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Lecture 5  Part1

Introduction



Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
We've chosen linear predictors.

Step 2: choose a loss function

Step 3: find H minimizing empirical risk
In case of linear predictors, equivalent to finding w.



Minimizing Empirical Risk

We want to minimize the empirical risk:
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Minimizing Empirical Risk

For some losses there's a formula for the best w.
Example: square loss.
But it might be too costly to use!

For others, there isn’t.
Example: absolute loss, Huber loss.

In either case, we might use gradient descent.



Last Time
We addressed two issues with gradient descent.

Can be expensive to compute the exact gradient.
Especially when we have a large data set.
Solution: stochastic gradient descent.

Doesn’t work as-is if risk is not differentiable.
Such as with the absolute loss.
Solution: subgradient descent.



Today

Answer two outstanding questions:

How do we minimize the risk with respect to the
absolute loss?

When is gradient descent guaranteed to work?
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Minimizing Risk w.r.t. Absolute Loss



Regression with Absolute Loss

The risk with respect to the absolute loss:

We were stuck before.
This risk is not differentiable.

Now: we can minimize the risk with respect to
the absolute loss using subgradient descent.



Subgradient Descent
To minimize f(2):

Pick arbitrary starting point 7%, a decreasing learning rate
schedule n(t) > 0.

Until convergence, repeat: .
Compute a subgradient 3 of f at 2.
Update 2" = 20 _ n(t) 3

When converged, return 2.



Subgradient of Empirical Risk

We need a subgradient of the empirical risk with
respect to the absolute loss.

Useful fact: the subgradient of a sum is the sum
of the subgradients.’

So it suffices to find a subgradient of the loss
function:

subgrad R(w Z subgrad #(i; X( ,y )

TAt least, for convex functions.



Subgradient of the Absolute Loss

We need a subgradient of the absolute loss.

0 (W Aug(XD),y.) = | - Aug(X®) - .|

An equivalent piecewise definition:

Aug(X®) -y, if w - Aug(x®) > v,

. W. 7 .
0ps(W-AUg(XD), y,) = 1y, - - Aug(x), if it - Aug(?) <
0, if w - Aug(x)) = y..



The Absolute Loss

Gradient exists except at w - Aug(X()) = y..
Here, we need a subgradient.
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What is the gradient when w - Aug(X?)) > y.? What
about when W - Aug(X") < y.?

if W - Aug(x?) > Vi,
if W - Aug(x?) < .,
if W - Aug(x) = ..



Subgradient of the Absolute Loss

8ps (W - Aug(X?), y;) = | - Aug(X?) - y;|

If W - Aug(X?) > y.: If W - Aug(XD) < y
Loss is i - Aug(X") - y,. Loss is y, - W/ - Aug(X().
Gradient is Aug(x?). Gradient is - Aug(x®).



Subgradient of the Absolute Loss

The zero vector works as a subgradient.

OCHNWHAMUOU®




Subgradient of the Absolute Loss

Our subgradient of the absolute loss:

Aug(X1), if W - Aug(X ’)>y,,
s(; X0, y.) = :Aug( X0y, i - Aug(x{)<y,,
0, if W - Aug(X() =



Minimizing the Absolute Loss

The subgradient of the empirical risk is the
average of the subgradients of the loss:

subgrad. of R(W)

n
=1 (i, %0,y
P
& Aug()?(i)), if W - Aug(x®) > y.,
= Aug(X), if - Aug(X) <y,

I

10, if W - Aug(X?) = .



Subgradient Descent

We minimize the empirical risk with respect to
the absolute loss using subgradient descent.

Pick an initial W), a decreasing learning rate
schedule n(t) > 0.

Until convergence, repeat:
Update

o [Aug(X®), if W - Aug(x?) > v,
A = O ()« - Aug(#D), if - Aug(R) < y,
=1 (0, if W - Aug(X?) = y..
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In Practice

We've minimized the risk with respect to the
absolute loss.

This approach has different names:
Quantile regression, median regression
Minimum Absolute Deviations (MAD)

Solvable by (S)GD, or as a linear program.
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Convexity



Question

When is gradient descent guaranteed to work?



Not here...




Convex Functions

Convex Non-convex



Convexity: Definition

f is convex if for every a, b the line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.
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Convexity: Definition

f is convex if for every a, b the line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.
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Convexity: Definition

f is convex if for every a, b the line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.
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Convexity: Definition

f is convex if for every a, b the line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.
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Other Terms \ /

If a function is not convex, it is non-convex.
Strictly convex: the line lies strictly above curve.

Concave: the line lines on or below curve.



True or a convex function must have a

unlgue global minimum.

QTruer False: a local minimum of a convex func-
i

ion is always a global minimum.

( Tru€)or False: a strictly convex function must have
a unique global minimum.
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Convexity: Formal Definition”~ * )

A function f : R - R is convex if for every
choice of a,b €e Rand t € [0, 1]:

(1—t a)+tf(b)|2[f((1 -t)a +tb).
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Using the definition, is f(x) = | x| convex?

Yher one Yhvee  caged
CDU-\" at b aufwr"f% N/
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Another View: Second Derivatives

If Z—Z(x) > 0 for all x, then fis convex.

Plo= 452
Example: f(x) = x* is convex. p, 2
= /2x< 2
6 - 12x% 20

Warning! Only works if f is twice differentiable!

b Y




Another View: Second Derivatives
1
“Best” straight line at x:
f1(X) = f(Xo) + f,(Xo) : (X - Xo)

“Best” parabola at x:
fz(x) = f(Xo) + f’(xo) : (X - Xo) + %f"(xo) : (X - Xo)z

Possibilities: upward-facing, downward-facing, flat.



Convexity and Parabolas

Convex if for every x,, parabola is upward-facing

(or flat).
That is, f"(x,) 2 0.

J W




Proving Convexity Using Properties

Suppose that f(x) and g(x) are convex. Then:
w, f(x) + w,g(x) is convex, provided w,,w, 20

Example: 3x% + | x| is convex

g(f(x)) is convex, provided g is non-decreasing.
Example: e is convex

‘/ max{f(x), g(x)} is convex
0, x<0.
Example: { IS convex

X, Xx=20



Note!

These properties are useful for proving convexity
for functions of one variable.

Some of them will not generalize to higher
dimensions.



Convexity and Gradient Descent

Convex functions are (relatively) easy to
optimize.

Theorem: if f(x) is convex and “not too steep”?
then (stochastic) (sub)gradient descent
converges to a global optimum of f provided
that the step size is small enough?

2Technically, c-Lipschitz
3step size related to steepness, should decrease like 1/,/step #.
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Convexity in Many Dimensions



Convexity: Definition

f(X) is convex if for every d, b the line segment
between

(Gf(@) and (b f(b)
does not go below the plot of f.




Convexity: Formal Definition

A function f : RY - R is convex if for every
choice of d,b € R%and t € [0, 1]:

(1 - t)f(d) + tf(B) 2 F((1 - t)d + tb).



The Second Derivative Test

For 1-dimensions functions:
convex if second derivative > 0.

For d-dimensional functions: X ¥, ... X
convex if ?2?? /F( roEr T )



Second Derivatives in d-Dimensions

In 2-dimensions, there are 4 second derivatives:
off of? off of?
ax3' ax3’ oxx," oxyx,

In d-dimensions, there are d?:

o forall .

axiaxj

The second derivatives describe the curvature of
a paraboloid approximating f.
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The Hessian Matrix
Create the Hessian matrix of second derivatives:

For f : R? - R:

of2 /5 of2 o
> aX% (X) ax1 up) (X
H(X) = of2 ;o\ of2,o
m(x) Q(X)



In General

If f : RY - R, the Hessian at X is:

/f@) (7 - i@)\

ox3 OX1 Xy X1 Xy
I
M) < | ) L) - 2L

|22 Ly . J

xq o o



Second Derivative Test

A function f : RY - R is convex if for any ¥ € RY,
all eigenvalues of the Hessian matrix H(X) are
2 0.



For This Class...

You will not need to compute eigenvalues “by
hand”...

Unless the matrix is diagonal.
In which case, the eigenvalues are the diagonal
entries.



Example

The eigenvalues of this matrix are 5, 2, and 1.

500
020
0 01



Is f(x,y) = e¥+e¥ + x? - y? convex?

M x oF
—_— 4 2x - "*Z
ax € 0x? ©
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No

0,0) has a negative eigenvalue.

(

The Hessian at




No

The Hessian at (0,0) has a negative eigenvalue.

12,5 l
10.0 T
7.5
5.0
2.5
0.0
-2.5




Is f(W) = ||W]|* convex? q%
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Note

The second derivative test only works if f is twice
differentiable.

A function can be convex without having a
second derivative.



Properties
We can often prove convexity using properties.

Two useful properties:
Sums of convex functions are convex.
Affine compositions of convex functions are convex.



Sums of Convex Functions

Suppose that f(x) and g(X) are convex. Then

w, f(X) + w,g(X) is convex, provided w.,w, 2 0.



Affine Composition

Suppose that f® is convex. Let A be a matrix,
and X and b be vectors. Then

-

g(X) = f(AX + b)

is convex as a function of X.

Remember: a vector is a matrix with one
column/row.

Useful!



Consider the function
flw) = (X - - y)?

Is this function convex as a function of w? wa
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Convex Loss Functions



Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
We've chosen linear predictors, H(X) = Aug(X) - w.

Step 2: choose a loss function

Step 3: find W minimizing empirical risk
Some choices of loss function make this easier.



Convexity and Gradient Descent

Convex functions are (relatively) easy to
optimize.

Theorem: if f(x) is convex and “not too steep”*
then (stochastic) (sub)gradient descent
converges to a global optimum of f provided
that the step size is small enough®.

“Technically, c-Lipschitz
Sstep size related to steepness, should decrease like 1/,/step #



Convex Loss

Recall: sums of convex functions are convex.

Implication: if loss function is convex as a
function of w, so is the empirical risk, R(W)

R(w) =

Takeaway: Convex losses make ERM easier.



Example: Square Loss

Recall the square loss for a linear predictor:

{)sq(Aug()?) W, y) = (Aug(X) - w - y)2

This is convex as a function of w.

Proof: a few slides ago.



Example: Absolute Loss

Recall the absolute loss for a linear predictor:
¥ps(AUG(X) - W, y) = | Aug(X) - W - y|

This is convex as a function of w.



Linear Predictors

It's also important that we've chosen linear
predictors.

A loss that is convex in w for linear H,(x) may be
non-convex for non-linear H,(x).

Example: square loss.
If H,(x) = w, +w, X, then (w, + w, x —.y)2 is convex.
If H,(x) = w,e", then (w,e" - y)* is non-convex.



Summary

By combining 1) linear predictors and 2) a convex
loss function, we make ERM easier.

Many machine learning algorithms are linear

predictors with convex loss functions.
As we'll see...
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From Theory to Practice



Gradient Descent
We've spent three lectures on gradient descent.
A powerful optimization algorithm.

In practice, we use extensions of (stochastic)
gradient descent.



Extensions of SGD

Newton’s method
Second order optimization, using the Hessian.
Can converge in fewer steps.
But the Hessian is expensive to compute.

Adagrad, RMSprop, Adam
SGD with adaptive learning rates.
Used heavily in training of deep neural networks.



Non-Convex Optimization
So far, we've only seen convex risks.

But there’s an important class of machine
learning algorithms that have non-convex risks.

Namely: deep neural networks.



Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
Deep neural networks.

Step 2: choose a loss function

Step 3: find w minimizing empirical risk



Deep Learning

A deep neural network is a prediction function
H(x; w) composed of many layers.

Typically, H is not linear in w.

The risk becomes highly non-convex.
Even, for example, the square loss.

How do we minimize the empirical risk?



Answer: SGD

We use stochastic gradient descent (and
extensions).
Even though the empirical risk is non-convex.
The optimization problem becomes much harder.

SGD may not find a global minimum of the risk.

But often finds a “good enough” local minimum.



Next Time

Linear classification.



