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Lecture 5  Part1

Introduction



Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
We've chosen linear predictors.

Step 2: choose a loss function

Step 3: find H minimizing empirical risk
In case of linear predictors, equivalent to finding w.



Minimizing Empirical Risk

We want to minimize the empirical risk:
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Minimizing Empirical Risk

For some losses there’s a formula for the best w.
Example: square loss. S s
But it might be too costly to use! w*- CX"?‘)' KTH,

For others, there isn’t.
Example: absolute loss, Huber loss.

In either case, we might use gradient descent.



Two Issues with Gradient Descent

Can be expensive to compute the exact gradient.
Especially when we have a large data set.
Solution: stochastic gradient descent.

Doesn’t work as-is if risk is not differentiable.
Such as with the absolute loss.
Solution: subgradient descent.



Today
Answer two remaining questions:

How do we minimize the risk with respect to
non-differentiable losses, like the absolute loss?

When is gradient descent guaranteed to work?



Ds<C /40A

P/’bbﬂb}ﬂ/sﬁ‘c MM&}? ¢ WMachine /éarmh?

Lecture5 Part2

Subgradient Descent



Gradient Descent?

Question: can we use gradient descent if the risk
is not differentiable?

Answer: yes, with a slight modification.



Differentiability

A function f(z) is differentiable if the derivative
exists at every point.

That is, it has a well-defined slope at every point.



Where is the derivative not defined?

-4z-7 ifz<-3
£(2) -z+2 if -3<z<0
“105z+2 ifo<z<2
3z/2 ifz=2

Dy -%,0,2




Differentiability

A function f(2) is differentiable if the gradient
exists at every point.

In other words, all of the slopes are well-defined:
of [oz,, of [oz,, ...



Example

flz, 2

) < -5z, +2, ifz150
2 -2z, +2, ifz1>0

10.0

=25




(”/; éz'(-:,-u>>= Kus

_[-5z,+z, ifZ150
f(z,,2,) = [-221 +z, ifz, >0



Answer

Vf(2) is defined everywhere
exceptalong z, = 0.

Ifz, <0, f.(Z') =-52,+2,
gradient is (-5, 1)" here

Ifz, >0, f.(é') =.—2z1 +2,.
gradient is (-2, 1)" here




Answer

; .
d (-5,1), ifz, <0,
Toy-{21 itz >0
dz undefined, ifz, =0.




Problem

We can try running gradient
descent.

But what do we do if we reach
a point where the gradient is
not defined?

We need a replacement for
the gradient that tells us
where to go.




f(2)

Idea

Slope is undefined at z, = -3.
To the left, slope is -4
To the right, slope is -1

-4z-7 ifz<-3 ]
-z+2 if-35z<0 =
0.5z+2 if0<z<2

3z/2 ifz>2 ]




Idea

Slope is undefined at z, = -3.
To the left, slope is -4
To the right, slope is -1

-4z-7 ifz<-3 ]

-z+2 if-3<z<0 =
f@)=105242 ifosz<2

3z/2 ifz>2 2




Idea

Slope is undefined at z, = -3.
To the left, slope is -4
To the right, slope is -1

-4z -7
-Z+2
0.5z+2
3z/2

f(2) =

ifz<-3 ]
if -3<z<0 =
if0<sz<2

ifz>2 N




f(2)

Idea

Slope is undefined at z, = -3.
To the left, slope is -4
To the right, slope is -1

-4z-7 ifz<-3 ]
-z+2 if-35z<0 =
0.5z+2 if0<z<2

3z/2 ifz>2 ]




Idea

Any number between -4 and -1 adequately
describes the behavior of fat z = -3.

10

-4z-7 ifz<-3 9

-z+2 if-3<z<0 =
f@)=1052+2 ifocz<2 N

3z/2 ifz=2 N




Idea

Any number between -4 and -1 is a subderivative
of fatz=-3.

-\,-2,-22* -4 ‘
-4z-7 ifz<-3 -
-z+2 if-3<z<0 =

f@=305z+2 ifocz<2 N
3z/2 ifz=2 N




What are the valid subderivatives of f at z = 2?

2, 1,25 0.09,0.2949  avg maber € [Vz5F2]
0,10 (nhwfid)

-47-7 ifz<-3 . 6 3/
f(2) = -Z+2 if -3<z<0 2

0.5z+2 if0<z<?2

3z/2 ifz=2 N

44

0




Subderivatives

Any valid subderivative defines a line that lies
below the function.




Subderivatives

Any valid subderivative defines a line that lies
below the function.

10




Subderivatives

Any valid subderivative defines a line that lies
below the function.




Subderivatives

The equation of thi




Subderivatives
A number s is a subderivative of f at z, if:
f(z)2f.(z) forallz
ut  ad

That is, if:
f(2) 2 f(z;) + s(z - z,)






Intuition

The subderivative tells us how the function
changes when the slope doesn’t exist.

We can sometimes use it in place of a derivative.



Subgradient

In higher dimensions, we have multiple slopes to
worry about.

We can use a subgradient to generalize the
concept of a subderivative.



Example

There’s no well-defined gradient at z, = (0, 0).
The slope in the z, direction is undefined

Between -5 and -2?
The slope in the z, direction is 1

[-52,+2, ifz, <0
f(z,2) = [—221 vz, ifz,>0




Example

We will call any vector (s,, ) with-5<s, <-2a
subgradient at (0, 0).

f(z,2,) = [—521 +z, ifz; <0

-2z, + 2, ifz1 >0




Subgradient

A vector S defines a plane:
Example: (-5,1)"




Subgradient

A vector S defines a plane:
Example: (-2,1)"




Subgradient

A vector S defines a plane:
Example: (-3,1)"




Subgradient

A vector § is a valid subgradient at 2 if the

plane it defines lies at or below the function f.
Example: (-3, 1)"




Subgradient

The equation of the plane defined by § at Z© is:
f(2) = f(ZD)+3-(2-2)




Subgradients

3 is a subgradient of f(2) at 2 if:

f(2)2 f(2) forallZ

That is, if:

F(2)2 FZO) 3 (2 - 20)



Finding Subgradients

Here are two suggested ways to check that Sis a
valid subgradient.

1) Visualize it.

2) Check if the inequality holds.



Example

_ _5z1 +Z, ifZ1 <0
f(z,2) = [—221 +z, ifz,>0

Is (-5, 0)" a valid subgradient$ o (o,o) 2

15
10

-5
-10
-15




T;\a, %\:O' Zz:—;

Example ~°® ?ff(".‘?)

?
-5z, +z, ifz, <0 < -
f(z1’z2)=[—221+z§ ifz1>0 o i’, g
Is (-5,0)" a valid subgradient at the point (0,0)? /VD

O >
ro A7

Is £(0,0) +(-5,0)" - ((z,,2,) - (0,0)") < f(z,,z,) forallz,z,?

v .

-5z, < _P(%\;%L>



Tip

If the slope is defined in a direction, the
corresponding entry of the subgradient must be
that slope.



Intuition

A subgradient tells us where to go when the
gradient is undefined.

We can use it instead of the gradient in gradient
descent.



f(z,,2,) =

2
zi +z,|

A subgradient:

(22,1
8(z,,2,) =

(2z,,0)

,ifz,>0,
,ifz, <0,
,ifz,=0.

(221 ’ -1 )T

Example

-04 -0.2 00 02 0.4
y



Example

Subgradient descent on f(z,,2,) = z2 + |z, |
Starting point: (1/2,1/2)"

Learning rate: n = 0.1.



44444

00000



\/ Problem

Does not converge! Why?

If fis differentiable, gradient gets smaller as we

approach the minimum.
Naturally take smaller steps.

Not true if the function is not differentiable!
Steps may stay the same size (too large).



Fix
Decrease learning rate with each iteration.

That is, choose a decreasing learning rate
schedule n(t) > 0.

Theory: choose n(t) = c/\/t, where t is iteration #,
C is a positive constant.



44444

00000



Subgradient Descent
To minimize f(2):

Pick arbitrary starting point 7%, a decreasing learning rate
schedule n(t) > 0.

Until convergence, repeat: .
Compute a subgradient 3 of f at 2.
Update 2" = 20 _ n(t)3

When converged, return 2.
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Minimizing Risk w.r.t. Absolute Loss



Absolute Loss

The absolute loss is a natural first choice for
regression.

The empirical risk becomes:

n
== ) IHED)-y,]

i=1

abs
71 .
> 1w - Aug(x) - y,|

1=1

Si- 3|—\



Minimizing the Risk

n

- 1 - (]
R =~ > |- Aug(x") - ;|
i=1
We might try computing the gradient, setting to

zero, and solving.

But the risk is not differentiable.



Risk for the Absolute Loss
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Regression with Absolute Loss

We were stuck before.
This risk is not differentiable.

Now: we can minimize the risk with respect to
the absolute loss using subgradient descent.



Subgradient of Empirical Risk

We need a subgradient of the empirical risk with
respect to the absolute loss.

Useful fact: the subgradient of a sum is the sum
of the subgradients.’

So it suffices to find a subgradient of the loss
function:

subgrad R(w Z subgrad #(i; X( ,y )

TAt least, for convex functions.



#x i pative D = x
i 'SSﬁBgradlent of the Absolute Loss

We need a subgradient of the absolute loss.
05 (W - Aug(XD), y,) = W - Aug(xD) - |

An equivalent piecewise definition:

' W Aug()?(i)) - Vi if w- Aug()?(’:)) >V
0ps(W-AUg(XD), y,) = 1y, - - Aug(x), if it - Aug(?) <
0, if w - Aug(x)) = y..



The Absolute Loss

Gradient exists except at w - Aug(X()) = y..
Here, we need a subgradient.

wb

\1J

O NWRMRUOU®

Ov



A5(§t°9

What is the gradient when w - Aug(X?”)) > y.? What
about when W - Aug(X") < y.?

g()(&' W - Aug( (XD -y, ifw-Aug(x?) >y,
0, (W Aug( ), y:) = 4o i - Aug(RD), if i - Aug(x?) < y;,
if W - Aug(x()) =



Subgradient of the Absolute Loss

8ps (W - Aug(X?), y;) = | - Aug(X?) - y;|

If W - Aug(X?) > y.: If W - Aug(XD) < y
Loss is i - Aug(X") - y,. Loss is y, - W/ - Aug(X().
Gradient is Aug(x?). Gradient is - Aug(x®).



Subgradient of the Absolute Loss

The zero vector works as a subgradient.

OCHNWHAMUOU®




Subgradient of the Absolute Loss

Our subgradient of the absolute loss:

Aug(X1), if W - Aug(X ’)>y,,
s(; X0, y.) = :Aug( X0y, i - Aug(x{)<y,,
0, if W - Aug(X() =



Minimizing the Absolute Loss

The subgradient of the empirical risk is the
average of the subgradients of the loss:

subgrad. of R(W)

n
=1 (i, %0,y
P
& Aug()?(i)), if W - Aug(x®) > y.,
= Aug(X), if - Aug(X) <y,

I

10, if W - Aug(X?) = .



Subgradient Descent

We minimize the empirical risk with respect to
the absolute loss using subgradient descent.

Pick an initial W%, a decreasing learning rate
schedule n(t) > 0. C
3
Until convergence, repeat:
Update

o [Aug(X®), if W - Aug(x?) > v,
A = O ()« - Aug(#D), if - Aug(R) < y,
=1 (0, if W - Aug(X?) = y..
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-15 -10 =05 0.0 0.5 1.0 15 2.0

-2.0




-15 -10 =05 0.0 0.5 1.0 15 2.0

-2.0




-15 -10 =05 0.0 0.5 1.0 15 2.0

-2.0




-15 -10 =05 0.0 0.5 1.0 15 2.0

-2.0




-15 -10 =05 0.0 0.5 1.0 15 2.0

-2.0




In Practice

We've minimized the risk with respect to the
absolute loss.

This approach has different names:
Quantile regression, median regression
Minimum Absolute Deviations (MAD)

Solvable by (S)GD, or as a linear program.
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Convexity



Question

When is gradient descent guaranteed to work?



Not here...




Convex Functions

Convex Non-convex



Convexity: Definition

f is convex if for every a, b the line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.

o Y




Convexity: Definition

f is convex if for every a, b the line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.

N
a b




Convexity: Definition

f is convex if for every a, b the line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.

[/




Convexity: Definition

f is convex if for every a, b the line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.

[/




Other Terms
If a function is not convex, it is non-convex.
Strictly convex: the line lies strictly above curve.

Concave: the line lies on or below curve.



\__/4/
True or a convex function must have a
unique global minimum.

( Tru;or False: a local minimum of a convex func-
fon is always a global minimum.

r False: a strictly convex function must have
g unique global minimum.




Convexity: Formal Definition

A function f : R - R is convex if for every
choice of a,b €e Rand t € [0, 1]:

(1-1)f(a) + tf(b) 2 f((1 - t)a + tb).




Using the definition, is f(x) = | x| convex?




Another View: Second Derivatives

If Z—Z(x) > 0 for all x, then fis convex.

Example: f(x) = x* is convex.

Warning! Only works if f is twice differentiable!

e




Another View: Second Derivatives

“Best” straight line at x:
f1(X) = f(Xo) + f,(xo) : (X - Xo)

“Best” parabola at x:
fz(X) = f(Xo) + f’(Xo) : (X - Xo) + %f"(xo) : (X - Xo)z

Possibilities: upward-facing, downward-facing, flat.



Convexity and Parabolas

Convex if for every x,, parabola is upward-facing

(or flat).
That is, f"(x,) 2 0.

b




Proving Convexity Using Properties

Suppose that f(x) and g(x) are convex. Then:

w, f(x) + w,g(x) is convex, provided w,,w, 20
Example: 3x? + | x| is convex

g(f(x)) is convex, provided g is non-decreasing.
Example: e is convex

max{f(x), g(x)} is convex

0, x<0

Example: { is convex

) -



Note!

These properties are useful for proving convexity
for functions of one variable.

Some of them will not generalize to higher
dimensions.



Convexity and Gradient Descent

Convex functions are (relatively) easy to
optimize.

Theorem: if f(x) is convex and “not too steep”?
then (stochastic) (sub)gradient descent
converges to a global optimum of f provided
that the step size is small enough?

2Technically, c-Lipschitz
3step size related to steepness, should decrease like 1/,/step #.
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Convexity in Many Dimensions



Convexity: Definition

f(X) is convex if for every d, b the line segment
between

(Gf(@) and (b f(b)
does not go below the plot of f.




Convexity: Formal Definition

A function f : RY - R is convex if for every
choice of d,b € R%and t € [0, 1]:

(1 - t)f(d) + tf(B) 2 F((1 - t)d + tb).



The Second Derivative Test

For 1-dimensions functions:
convex if second derivative > 0.

For d-dimensional functions:
convex if ?2??



Second Derivatives in d-Dimensions

In 2-dimensions, there are 4 second derivatives:
off of? off of?
ax3' ax3’ oxx," oxyx,

In d-dimensions, there are d?:

o forall .

axiaxj

The second derivatives describe the curvature of
a paraboloid approximating f.






10 0 10 20 30 40 50

20—

X1



-20-10 ¢

X1



The Hessian Matrix
Create the Hessian matrix of second derivatives:

For f : R? - R:

of2 /5 of2 o
> aX% (X) ax1 up) (X
H(X) = of2 ;o\ of2,o
m(x) Q(X)



In General

If f : RY - R, the Hessian at X is:

/f@) (7 - i@)\

ox3 OX1 Xy X1 Xy
I
M) < | ) L) - 2L

|22 Ly . J

xq o o



Second Derivative Test

A function f : RY - R is convex if for any ¥ € RY,
all eigenvalues of the Hessian matrix H(X) are
2 0.



For This Class...

You will not need to compute eigenvalues “by
hand”...

Unless the matrix is diagonal.
In which case, the eigenvalues are the diagonal
entries.



Example

The eigenvalues of this matrix are 5, 2, and 1.

500
020
0 01



Is f(x,y) = e¥+e¥ + x? - y? convex?




No

0,0) has a negative eigenvalue.

(

The Hessian at




No

The Hessian at (0,0) has a negative eigenvalue.

12,5 l
10.0 T
7.5
5.0
2.5
0.0
-2.5




Is f(W) = ||W]|* convex?




Note

The second derivative test only works if f is twice
differentiable.

A function can be convex without having a
second derivative.



Properties
We can often prove convexity using properties.

Two useful properties:
Sums of convex functions are convex.
Affine compositions of convex functions are convex.



Sums of Convex Functions

Suppose that f(x) and g(X) are convex. Then

w, f(X) + w,g(X) is convex, provided w.,w, 2 0.



Affine Composition

Suppose that f(x) is convex. Let A be a matrix,
and X and b be vectors. Then

-

g(X) = f(AX + b)

is convex as a function of X.

Remember: a vector is a matrix with one
column/row.

Useful!



Consider the function
flw) = (X - - y)?

Is this function convex as a function of w?




Ds<c /40A

Prbabfete Modfry ¢ Vachine darone),

Lecture 5 Part6

Convex Loss Functions



Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
We've chosen linear predictors, H(X) = Aug(X) - w.

Step 2: choose a loss function

Step 3: find W minimizing empirical risk
Some choices of loss function make this easier.



Convexity and Gradient Descent

Convex functions are (relatively) easy to
optimize.

Theorem: if f(x) is convex and “not too steep”*
then (stochastic) (sub)gradient descent
converges to a global optimum of f provided
that the step size is small enough®.

“Technically, c-Lipschitz
Sstep size related to steepness, should decrease like 1/,/step #



Convex Loss

Recall: sums of convex functions are convex.

Implication: if loss function is convex as a
function of w, so is the empirical risk, R(W)

R(w) =

Takeaway: Convex losses make ERM easier.



Example: Square Loss

Recall the square loss for a linear predictor:

{)sq(Aug()?) W, y) = (Aug(X) - w - y)2

This is convex as a function of w.

Proof: a few slides ago.



Example: Absolute Loss

Recall the absolute loss for a linear predictor:
¥ps(AUG(X) - W, y) = | Aug(X) - W - y|

This is convex as a function of w.



Linear Predictors

It's also important that we've chosen linear
predictors.

A loss that is convex in w for linear H,(x) may be
non-convex for non-linear H,(x).

Example: square loss.
If H,(x) = w, +w, X, then (w, + w, x —.y)2 is convex.
If H,(x) = w,e", then (w,e" - y)* is non-convex.



Summary

By combining 1) linear predictors and 2) a convex
loss function, we make ERM easier.

Many machine learning algorithms are linear

predictors with convex loss functions.
As we'll see...
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Appendix: From Theory to Practice



Gradient Descent
We've spent three lectures on gradient descent.
A powerful optimization algorithm.

In practice, we use extensions of (stochastic)
gradient descent.



Extensions of SGD

Newton’s method
Second order optimization, using the Hessian.
Can converge in fewer steps.
But the Hessian is expensive to compute.

Adagrad, RMSprop, Adam
SGD with adaptive learning rates.
Used heavily in training of deep neural networks.



Non-Convex Optimization
So far, we've only seen convex risks.

But there’s an important class of machine
learning algorithms that have non-convex risks.

Namely: deep neural networks.



Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
Deep neural networks.

Step 2: choose a loss function

Step 3: find w minimizing empirical risk



Deep Learning

A deep neural network is a prediction function
H(x; w) composed of many layers.

Typically, H is not linear in w.

The risk becomes highly non-convex.
Even, for example, the square loss.

How do we minimize the empirical risk?



Answer: SGD

We use stochastic gradient descent (and
extensions).
Even though the empirical risk is non-convex.
The optimization problem becomes much harder.

SGD may not find a global minimum of the risk.

But often finds a “good enough” local minimum.



Next Time

Linear classification.



