

Lecture 4 | Part 1

Introduction

Empirical Risk Minimization (ERM)

- Step 1: choose a hypothesis class
 - We've chosen linear predictors.
- ► Step 2: choose a **loss function**
- Step 3: find H minimizing empirical risk

Minimizing Empirical Risk

► We want to minimize the **empirical risk**:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \ell(Aug(\vec{x}^{(i)}) \cdot \vec{w}, y_i)$$

For some choices of loss function, we can find a formula for the minimizer.

With the square loss, risk becomes:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$$

ightharpoonup Setting gradient to zero, solving for \vec{w} gives:

$$\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$$

Gradient Descent

- ▶ But sometimes we **can't** solve for \vec{w} **directly**.
 - It's too costly.
 - ► There's no closed-form solution.

► Idea: use gradient descent to iteratively minimize risk.

Gradient Descent

Starting from an initial guess $\vec{w}^{(0)}$, iteratively update:

$$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \eta \frac{dR}{d\vec{w}} (\vec{w}^{(t)})$$

Today

We'll address two issues with gradient descent.

- 1. Can be **expensive** to compute the exact gradient.
 - Especially when we have a large data set.
 - Solution: stochastic gradient descent.
- 2. Doesn't work as-is if risk is **not differentiable**.
 - Such as with the absolute loss.
 - Solution: subgradient descent.

Lecture 4 | Part 2

Motivation: Large Scale Learning

Example

- Suppose you're doing least squares regression on a medium-to-large data set.
- Say, n = 200,000 examples, d = 5,000 features.
- Encoded as 64 bit floats, X is 8 GB.
 - Fits in your laptop's memory, but barely.
- **Example:** predict sentiment from text.

Attempt 0: Normal Equations

You start by solving the normal equations: np.linalg.solve(X.T @ X, X.T @ y)

► Time: 30.7 seconds.

► Mean Squared Error: 7.2×10^{-7} .

Can we speed this up?

Attempt 1: Gradient Descent

Recall¹ that the gradient of the MSE is:

$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \text{Aug}(\vec{x}^{(i)})$$
$$= \frac{1}{n} \left(2X^T X \vec{w} - 2X^T \vec{y} \right)$$

► You code up a function:²

```
def gradient(w):
    n = len(y)
    return (2/n) * X.T @ (X @ w - y)
```

¹From Lecture 02, where we derived this.

²There's a good and a bad way to do this.

Attempt 1: Gradient Descent

- You plug this into gradient_descent from last lecture, run it, and...
- ► Time: 8.6 seconds total
 - 14 iterations
 - ► ≈ 0.6 seconds per iteration
- ► Mean Squared Error: 9.4×10^{-7} .

Trivia: why is it faster?

- ► Solving normal equations takes $\Theta(nd^2 + d^3)$ time.
 - \triangleright $\Theta(nd^2)$ time to compute X^TX .
 - \triangleright $\Theta(d^3)$ time to solve the system.
- ▶ **Gradient descent** takes $\Theta(nd)$ time per iteration.
 - \triangleright $\Theta(nd)$ time to compute $X\vec{w}$.
 - \triangleright $\Theta(nd)$ time to compute $X^T(X\vec{w} \vec{y})$.

Looking Ahead

- What if you had a larger data set?
- Say, n = 10,000,000 examples, d = 5,000 features.
- Encoded as 64 bit floats, X is 400 GB.
 - Doesn't fit in your laptop's memory!
 - Barely fits on your hard drive.

Approach 0: Normal Equations

You can try solving the normal equations: np.linalg.solve(X.T @ X, X.T @ y)

- One of three things will happen:
 - 1. You will receive an **out of memory** error.
 - 2. The process will be killed (or your OS will freeze).
 - 3. It will run, but take a very long time (paging).

Approach 1: Gradient Descent

- We can't store the data in memory all at once.
- ▶ But we can **still** compute the **gradient**, $\frac{dR}{d\vec{w}}$.
 - Read a little bit of data at once.
 - Or, distribute the computation to several machines.
- Computing gradient involves a loop over data:

$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \text{Aug}(\vec{x}^{(i)})$$

Problem

$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \text{Aug}(\vec{x}^{(i)})$$

- In machine learning, the number of training points *n* can be **very large**.
- Computing the gradient can be expensive when n is large.
 - So each step of gradient descent is expensive.

Idea

- Don't worry about computing the exact gradient.
- ► An **approximation** will do.

Lecture 4 | Part 3

Stochastic Gradient Descent

Gradient Descent for Minimizing Risk

► In ML, we often want to minimize a **risk function**:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Observation

► The gradient of the risk is the average of the gradient of the losses:

$$\frac{d}{d\vec{w}}R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{d}{d\vec{w}} \{ (H(\vec{x}^{(i)}; \vec{w}), y_i) \}$$

- ► The averaging is over **all training points**.
- This can take a long time when n is large.³

³Trivia: this usually takes $\Theta(nd)$ time.

Idea

► The (full) gradient of the risk uses all of the training data:

$$\frac{d}{d\vec{w}}R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{d}{d\vec{w}} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

► **Idea:** instead of using all *n* training points, randomly choose a smaller set, *B*:

$$\frac{d}{d\vec{w}}R(\vec{w}) \approx \frac{1}{|B|} \sum_{i \in B} \frac{d}{d\vec{w}} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Stochastic Gradient

► The smaller set *B* is called a mini-batch.

We now compute a stochastic gradient:

$$\frac{d}{d\vec{w}}R(\vec{w}) \approx \frac{1}{|B|} \sum_{i \in B} \frac{d}{d\vec{w}} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

"Stochastic," because it is a random.

Stochastic Gradient

$$\frac{d}{d\vec{w}}R(\vec{w}) \approx \frac{1}{|B|} \sum_{i \in B} \frac{d}{d\vec{w}} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

- The stochastic gradient is an approximation of the full gradient.
- ▶ When $|B| \ll n$, it is **much faster** to compute.
- But the approximation is **noisy**.

Stochastic Gradient Descent for ERM

To minimize empirical risk $R(\vec{w})$:

- Pick starting weights $\vec{w}^{(0)}$, learning rate $\eta > 0$, batch size m.
- Until convergence, repeat:
 - Randomly sample a batch *B* of *m* training data points.
 - Compute stochastic gradient:

$$\vec{g} = \frac{1}{|B|} \sum_{i \in B} \frac{d}{d\vec{w}} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

- **Update:** $\vec{w}^{(t+1)} = \vec{w}^{(t)} \eta \vec{g}$
- ightharpoonup When converged, return $\vec{w}^{(t)}$.

Note

A new batch should be randomly sampled on each iteration!

- This way, the entire training set is used over time.
- Size of batch should be **small** compared to *n*.
 - ► Think: m = 64, m = 32, or even m = 1.

- We can use SGD to perform least squares regression.
- Need to compute the gradient of the square loss:

$$\ell_{sq}(H(\vec{x}^{(i)}; \vec{w}), y_i) = (Aug(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$$

Exercise

What is the gradient of the square loss of a linear predictor? That is, what is $\frac{d}{d\vec{w}} \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right)^2$?

The gradient of the square loss of a linear predictor is:

$$\frac{d}{d\vec{w}} \ell_{sq}(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

$$= \frac{d}{d\vec{w}} \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right)^2$$

$$= 2 \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \frac{d}{d\vec{w}} \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right)$$

$$= 2 \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \text{Aug}(\vec{x}^{(i)})$$

Therefore, on each step we compute the stochastic gradient:

$$\vec{g} = \frac{2}{m} \sum_{i \in B} \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \text{Aug}(\vec{x}^{(i)})$$

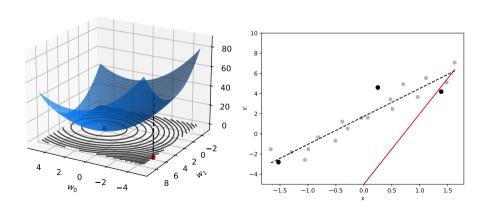
The update rule is:

$$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \eta \vec{g}$$

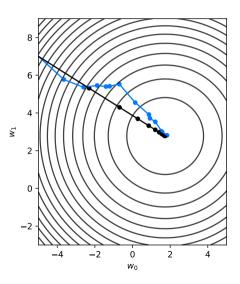
- We can write in matrix-vector form, too:
 - Let X_B be the design matrix using only the examples in batch B.
 - \triangleright Let y_R be the corresponding vector of labels.
- ► Then:

$$\vec{g} = \frac{2}{m} X_B^T (X_B \vec{w} - y_B)$$

Example: SGD



SGD vs. GD



Tradeoffs

- ▶ In each step of GD, move in the "best" direction.
 - But slowly!
- In each step of SGD, move in a "good" direction.
 - But quickly!
- SGD may take more steps to converge, but can be faster overall.

Example

- Suppose you're doing least squares regression on a medium-to-large data set.
- Say, n = 200,000 examples, d = 5,000 features.
- Encoded as 64 bit floats, X is 8 GB.
 - Fits in your laptop's memory, but barely.
- **Example:** predict sentiment from text.

We saw...

- Solving the normal equations took 30.7 seconds.
- Gradient descent took 8.6 seconds.
 - ► 14 iterations, ≈ 0.6 seconds per iteration.
- Stochastic gradient descent takes 3 seconds.
 - \triangleright Batch size m = 16.
 - ► 13,900 iterations, ≈ 0.0002 seconds per iteration.

Aside: Terminology

- Some people say "stochastic gradient descent" only when batch size is 1.
- They say "mini-batch gradient descent" for larger batch sizes.

► In this class: we'll use "SGD" for any batch size, as long as it's chosen randomly.

Aside: A Popular Variant

- One variant of SGD uses epochs.
- During each epoch, we:
 - Randomly shuffle the training data.
 - Divide the training data into *n/m* mini-batches.
 - Perform one step for each mini-batch.

Usefulness of SGD

- SGD enables learning on massive data sets.
 - Billions of training examples, or more.
- Useful even when exact solutions available.
 - E.g., least squares regression / classification.

History: ADALINE

Lecture 4 | Part 4

Motivation: Minimizing Absolute Loss

Empirical Risk Minimization (ERM)

- Step 1: choose a hypothesis class
 - We've chosen linear predictors.
- Step 2: choose a loss function
- Step 3: find H minimizing empirical risk

Loss Functions

- ► The **absolute loss** is a natural first choice for regression.
- The empirical risk becomes:

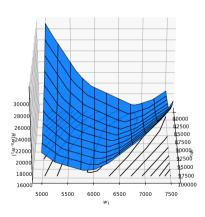
$$R_{abs}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} |H(\vec{x}^{(i)}) - y_i|$$
$$= \frac{1}{n} \sum_{i=1}^{n} |\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) - y_i|$$

Minimizing the Risk

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} |\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) - y_i|$$

- We might try computing the gradient, setting to zero, and solving.
- But the risk is not differentiable.

Risk for the Absolute Loss



Gradient Descent?

Question: can we use gradient descent if the risk is not differentiable?

Answer: yes, with a slight modification.

Lecture 4 | Part 5

Subgradient Descent

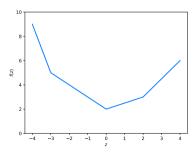
Differentiability

- A function f(z) is **differentiable** if the derivative exists at every point.
- That is, it has a well-defined slope at every point.

Exercise

Where is the derivative **not** defined?

$$f(z) = \begin{cases} -4z - 7 & \text{if } z < -3\\ -z + 2 & \text{if } -3 \le z < 0\\ 0.5z + 2 & \text{if } 0 \le z < 2\\ 3z/2 & \text{if } z \ge 2 \end{cases}$$

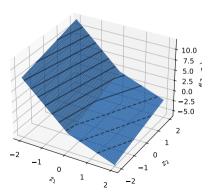


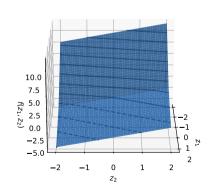
Differentiability

- A function $f(\vec{z})$ is **differentiable** if the **gradient** exists at every point.
- ► In other words, all of the slopes are well-defined:
 - $\triangleright \partial f/\partial z_1, \partial f/\partial z_2, ...$

Example

$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0 \\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$

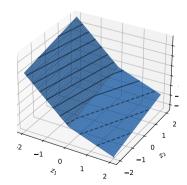




Exercise

What is the gradient at (-1, -1)? (1, -1)? (0, 1)?

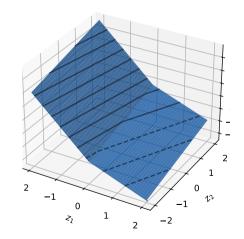
$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0 \\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$



Answer

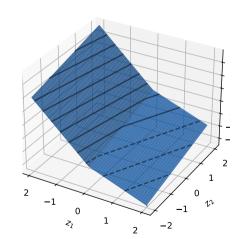
- $\frac{d}{d\vec{w}}f(\vec{z})$ is defined everywhere except along $z_1 = 0$.
- If $z_1 < 0$, $f(\vec{z}) = -5z_1 + z_2$.

 gradient is $(-5, 1)^T$ here
- ► If $z_1 > 0$, $f(\vec{z}) = -2z_1 + z_2$. ► gradient is $(-2, 1)^T$ here



Answer

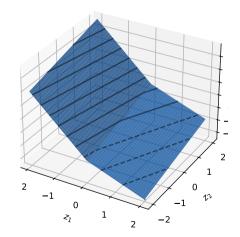
$$\frac{df}{d\vec{z}}(\vec{z}) = \begin{cases} (-5, 1)^T, & \text{if } z_1 < 0, \\ (-2, 1)^T, & \text{if } z_1 > 0, \\ \text{undefined,} & \text{if } z_1 = 0. \end{cases}$$



Problem

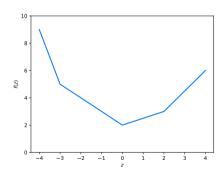
- We can try running gradient descent.
- But what do we do if we reach a point where the gradient is not defined?

We need a replacement for the gradient that tells us where to go.



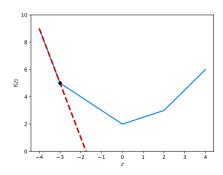
- ► Slope is undefined at $z_1 = -3$.
 - ► To the left, slope is -4
 - ► To the right, slope is -1

$$f(z) = \begin{cases} -4z - 7 & \text{if } z < -3 \\ -z + 2 & \text{if } -3 \le z < 0 \\ 0.5z + 2 & \text{if } 0 \le z < 2 \\ 3z/2 & \text{if } z \ge 2 \end{cases}$$



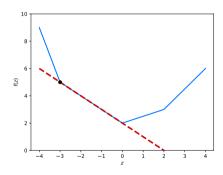
- ► Slope is undefined at $z_1 = -3$.
 - ► To the left, slope is -4
 - ► To the right, slope is -1

$$f(z) = \begin{cases} -4z - 7 & \text{if } z < -3 \\ -z + 2 & \text{if } -3 \le z < 0 \\ 0.5z + 2 & \text{if } 0 \le z < 2 \\ 3z/2 & \text{if } z \ge 2 \end{cases}$$



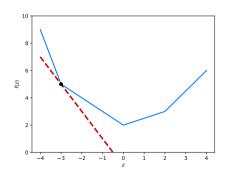
- ► Slope is undefined at $z_1 = -3$.
 - ► To the left, slope is -4
 - ► To the right, slope is -1

$$f(z) = \begin{cases} -4z - 7 & \text{if } z < -3 \\ -z + 2 & \text{if } -3 \le z < 0 \\ 0.5z + 2 & \text{if } 0 \le z < 2 \\ 3z/2 & \text{if } z \ge 2 \end{cases}$$



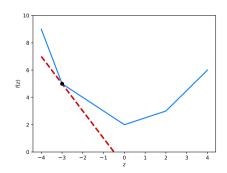
- ► Slope is undefined at $z_1 = -3$.
 - ► To the left, slope is -4
 - ► To the right, slope is -1

$$f(z) = \begin{cases} -4z - 7 & \text{if } z < -3 \\ -z + 2 & \text{if } -3 \le z < 0 \\ 0.5z + 2 & \text{if } 0 \le z < 2 \\ 3z/2 & \text{if } z \ge 2 \end{cases}$$



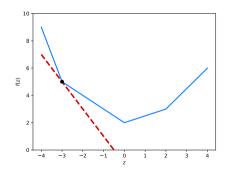
Any number between -4 and -1 adequately describes the behavior of f at z = -3.

$$f(z) = \begin{cases} -4z - 7 & \text{if } z < -3 \\ -z + 2 & \text{if } -3 \le z < 0 \\ 0.5z + 2 & \text{if } 0 \le z < 2 \\ 3z/2 & \text{if } z \ge 2 \end{cases}$$



Any number between -4 and -1 is a subderivative of f at z = -3.

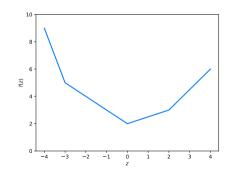
$$f(z) = \begin{cases} -4z - 7 & \text{if } z < -3 \\ -z + 2 & \text{if } -3 \le z < 0 \\ 0.5z + 2 & \text{if } 0 \le z < 2 \\ 3z/2 & \text{if } z \ge 2 \end{cases}$$



Exercise

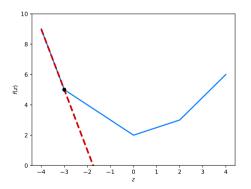
What are the valid subderivatives of f at z = 2?

$$f(z) = \begin{cases} -4z - 7 & \text{if } z < -3 \\ -z + 2 & \text{if } -3 \le z < 0 \\ 0.5z + 2 & \text{if } 0 \le z < 2 \\ 3z/2 & \text{if } z \ge 2 \end{cases}$$



Subderivatives

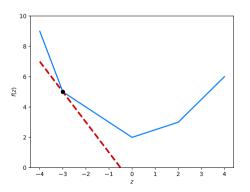
Any valid subderivative defines a line that lies below the function.



Subderivatives

► The equation of this line is:

$$f_s(z) = f(z_0) + s(z - z_0)$$



Subderivatives

A number s is a subderivative of f at z_0 if:

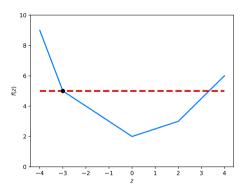
$$f(z) \ge f_s(z)$$
 for all z

► That is, if:

$$f(z) \ge f(z_0) + s(z - z_0)$$

Exercise

Is 0 a valid subderivative of f at z = 2?



Intuition

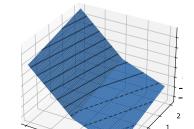
- ► The **subderivative** tells us how the function changes when the slope doesn't exist.
- We can sometimes use it in place of a derivative.

- In higher dimensions, we have multiple slopes to worry about.
- We can use a subgradient to generalize the concept of a subderivative.

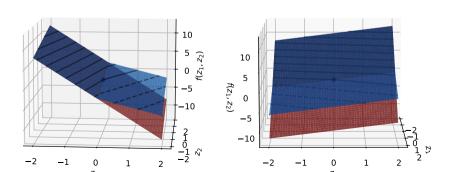
Example

- ► There's no well-defined gradient at $z_1 = (0,0)$.
 - ► The slope in the z_1 direction is undefined
 - ▶ Between -5 and -2?
 - ► The slope in the z_2 direction is 1
- ► We will call any vector $(s_1, 1)$ with $-5 \le s_1 \le -2$ a subgradient at (0, 0).

$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0 \\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$

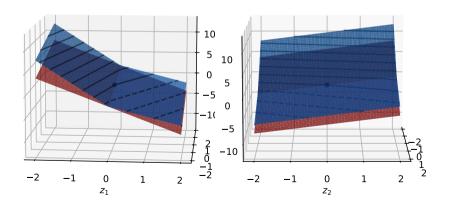


- ► A vector \vec{s} defines a plane:
 - Example: $(-5, 1)^T$
 - Example: (-2, 1)^T
 Example: (-3, 1)^T



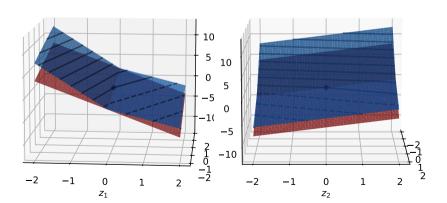
A vector \vec{s} is a valid **subgradient** at $\vec{z}^{(0)}$ if the plane it defines lies at or below the function f.

Example: $(-3,1)^T$



The equation of the plane defined by \vec{s} at $\vec{z}^{(0)}$ is:

$$f_s(\vec{z}) = f(\vec{z}^{(0)}) + \vec{s} \cdot (\vec{z} - \vec{z}^{(0)})$$



Subgradients

 $ightharpoonup \vec{s}$ is a subgradient of $f(\vec{z})$ at $\vec{z}^{(0)}$ if:

$$f(\vec{z}) \ge f_s(\vec{z})$$
 for all \vec{z}

► That is, if:

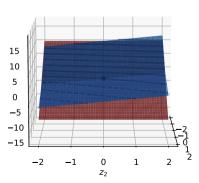
$$f(\vec{z}) \ge f(\vec{z}^{(0)}) + \vec{s} \cdot (\vec{z} - \vec{z}^{(0)})$$

Finding Subgradients

- Here are two suggested ways to check that \$\vec{s}\$ is a valid subgradient.
- ▶ 1) Visualize it.
- 2) Check if the inequality holds.

$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0 \\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$

ightharpoonup Is $(-5,0)^T$ a valid subgradient?



$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$

- ► Is $(-5,0)^T$ a valid subgradient at the point (0,0)?
- ► Is $f(0,0) + (-5,0)^T \cdot ((z_1, z_2) (0,0)^T) \le f(z_1, z_2)$ for all z_1, z_2 ?

Tip

▶ If the slope is defined in a direction, the corresponding entry of the subgradient must be that slope.

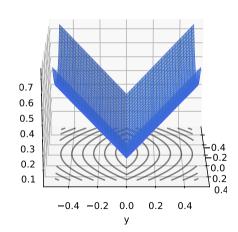
Intuition

- A **subgradient** tells us where to go when the gradient is undefined.
- We can use it instead of the gradient in gradient descent.

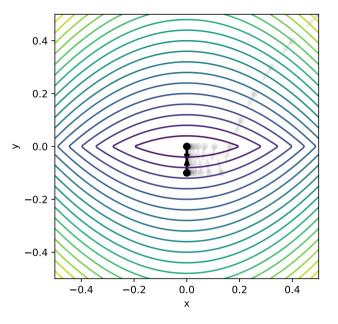
$$f(z_1, z_2) = z_1^2 + |z_2|$$

► A subgradient:

$$\vec{s}(z_1, z_2) = \begin{cases} (2z_1, 1)^T & \text{, if } z_2 > 0, \\ (2z_1, -1)^T & \text{, if } z_2 < 0, \\ (2z_1, 0)^T & \text{, if } z_2 = 0. \end{cases}$$



- ► Subgradient descent on $f(z_1, z_2) = z_1^2 + |z_2|$
- ► Starting point: $(1/2, 1/2)^T$
- ► Learning rate: η = 0.1.

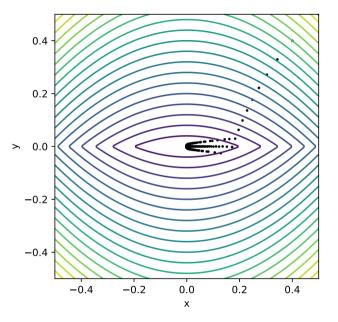


Problem

- Does not converge! Why?
- If f is differentiable, gradient gets smaller as we approach the minimum.
 - Naturally take smaller steps.
- Not true if the function is not differentiable!
 - Steps may stay the same size (too large).

Fix

- Decrease learning rate with each iteration.
- That is, choose a decreasing learning rate schedule $\eta(t) > 0$.
- ► **Theory:** choose $\eta(t) = c/\sqrt{t}$, where t is iteration #, c is a positive constant.



Subgradient Descent

To minimize $f(\vec{z})$:

- Pick arbitrary starting point $\vec{z}^{(0)}$, a decreasing learning rate schedule $\eta(t) > 0$.
- Until convergence, repeat:
 - **Compute a subgradient** \vec{s} of f at $\vec{z}^{(i)}$.
 - ► Update $\vec{z}^{(t+1)} = \vec{z}^{(t)} \eta(t)\vec{s}$
- ightharpoonup When converged, return $\vec{z}^{(t)}$.

Next Time

When is (S)GD guaranteed to converge?