 𝑦𝑖▶ To predict:▶ Given a new point ⃗𝑥, predict sign(Aug( ⃗𝑥) ⋅ 𝑤⃗∗).
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Perceptron Demo: MNIST



Demo: MNIST▶ MNIST is a classic machine learning data set.▶ Many images of handwritten digits, 0-9.▶ Multiclass classification problem.▶ But we can make it binary: 3 vs. 7.



Example MNIST Digit

▶ Grayscale▶ 28 x 28 pixels



MNIST Feature Vectors▶ 28 × 28 = 784 pixels▶ Each image is a vector in ℝ784▶ Each feature is intensity of single pixel▶ black→ 0, white→ 255▶ A very simple representation.



Demo: MNIST▶ Use only images of 3s and 7s.▶ 4132 training images.▶ 680 testing images.▶ Some minor tuning.▶ Added random noise for robustness.▶ Picked classification threshold automatically.



Perceptron Learning▶ Linear prediction function parameterized by 𝑤⃗.▶ In this case, we can “reshape” 𝑤⃗ to be same size
as input image.



Weight Vector▶ Recall that the prediction is a weighted vote:𝐻( ⃗𝑥) = sign(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + …𝑤784𝑥784)▶ Positive→ 7, Negative→ 3▶ 𝑤𝑖 is the weight of pixel 𝑖▶ positive: if this pixel is bright, I think this is a 7▶ negative: if this pixel is bright, I think this is a 3▶ magnitude: confidence in prediction



Perceptron Training



Perceptron Training



Perceptron Training



Perceptron Training



Perceptron Training



Perceptron Training



Perceptron Weight Vector



Perceptron Results▶ Test accuracy: 97.3%



Square Loss for Classification▶ What if we use square loss for classification?▶ We can, but will it work well?



Results: Least Squares▶ Test Accuracy: 96.7% (marginally worse)



Results: Least Squares▶ Misclassifications are telling.



Least Squares Weight Vector▶ Can visualize weight of each pixel as an image.



Least Squares Weight Vector



Some History▶ Perceptrons were one of the first “machine
learning” models.▶ The basis of modern neural networks.



Rosenblatt’s Perceptron





Next Time▶ We solve linear classification, once and for all.


