

Lecture 5 | Part 1

# **Empirical Risk Minimization (ERM)**

- Step 1: choose a hypothesis class
   We've chosen linear predictors.
- Step 2: choose a **loss function**
- Step 3: find H minimizing empirical risk
   In case of linear predictors, equivalent to finding w.

# **Minimizing Empirical Risk**

We want to minimize the empirical risk:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \ell(\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w}, y_i)$$

# **Minimizing Empirical Risk**

For some losses there's a formula for the best  $\vec{w}$ .

₩\*= (XX)-'XTy

- **Example:** square loss.
- But it might be too costly to use!
- ► For others, there isn't.
  - Example: absolute loss, Huber loss.
- In either case, we might use gradient descent.

### **Two Issues with Gradient Descent**

- Can be expensive to compute the exact gradient.
   Especially when we have a large data set.
   Solution: stochastic gradient descent.
- 2. Doesn't work as-is if risk is **not differentiable**.
  - Such as with the absolute loss.
  - Solution: subgradient descent.

# Today

- Answer two remaining questions:
- 1. How do we minimize the risk with respect to non-differentiable losses, like the **absolute loss**?
- 2. When is gradient descent guaranteed to work?



Lecture 5 | Part 2

**Subgradient Descent** 

### **Gradient Descent?**

- Question: can we use gradient descent if the risk is not differentiable?
- Answer: yes, with a slight modification.

# Differentiability

- A function f(z) is differentiable if the derivative exists at every point.
- That is, it has a well-defined slope at every point.

#### Exercise

Where is the derivative **not** defined?

$$f(z) = \begin{cases} -4z - 7 & \text{if } z < -3 \\ -z + 2 & \text{if } -3 \le z < 0 \\ 0.5z + 2 & \text{if } 0 \le z < 2 \\ 3z/2 & \text{if } z \ge 2 \end{cases}$$



## Differentiability

- A function f(z) is differentiable if the gradient exists at every point.
- In other words, all of the slopes are well-defined:
   ∂f/∂z₁, ∂f/∂z₂, ...

### Example

► 
$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$







#### Answer

- ▶  $\vec{\nabla} f(\vec{z})$  is defined everywhere except along  $z_1 = 0$ .
- ▶ If  $z_1 < 0$ ,  $f(\vec{z}) = -5z_1 + z_2$ . ▶ gradient is  $(-5, 1)^T$  here
- ► If  $z_1 > 0$ ,  $f(\vec{z}) = -2z_1 + z_2$ . ► gradient is  $(-2, 1)^T$  here



#### Answer



$$\frac{df}{d\vec{z}}(\vec{z}) = \begin{cases} (-5,1)^T, & \text{if } z_1 < 0, \\ (-2,1)^T, & \text{if } z_1 > 0, \\ \text{undefined}, & \text{if } z_1 = 0. \end{cases}$$

#### Problem

- We can try running gradient descent.
- But what do we do if we reach a point where the gradient is not defined?
- We need a replacement for the gradient that tells us where to go.



Slope is undefined at  $z_1 = -3$ .

- ▶ To the left, slope is -4
- ▶ To the right, slope is -1





Slope is undefined at z<sub>1</sub> = −3.
 To the left, slope is -4
 To the right, slope is -1



Slope is undefined at  $z_1 = -3$ .

- ► To the left, slope is -4
- ▶ To the right, slope is -1



-4

-1

3

Slope is undefined at  $z_1 = -3$ .

- ▶ To the left, slope is -4
- ▶ To the right, slope is -1





Any number between -4 and -1 adequately describes the behavior of f at z = -3.



Any number between -4 and -1 is a subderivative of f at z = -3.

$$f(z) = \begin{cases} -4z - 7 & \text{if } z < -3 \\ -z + 2 & \text{if } -3 \le z < 0 \\ 0.5z + 2 & \text{if } 0 \le z < 2 \\ 3z/2 & \text{if } z \ge 2 \end{cases}$$





Any valid subderivative defines a line that lies below the function.



Any valid subderivative defines a line that lies below the function.



Any valid subderivative defines a line that lies below the function.



The equation of this line is:  $f_{s}(z) = f(z_{0}) + s(z - z_{0})$ 10  $f_{c}(z)$ 8 6 f(z)4 2 0 -2 -1 ò i. 2 -4 z

A number s is a subderivative of f at  $z_0$  if:

$$f(z) \ge f_s(z)$$
 for all z

That is, if:

$$f(z) \ge f(z_0) + s(z - z_0)$$



# Intuition

- The subderivative tells us how the function changes when the slope doesn't exist.
- We can sometimes use it in place of a derivative.

- In higher dimensions, we have multiple slopes to worry about.
- We can use a subgradient to generalize the concept of a subderivative.

### Example

#### There's no well-defined gradient at $z_1 = (0, 0)$ .

- The slope in the z<sub>1</sub> direction is undefined
   Between -5 and -2?
- The slope in the  $z_2$  direction is 1

$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$



#### Example

▶ We will call any vector  $(s_1, 1)$  with  $-5 \le s_1 \le -2$  a subgradient at (0, 0).

$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$



# A vector s defines a plane: Example: (-5, 1)<sup>T</sup>



# A vector s defines a plane: Example: (-2, 1)<sup>T</sup>



# A vector s defines a plane: Example: (-3, 1)<sup>T</sup>



### Subgradient

A vector s is a valid subgradient at z<sup>(0)</sup> if the plane it defines lies at or below the function f.
 Example: (-3, 1)<sup>T</sup>



### Subgradient

The equation of the plane defined by  $\vec{s}$  at  $\vec{z}^{(0)}$  is:  $f_s(\vec{z}) = f(\vec{z}^{(0)}) + \vec{s} \cdot (\vec{z} - \vec{z}^{(0)})$ 



### Subgradients

►  $\vec{s}$  is a **subgradient** of  $f(\vec{z})$  at  $\vec{z}^{(0)}$  if:  $f(\vec{z}) \ge f_s(\vec{z})$  for all  $\vec{z}$ 

► That is, if:

$$f(\vec{z}) \geq f(\vec{z}^{(0)}) + \vec{s} \cdot (\vec{z} - \vec{z}^{(0)})$$

### **Finding Subgradients**

- Here are two suggested ways to check that s is a valid subgradient.
- ▶ 1) Visualize it.
- > 2) Check if the inequality holds.



$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$

► Is  $(-5, 0)^T$  a valid subgradient  $* = (0, 0)^2$ ?





## Тір

If the slope is defined in a direction, the corresponding entry of the subgradient must be that slope.

### Intuition

- A subgradient tells us where to go when the gradient is undefined.
- We can use it instead of the gradient in gradient descent.

$$f(z_1, z_2) = z_1^2 + |z_2|$$

A subgradient:

$$\vec{s}(z_1, z_2) = \begin{cases} (2z_1, 1)^T & \text{, if } z_2 > 0, \\ (2z_1, -1)^T & \text{, if } z_2 < 0, \\ (2z_1, 0)^T & \text{, if } z_2 = 0. \end{cases}$$



- Subgradient descent on  $f(z_1, z_2) = z_1^2 + |z_2|$
- Starting point:  $(1/2, 1/2)^T$
- Learning rate:  $\eta = 0.1$ .





Does not converge! Why?

If f is differentiable, gradient gets smaller as we approach the minimum.

Naturally take smaller steps.

Not true if the function is not differentiable!
 Steps may stay the same size (too large).

### Fix

- Decrease learning rate with each iteration.
- That is, choose a decreasing learning rate schedule η(t) > 0.
- **Theory:** choose  $\eta(t) = c/\sqrt{t}$ , where *t* is iteration *#*, *c* is a positive constant.



### **Subgradient Descent**

#### To minimize $f(\vec{z})$ :

- Pick arbitrary starting point  $\vec{z}^{(0)}$ , a decreasing learning rate schedule  $\eta(t) > 0$ .
- Until convergence, repeat:
   Compute a subgradient s of f at z<sup>(i)</sup>.
   Update z<sup>(t+1)</sup> = z<sup>(t)</sup> η(t)s

• When converged, return  $\vec{z}^{(t)}$ .



Lecture 5 | Part 3

Minimizing Risk w.r.t. Absolute Loss

### **Absolute Loss**

- The absolute loss is a natural first choice for regression.
- The empirical risk becomes:

$$R_{abs}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} |H(\vec{x}^{(i)}) - y_i|$$
  
=  $\frac{1}{n} \sum_{i=1}^{n} |\vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) - y_i|$ 

### Minimizing the Risk

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} |\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) - y_i|$$

We might try computing the gradient, setting to zero, and solving.

But the risk is **not differentiable**.

### **Risk for the Absolute Loss**



### **Regression with Absolute Loss**

We were stuck before.

- This risk is not differentiable.
- Now: we can minimize the risk with respect to the absolute loss using subgradient descent.

### Subgradient of Empirical Risk

- We need a subgradient of the empirical risk with respect to the absolute loss.
- Useful fact: the subgradient of a sum is the sum of the subgradients.<sup>1</sup>
- So it suffices to find a subgradient of the loss function:

subgrad 
$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \text{subgrad } \ell(\vec{w}; \vec{x}^{(i)}, y_i)$$

<sup>1</sup>At least, for convex functions.

# if x is positive if x i

We need a subgradient of the absolute loss.

$$\ell_{\text{abs}}(\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}), y_i) = |\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) - y_i|$$

An equivalent piecewise definition:

$$\boldsymbol{\ell}_{abs}(\vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}), y_i) = \begin{cases} \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) - y_i, & \text{if } \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) > y_i, \\ y_i - \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}), & \text{if } \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) < y_i, \\ 0, & \text{if } \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) = y_i. \end{cases}$$

### **The Absolute Loss**

▶ Gradient exists except at w · Aug(x<sup>(i)</sup>) = y<sub>i</sub>.
 ▶ Here, we need a subgradient.





### Subgradient of the Absolute Loss

$$\ell_{abs}(\vec{w} \cdot Aug(\vec{x}^{(i)}), y_i) = |\vec{w} \cdot Aug(\vec{x}^{(i)}) - y_i|$$

- If  $\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) > y_i$ :  $box{Loss is } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) - y_i.$ 
  - Gradient is  $Aug(\vec{x}^{(i)})$ .

- If  $\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) < y_i$ : Loss is  $y_i - \vec{w} \cdot \text{Aug}(\vec{x}^{(i)})$ .
  - Gradient is Aug( $\vec{x}^{(i)}$ ).

### Subgradient of the Absolute Loss

The zero vector works as a subgradient.



### Subgradient of the Absolute Loss

Our subgradient of the absolute loss:

$$s(\vec{w}; \vec{x}^{(i)}, y_i) = \begin{cases} \text{Aug}(\vec{x}^{(i)}), & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) > y_i, \\ -\text{Aug}(\vec{x}^{(i)}), & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) < y_i, \\ \vec{0}, & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) = y_i. \end{cases}$$

### Minimizing the Absolute Loss

The subgradient of the empirical risk is the average of the subgradients of the loss:

subgrad. of  $R(\vec{w})$ 

$$\begin{split} &= \frac{1}{n} \sum_{i=1}^{n} s(\vec{w}, \vec{x}^{(i)}, y_i) \\ &= \frac{1}{n} \sum_{i=1}^{n} \begin{cases} \text{Aug}(\vec{x}^{(i)}), & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) > y_i, \\ -\text{Aug}(\vec{x}^{(i)}), & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) < y_i, \\ \vec{0}, & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) = y_i. \end{cases} \end{split}$$

### **Subgradient Descent**

- We minimize the empirical risk with respect to the absolute loss using subgradient descent.
- Pick an initial  $\vec{w}^{(0)}$ , a decreasing learning rate schedule  $\eta(t) > 0$ .
- Until convergence, repeat:
   Update

$$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \eta(t) \times \frac{1}{n} \sum_{i=1}^{n} \begin{cases} \text{Aug}(\vec{x}^{(i)}), & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) > y_{i}, \\ -\text{Aug}(\vec{x}^{(i)}), & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) < y_{i}, \\ \vec{0}, & \text{if } \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) = y_{i}. \end{cases}$$















### Example



# **In Practice**

- We've minimized the risk with respect to the absolute loss.
- This approach has different names:
   Quantile regression, median regression
   Minimum Absolute Deviations (MAD)
- Solvable by (S)GD, or as a linear program.



Lecture 5 | Part 4

Convexity

# Question

When is gradient descent guaranteed to work?



#### **Convex Functions**



f is convex if for every a, b the line segment between

(a, f(a)) and (b, f(b))does not go below the plot of f.



f is convex if for every a, b the line segment between

(a, f(a)) and (b, f(b))does not go below the plot of f.



f is convex if for every a, b the line segment between

(a, f(a)) and (b, f(b))

does not go below the plot of f.



f is convex if for every a, b the line segment between

(a, f(a)) and (b, f(b))

does not go below the plot of f.



#### **Other Terms**

If a function is not convex, it is non-convex.

- Strictly convex: the line lies strictly above curve.
- **Concave**: the line lies on or below curve.

#### Exercise

**True** or **False**? a convex function must have a unique global minimum.

**True** or **False**: a local minimum of a convex function is always a global minimum.

**True** or **False**: a *strictly* convex function must have a unique global minimum.

# **Convexity: Formal Definition**

A function  $f : \mathbb{R} \to \mathbb{R}$  is **convex** if for every choice of  $a, b \in \mathbb{R}$  and  $t \in [0, 1]$ :

$$(1 - t)f(a) + tf(b) \ge f((1 - t)a + tb).$$



#### Exercise

Using the definition, is f(x) = |x| convex?

### **Another View: Second Derivatives**

► If 
$$\frac{d^2f}{dx^2}(x) \ge 0$$
 for all x, then f is convex.

- Example:  $f(x) = x^4$  is convex.
- Warning! Only works if f is twice differentiable!



#### **Another View: Second Derivatives**

"Best" straight line at 
$$x_0$$
:  
 $f_1(x) = f(x_0) + f'(x_0) \cdot (x - x_0)$ 

"Best" parabola at x<sub>0</sub>:
 f<sub>2</sub>(x) = f(x<sub>0</sub>) + f'(x<sub>0</sub>) ⋅ (x - x<sub>0</sub>) + <sup>1</sup>/<sub>2</sub>f"(x<sub>0</sub>) ⋅ (x - x<sub>0</sub>)<sup>2</sup>
 Possibilities: upward-facing, downward-facing, flat.

# **Convexity and Parabolas**

Convex if for every x<sub>0</sub>, parabola is upward-facing (or flat).
 That is, f"(x<sub>0</sub>) ≥ 0.



# **Proving Convexity Using Properties**

Suppose that f(x) and g(x) are convex. Then:

- w<sub>1</sub>f(x) + w<sub>2</sub>g(x) is convex, provided w<sub>1</sub>, w<sub>2</sub> ≥ 0
   Example: 3x<sup>2</sup> + |x| is convex
- g(f(x)) is convex, provided g is non-decreasing.
   Example: e<sup>x<sup>2</sup></sup> is convex

max{f(x), g(x)} is convex
 Example: 
$$\begin{cases} 0, & x < 0 \\ x, & x ≥ 0 \end{cases}$$
 is convex

# Note!

- These properties are useful for proving convexity for functions of **one variable**.
- Some of them will not generalize to higher dimensions.

# **Convexity and Gradient Descent**

- Convex functions are (relatively) easy to optimize.
- Theorem: if f(x) is convex and "not too steep"<sup>2</sup> then (stochastic) (sub)gradient descent converges to a global optimum of f provided that the step size is small enough<sup>3</sup>

<sup>&</sup>lt;sup>2</sup>Technically, *c*-Lipschitz

<sup>&</sup>lt;sup>3</sup>step size related to steepness, should decrease like  $1/\sqrt{\text{step }\#}$ .



Lecture 5 | Part 5

**Convexity in Many Dimensions** 

►  $f(\vec{x})$  is **convex** if for **every**  $\vec{a}$ ,  $\vec{b}$  the line segment between

 $(\vec{a}, f(\vec{a}))$  and  $(\vec{b}, f(\vec{b}))$ does not go below the plot of f.



### **Convexity: Formal Definition**

► A function  $f : \mathbb{R}^d \to \mathbb{R}$  is **convex** if for every choice of  $\vec{a}, \vec{b} \in \mathbb{R}^d$  and  $t \in [0, 1]$ :

$$(1-t)f(\vec{a})+tf(\vec{b})\geq f((1-t)\vec{a}+t\vec{b}).$$

# **The Second Derivative Test**

For 1-dimensions functions:
 convex if second derivative ≥ 0.

For *d*-dimensional functions:
 convex if ???

# Second Derivatives in *d*-Dimensions

► In 2-dimensions, there are 4 second derivatives: ►  $\frac{\partial f^2}{\partial x_1^2}$ ,  $\frac{\partial f^2}{\partial x_2^2}$ ,  $\frac{\partial f^2}{\partial x_1 x_2}$ ,  $\frac{\partial f^2}{\partial x_2 x_1}$ 

- In *d*-dimensions, there are *d*<sup>2</sup>:
   df<sup>2</sup>/∂x<sub>i</sub>∂x<sub>j</sub> for all *i*, *j*.
- The second derivatives describe the curvature of a paraboloid approximating *f*.







### **The Hessian Matrix**

Create the Hessian matrix of second derivatives:

▶ For  $f : \mathbb{R}^2 \to \mathbb{R}$ :

$$H(\vec{x}) = \begin{pmatrix} \frac{\partial f^2}{\partial x_1^2}(\vec{x}) & \frac{\partial f^2}{\partial x_1 x_2}(\vec{x}) \\ \frac{\partial f^2}{\partial x_2 x_1}(\vec{x}) & \frac{\partial f^2}{\partial x_2^2}(\vec{x}) \end{pmatrix}$$

#### In General

▶ If  $f : \mathbb{R}^d \to \mathbb{R}$ , the **Hessian** at  $\vec{x}$  is:



# **Second Derivative Test**

A function  $f : \mathbb{R}^d \to \mathbb{R}$  is **convex** if for any  $\vec{x} \in \mathbb{R}^d$ , all **eigenvalues** of the Hessian matrix  $H(\vec{x})$  are  $\geq 0$ .

# For This Class...

- You will not need to compute eigenvalues "by hand"...
- Unless the matrix is diagonal.
   In which case, the eigenvalues are the diagonal entries.

# Example

The eigenvalues of this matrix are 5, 2, and 1.

$$\begin{pmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

# Exercise Is $f(x, y) = e^x + e^y + x^2 - y^2$ convex?

#### No

#### ► The Hessian at (0,0) has a negative eigenvalue.



#### No

#### ► The Hessian at (0,0) has a negative eigenvalue.



#### Exercise

Is 
$$f(\vec{w}) = \|\vec{w}\|^2$$
 convex?

### Note

- The second derivative test only works if f is twice differentiable.
- A function can be convex without having a second derivative.

# **Properties**

We can often prove convexity using properties.

#### Two useful properties:

- Sums of convex functions are convex.
- Affine compositions of convex functions are convex.

## **Sums of Convex Functions**

Suppose that  $f(\vec{x})$  and  $g(\vec{x})$  are convex. Then  $w_1 f(\vec{x}) + w_2 g(\vec{x})$  is convex, provided  $w_1, w_2 \ge 0$ .

# **Affine Composition**

Suppose that f(x) is convex. Let A be a matrix, and  $\vec{x}$  and  $\vec{b}$  be vectors. Then

$$g(\vec{x})=f(A\vec{x}+\vec{b})$$

is convex as a function of  $\vec{x}$ .

Remember: a vector is a matrix with one column/row.



#### Exercise

Consider the function

$$f(\vec{w}) = (\vec{x} \cdot \vec{w} - y)^2$$

Is this function convex as a function of  $\vec{w}$ ?



Lecture 5 | Part 6

**Convex Loss Functions** 

# **Empirical Risk Minimization (ERM)**

Step 1: choose a hypothesis class
 We've chosen linear predictors, H(x) = Aug(x) ⋅ w.

- Step 2: choose a **loss function**
- Step 3: find w minimizing empirical risk
   Some choices of loss function make this easier.

## **Convexity and Gradient Descent**

- Convex functions are (relatively) easy to optimize.
- Theorem: if f(x) is convex and "not too steep"<sup>4</sup> then (stochastic) (sub)gradient descent converges to a global optimum of f provided that the step size is small enough<sup>5</sup>.

<sup>&</sup>lt;sup>4</sup>Technically, *c*-Lipschitz

<sup>&</sup>lt;sup>5</sup>step size related to steepness, should decrease like  $1/\sqrt{\text{step }\#}$ 

### **Convex Loss**

- Recall: sums of convex functions are convex.
- Implication: if loss function is convex as a function of w, so is the empirical risk, R(w)

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w}, y_i)$$

Takeaway: Convex losses make ERM easier.

### **Example: Square Loss**

Recall the square loss for a linear predictor:

$$\ell_{sq}(\operatorname{Aug}(\vec{x})\cdot\vec{w},y) = (\operatorname{Aug}(\vec{x})\cdot\vec{w}-y)^2$$

This is **convex** as a function of  $\vec{w}$ .

**Proof**: a few slides ago.

### **Example: Absolute Loss**

Recall the absolute loss for a linear predictor:

$$\ell_{\rm abs}({\rm Aug}(\vec{x})\cdot\vec{w},y)=|\,{\rm Aug}(\vec{x})\cdot\vec{w}-y|$$

• This is **convex** as a function of  $\vec{w}$ .

## **Linear Predictors**

- It's also important that we've chosen linear predictors.
- A loss that is **convex** in  $\vec{w}$  for linear  $H_1(x)$  may be **non-convex** for non-linear  $H_2(x)$ .
- Example: square loss.
   If H<sub>1</sub>(x) = w<sub>0</sub> + w<sub>1</sub>x, then (w<sub>0</sub> + w<sub>1</sub>x y)<sup>2</sup> is convex.
   If H<sub>2</sub>(x) = w<sub>0</sub>e<sup>w<sub>1</sub>x</sup>, then (w<sub>0</sub>e<sup>w<sub>1</sub>x</sup> y)<sup>2</sup> is non-convex.

## Summary

- By combining 1) linear predictors and 2) a convex loss function, we make ERM easier.
- Many machine learning algorithms are linear predictors with convex loss functions.
   As we'll see...



Lecture 5 | Part 7

**Appendix: From Theory to Practice** 

## **Gradient Descent**

- We've spent three lectures on gradient descent.
- A powerful optimization algorithm.
- In practice, we use extensions of (stochastic) gradient descent.

## **Extensions of SGD**

#### Newton's method

- Second order optimization, using the Hessian.
- Can converge in fewer steps.
- But the Hessian is expensive to compute.
- Adagrad, RMSprop, Adam
  - SGD with adaptive learning rates.
  - Used heavily in training of deep neural networks.

## **Non-Convex Optimization**

So far, we've only seen convex risks.

- But there's an important class of machine learning algorithms that have **non-convex** risks.
- Namely: deep neural networks.

# **Empirical Risk Minimization (ERM)**

Step 1: choose a hypothesis class
 Deep neural networks.

Step 2: choose a loss function

Step 3: find w minimizing **empirical risk** 

## **Deep Learning**

- A deep neural network is a prediction function  $H(\vec{x}; \vec{w})$  composed of many layers.
- Typically, *H* is not linear in  $\vec{w}$ .
- The risk becomes highly non-convex.
   Even, for example, the square loss.
- How do we minimize the empirical risk?

#### **Answer: SGD**

- We use stochastic gradient descent (and extensions).
  - Even though the empirical risk is non-convex.
  - The optimization problem becomes much harder.
- SGD may not find a global minimum of the risk.
- But often finds a **"good enough**" local minimum.

# Next Time

Linear classification.