

Lecture 5 | Part 1

Empirical Risk Minimization (ERM)

- Step 1: choose a hypothesis class
 We've chosen linear predictors.
- Step 2: choose a **loss function**
- Step 3: find H minimizing empirical risk
 In case of linear predictors, equivalent to finding w.

Minimizing Empirical Risk

We want to minimize the empirical risk:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \ell(\operatorname{Aug}(\vec{x}^{(i)}), \vec{w}, y_i))$$

$$= \frac{1}{n} \sum_{i=1}^{n} \ell(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w}, y_i)$$

Minimizing Empirical Risk

- For some losses there's a formula for the best \vec{w} .
 - **Example:** square loss.
 - But it might be too costly to use!
- ► For others, there isn't.
 - **Example:** absolute loss, Huber loss.

In either case, we might use gradient descent.

Last Time

We addressed two issues with gradient descent.

- 1. Can be **expensive** to compute the exact gradient.
 - Especially when we have a large data set.
 - Solution: stochastic gradient descent.
- 2. Doesn't work as-is if risk is **not differentiable**.
 - Such as with the absolute loss.
 - Solution: subgradient descent.

Today

- Answer two outstanding questions:
- 1. How do we minimize the risk with respect to the **absolute loss**?
- 2. When is gradient descent guaranteed to work?

Lecture 5 | Part 2

Minimizing Risk w.r.t. Absolute Loss

Regression with Absolute Loss

The risk with respect to the absolute loss:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} |\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) - y_i|$$

- We were stuck before.
 This risk is not differentiable.
- Now: we can minimize the risk with respect to the absolute loss using subgradient descent.

Subgradient Descent

To minimize $f(\vec{z})$:

- Pick arbitrary starting point $\vec{z}^{(0)}$, a decreasing learning rate schedule $\eta(t) > 0$.
- Until convergence, repeat:
 Compute a subgradient s
 ⁱ of f at z
 ⁽ⁱ⁾.
 Update z
 ^(t+1) = z
 ^(t) − η(t) s
 ⁱ

• When converged, return $\vec{z}^{(t)}$.

Subgradient of Empirical Risk

- We need a subgradient of the empirical risk with respect to the absolute loss.
- Useful fact: the subgradient of a sum is the sum of the subgradients.¹
- So it suffices to find a subgradient of the loss function:

subgrad
$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \text{subgrad } \ell(\vec{w}; \vec{x}^{(i)}, y_i)$$

¹At least, for convex functions.

We need a subgradient of the absolute loss.

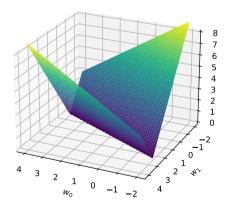
$$\ell_{\text{abs}}(\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}), y_i) = |\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) - y_i|$$

An equivalent piecewise definition:

$$\boldsymbol{\ell}_{abs}(\vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}), y_i) = \begin{cases} \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) - y_i, & \text{if } \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) > y_i, \\ y_i - \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}), & \text{if } \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) < y_i, \\ 0, & \text{if } \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) = y_i. \end{cases}$$

The Absolute Loss

▶ Gradient exists except at w · Aug(x⁽ⁱ⁾) = y_i.
 ▶ Here, we need a subgradient.



Exercise

What is the gradient when $\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) > y_i$? What about when $\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) < y_i$?

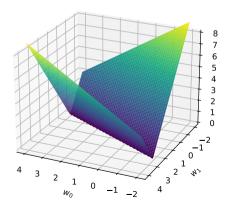
$$\boldsymbol{\ell}_{abs}(\vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}), y_i) = \begin{cases} \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) - y_i, & \text{if } \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) > y_i, \\ y_i - \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}), & \text{if } \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) < y_i, \\ 0, & \text{if } \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) = y_i. \end{cases}$$

$$\boldsymbol{\ell}_{\text{abs}}(\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}), \boldsymbol{y}_i) = |\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) - \boldsymbol{y}_i|$$

- If $\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) > y_i$: $box{Loss is } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) - y_i.$
 - Gradient is $Aug(\vec{x}^{(i)})$.

- If $\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) < y_i$: Loss is $y_i - \vec{w} \cdot \text{Aug}(\vec{x}^{(i)})$.
 - Gradient is Aug($\vec{x}^{(i)}$).

The zero vector works as a subgradient.



Our subgradient of the absolute loss:

$$s(\vec{w}; \vec{x}^{(i)}, y_i) = \begin{cases} \text{Aug}(\vec{x}^{(i)}), & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) > y_i, \\ -\text{Aug}(\vec{x}^{(i)}), & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) < y_i, \\ \vec{0}, & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) = y_i. \end{cases}$$

Minimizing the Absolute Loss

The subgradient of the empirical risk is the average of the subgradients of the loss:

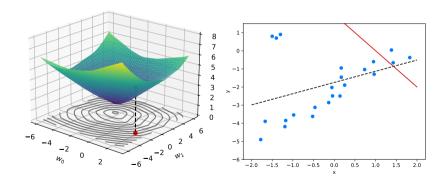
subgrad. of $R(\vec{w})$

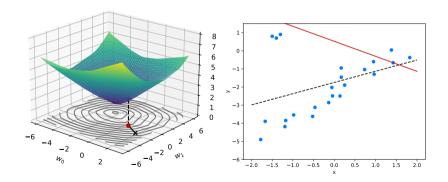
$$\begin{split} &= \frac{1}{n} \sum_{i=1}^{n} s(\vec{w}, \vec{x}^{(i)}, y_i) \\ &= \frac{1}{n} \sum_{i=1}^{n} \begin{cases} \text{Aug}(\vec{x}^{(i)}), & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) > y_i, \\ -\text{Aug}(\vec{x}^{(i)}), & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) < y_i, \\ \vec{0}, & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) = y_i. \end{cases} \end{split}$$

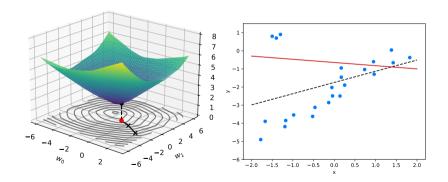
Subgradient Descent

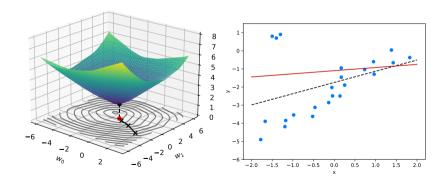
- We minimize the empirical risk with respect to the absolute loss using subgradient descent.
- Pick an initial $\vec{w}^{(0)}$, a decreasing learning rate schedule $\eta(t) > 0$.
- Until convergence, repeat:
 Update

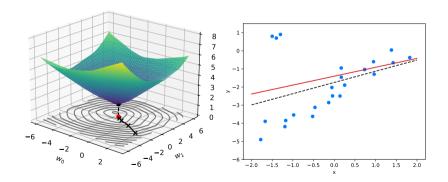
$$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \eta(t) \times \frac{1}{n} \sum_{i=1}^{n} \begin{cases} \text{Aug}(\vec{x}^{(i)}), & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) > y_{i}, \\ - \text{Aug}(\vec{x}^{(i)}), & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) < y_{i}, \\ \vec{0}, & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) = y_{i}. \end{cases}$$

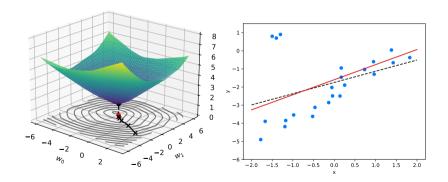


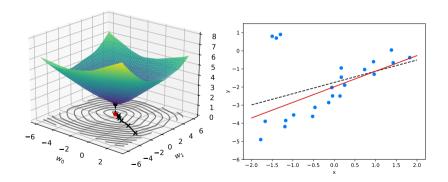


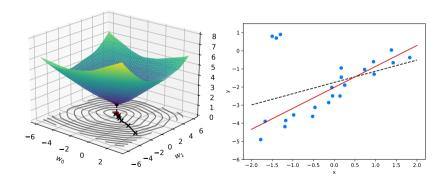












In Practice

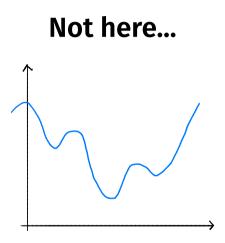
- We've minimized the risk with respect to the absolute loss.
- This approach has different names:
 Quantile regression, median regression
 Minimum Absolute Deviations (MAD)
- Solvable by (S)GD, or as a linear program.

Lecture 5 | Part 3

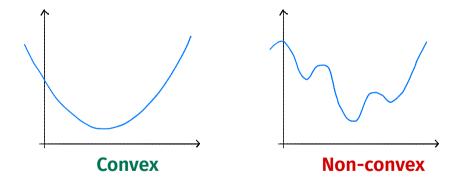
Convexity

Question

When is gradient descent guaranteed to work?

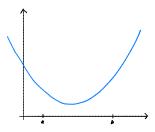


Convex Functions



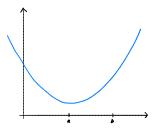
f is convex if for every a, b the line segment between

(a, f(a)) and (b, f(b))does not go below the plot of f.



f is convex if for every a, b the line segment between

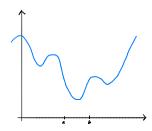
(a, f(a)) and (b, f(b))does not go below the plot of f.



f is convex if for every a, b the line segment between

(a, f(a)) and (b, f(b))

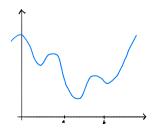
does not go below the plot of f.



f is convex if for every a, b the line segment between

(a, f(a)) and (b, f(b))

does not go below the plot of f.



Other Terms

If a function is not convex, it is non-convex.

- Strictly convex: the line lies strictly above curve.
- **Concave**: the line lines on or below curve.

Exercise

True or **False**: a convex function must have a unique global minimum.

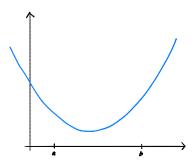
True or **False**: a local minimum of a convex function is always a global minimum.

True or **False**: a *strictly* convex function must have a unique global minimum.

Convexity: Formal Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is **convex** if for every choice of $a, b \in \mathbb{R}$ and $t \in [0, 1]$:

$$(1 - t)f(a) + tf(b) \ge f((1 - t)a + tb).$$



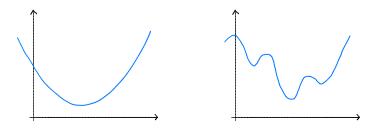
Exercise

Using the definition, is f(x) = |x| convex?

Another View: Second Derivatives

► If
$$\frac{d^2f}{dx^2}(x) \ge 0$$
 for all x, then f is convex.

- Example: $f(x) = x^4$ is convex.
- Warning! Only works if f is twice differentiable!



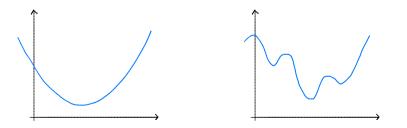
Another View: Second Derivatives

"Best" straight line at
$$x_0$$
:
 $f_1(x) = f(x_0) + f'(x_0) \cdot (x - x_0)$

"Best" parabola at x₀:
 f₂(x) = f(x₀) + f'(x₀) ⋅ (x - x₀) + ¹/₂f"(x₀) ⋅ (x - x₀)²
 Possibilities: upward-facing, downward-facing, flat.

Convexity and Parabolas

Convex if for every x₀, parabola is upward-facing (or flat).
 That is, f"(x₀) ≥ 0.



Proving Convexity Using Properties

Suppose that f(x) and g(x) are convex. Then:

- w₁f(x) + w₂g(x) is convex, provided w₁, w₂ ≥ 0
 Example: 3x² + |x| is convex
- g(f(x)) is convex, provided g is non-decreasing.
 Example: e^{x²} is convex

max{f(x), g(x)} is convex
 Example:
$$\begin{cases} 0, & x < 0 \\ x, & x ≥ 0 \end{cases}$$
 is convex

Note!

- These properties are useful for proving convexity for functions of **one variable**.
- Some of them will not generalize to higher dimensions.

Convexity and Gradient Descent

- Convex functions are (relatively) easy to optimize.
- Theorem: if f(x) is convex and "not too steep"² then (stochastic) (sub)gradient descent converges to a global optimum of f provided that the step size is small enough³

²Technically, *c*-Lipschitz

³step size related to steepness, should decrease like $1/\sqrt{\text{step }\#}$.

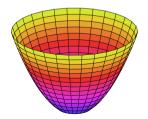
Lecture 5 | Part 4

Convexity in Many Dimensions

Convexity: Definition

► $f(\vec{x})$ is **convex** if for **every** \vec{a} , \vec{b} the line segment between

 $(\vec{a}, f(\vec{a}))$ and $(\vec{b}, f(\vec{b}))$ does not go below the plot of f.



Convexity: Formal Definition

► A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if for every choice of $\vec{a}, \vec{b} \in \mathbb{R}^d$ and $t \in [0, 1]$:

$$(1-t)f(\vec{a})+tf(\vec{b})\geq f((1-t)\vec{a}+t\vec{b}).$$

The Second Derivative Test

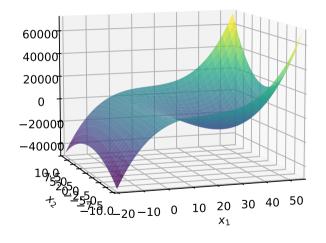
For 1-dimensions functions:
 convex if second derivative ≥ 0.

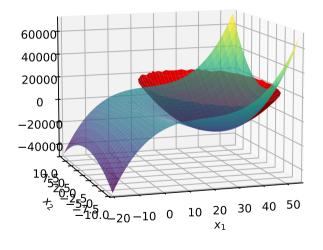
For *d*-dimensional functions:
 convex if ???

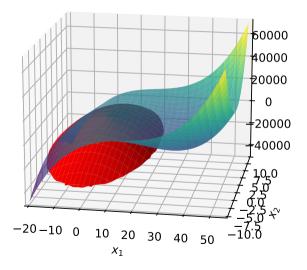
Second Derivatives in *d*-Dimensions

► In 2-dimensions, there are 4 second derivatives: ► $\frac{\partial f^2}{\partial x_1^2}$, $\frac{\partial f^2}{\partial x_2^2}$, $\frac{\partial f^2}{\partial x_1 x_2}$, $\frac{\partial f^2}{\partial x_2 x_1}$

- In *d*-dimensions, there are *d*²:
 df²/∂x_i∂x_j for all *i*, *j*.
- The second derivatives describe the curvature of a paraboloid approximating *f*.







The Hessian Matrix

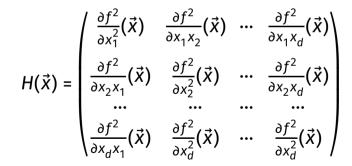
Create the Hessian matrix of second derivatives:

▶ For $f : \mathbb{R}^2 \to \mathbb{R}$:

$$H(\vec{x}) = \begin{pmatrix} \frac{\partial f^2}{\partial x_1^2}(\vec{x}) & \frac{\partial f^2}{\partial x_1 x_2}(\vec{x}) \\ \frac{\partial f^2}{\partial x_2 x_1}(\vec{x}) & \frac{\partial f^2}{\partial x_2^2}(\vec{x}) \end{pmatrix}$$

In General

▶ If $f : \mathbb{R}^d \to \mathbb{R}$, the **Hessian** at \vec{x} is:



Second Derivative Test

A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if for any $\vec{x} \in \mathbb{R}^d$, all **eigenvalues** of the Hessian matrix $H(\vec{x})$ are ≥ 0 .

For This Class...

- You will not need to compute eigenvalues "by hand"...
- Unless the matrix is diagonal.
 In which case, the eigenvalues are the diagonal entries.

Example

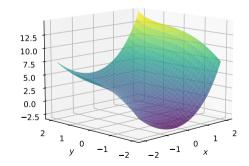
The eigenvalues of this matrix are 5, 2, and 1.

$$\begin{pmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Exercise Is $f(x, y) = e^x + e^y + x^2 - y^2$ convex?

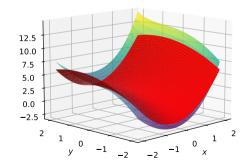
No

► The Hessian at (0,0) has a negative eigenvalue.



No

► The Hessian at (0,0) has a negative eigenvalue.



Exercise

Is
$$f(\vec{w}) = \|\vec{w}\|^2$$
 convex?

Note

- The second derivative test only works if f is twice differentiable.
- A function can be convex without having a second derivative.

Properties

We can often prove convexity using properties.

Two useful properties:

- Sums of convex functions are convex.
- Affine compositions of convex functions are convex.

Sums of Convex Functions

Suppose that $f(\vec{x})$ and $g(\vec{x})$ are convex. Then $w_1 f(\vec{x}) + w_2 g(\vec{x})$ is convex, provided $w_1, w_2 \ge 0$.

Affine Composition

Suppose that f(x) is convex. Let A be a matrix, and \vec{x} and \vec{b} be vectors. Then

$$g(\vec{x}) = f(A\vec{x} + \vec{b})$$

is convex as a function of \vec{x} .

Remember: a vector is a matrix with one column/row.

Exercise

Consider the function

$$f(\vec{w}) = (\vec{x} \cdot \vec{w} - y)^2$$

Is this function convex as a function of \vec{w} ?

Lecture 5 | Part 5

Convex Loss Functions

Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
 We've chosen linear predictors, H(x) = Aug(x) ⋅ w.

- Step 2: choose a **loss function**
- Step 3: find w minimizing empirical risk
 Some choices of loss function make this easier.

Convexity and Gradient Descent

- Convex functions are (relatively) easy to optimize.
- Theorem: if f(x) is convex and "not too steep"⁴ then (stochastic) (sub)gradient descent converges to a global optimum of f provided that the step size is small enough⁵.

⁴Technically, *c*-Lipschitz

⁵step size related to steepness, should decrease like $1/\sqrt{\text{step }\#}$

Convex Loss

- Recall: sums of convex functions are convex.
- Implication: if loss function is convex as a function of w, so is the empirical risk, R(w)

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w}, y_i)$$

Takeaway: Convex losses make ERM easier.

Example: Square Loss

Recall the square loss for a linear predictor:

$$\ell_{sq}(\operatorname{Aug}(\vec{x})\cdot\vec{w},y) = (\operatorname{Aug}(\vec{x})\cdot\vec{w}-y)^2$$

This is **convex** as a function of \vec{w} .

Proof: a few slides ago.

Example: Absolute Loss

Recall the absolute loss for a linear predictor:

$$\ell_{\rm abs}({\rm Aug}(\vec{x})\cdot\vec{w},y)=|\,{\rm Aug}(\vec{x})\cdot\vec{w}-y|$$

• This is **convex** as a function of \vec{w} .

Linear Predictors

- It's also important that we've chosen linear predictors.
- A loss that is **convex** in \vec{w} for linear $H_1(x)$ may be **non-convex** for non-linear $H_2(x)$.
- Example: square loss.
 If H₁(x) = w₀ + w₁x, then (w₀ + w₁x y)² is convex.
 If H₂(x) = w₀e^{w₁x}, then (w₀e^{w₁x} y)² is non-convex.

Summary

- By combining 1) linear predictors and 2) a convex loss function, we make ERM easier.
- Many machine learning algorithms are linear predictors with convex loss functions.
 As we'll see...

Lecture 5 | Part 6

From Theory to Practice

Gradient Descent

- We've spent three lectures on gradient descent.
- A powerful optimization algorithm.
- In practice, we use extensions of (stochastic) gradient descent.

Extensions of SGD

Newton's method

- Second order optimization, using the Hessian.
- Can converge in fewer steps.
- But the Hessian is expensive to compute.
- Adagrad, RMSprop, Adam
 - SGD with adaptive learning rates.
 - Used heavily in training of deep neural networks.

Non-Convex Optimization

So far, we've only seen convex risks.

- But there's an important class of machine learning algorithms that have **non-convex** risks.
- **Namely:** deep neural networks.

Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
 Deep neural networks.

Step 2: choose a loss function

Step 3: find w minimizing **empirical risk**

Deep Learning

- A deep neural network is a prediction function $H(\vec{x}; \vec{w})$ composed of many layers.
- Typically, *H* is not linear in \vec{w} .
- The risk becomes highly non-convex.
 Even, for example, the square loss.
- How do we minimize the empirical risk?

Answer: SGD

- We use stochastic gradient descent (and extensions).
 - Even though the empirical risk is non-convex.
 - The optimization problem becomes much harder.
- SGD may not find a global minimum of the risk.
- But often finds a **"good enough**" local minimum.

Next Time

Linear classification.