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Introduction
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Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
We've chosen linear predictors.

Step 2: choose a loss function

Step 3: find H minimizing empirical risk
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Minimizing Empirical Risk

We want to minimize the empirical risk:

Z p(Aug(xD) - W, y;)

For some choices of loss function, we can find a
formula for the minimizer.
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Example: Least Squares

With the square loss, risk becomes:

_)

ZAug)? )W - y,)

_1
n i=1

Setting gradient to zero, solving for w gives:

- (XTX)_1XT)7
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Gradient Descent

But sometimes we can’t solve for w directly.
It's too costly.
There's no closed-form solution.

Idea: use gradient descent to iteratively
minimize risk.
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Gradient Descent

Starting from an initial guess W%, iteratively

update: iR

dw

t+1)

W( = VT/(t) -n— (W )
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Today
We'll address two issues with gradient descent.

Can be expensive to compute the exact gradient.
Especially when we have a large data set.
Solution: stochastic gradient descent.

Doesn’t work as-is if risk is not differentiable.
Such as with the absolute loss.
Solution: subgradient descent.
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Motivation: Large Scale Learning
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Example

Suppose you're doing least squares regression
on a medium-to-large data set.

Say, n = 200,000 examples, d = 5,000 features.

Encoded as 64 bit floats, X is 8 GB.
Fits in your laptop’s memory, but barely.

Example: predict sentiment from text.
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Attempt 0: Normal Equations

You start by solving the normal equations:
np.linalg.solve(X.T @ X, X.T @ y)

Time: 30.7 seconds.
Mean Squared Error: 7.2 x 1077,
Can we speed this up?
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Attempt 1: Gradient Descent

Recall' that the gradient of the MSE is:

n

G0 = 5D (AuglR) i -y;) AuglR)
1

= (2XTxw - 2X7)

You code up a function:?
def gradient(w):

n = len(y)
return (2/n) * X.Ta (X w - vy)

TFrom Lecture 02, where we derived this.
2There’s a good and a bad way to do this.
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Attempt 1: Gradient Descent

You plug this into gradient_descent from last
lecture, run it, and...

Time: 8.6 seconds total
14 iterations
~ 0.6 seconds per iteration

Mean Squared Error: 9.4 x 107,
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Trivia: why is it faster?

Solving normal equations takes ©(nd? + d3) time.
O(nd?) time to compute X'X.
O(d?®) time to solve the system.

Gradient descent takes ©(nd) time per iteration.
O(nd) time to compute Xw.
O(nd) time to compute XT(XW - ).
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Looking Ahead
What if you had a larger data set?
Say, n = 10,000,000 examples, d = 5,000 features.

Encoded as 64 bit floats, X is 400 GB.
Doesn’t fit in your laptop’s memory!
Barely fits on your hard drive.
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Approach 0: Normal Equations

You can try solving the normal equations:
np.linalg.solve(X.T @ X, X.T @ y)

One of three things will happen:
You will receive an out of memory error.
The process will be killed (or your OS will freeze).
It will run, but take a very long time (paging).
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Approach 1: Gradient Descent

We can’t store the data in memory all at once.

But we can still compute the gradient, g—g.

Read a little bit of data at once.
Or, distribute the computation to several machines.

Computing gradient involves a loop over data:

IR ) = 25 (ugli) i - ;) Aug(x)
dw n ¢ i
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Problem

== (Aug(x?)- @ - ;) Aug(x?)

i=1

QlD.
Slm
3|N

In machine learning, the number of training
points n can be very large.

Computing the gradient can be expensive when

nis large.
So each step of gradient descent is expensive.
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Idea

Don’t worry about computing the exact gradient.

An approximation will do.
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Stochastic Gradient Descent
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Gradient Descent for Minimizing Risk

In ML, we often want to minimize a risk function:

- 1 L (7 -
R(W) = — > UHED; @), y,)
i=1
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Observation

The gradient of the risk is the average of the
gradient of the losses:

— =_§ - .7 )
R( n dVT/ X IW)lyl)

i=1

The averaging is over all training points.

This can take a long time when n is large.

3Trivia: this usually takes ©(nd) time.
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Idea

The (full) gradient of the risk uses all of the
training data:
1<% d (30 g
ZoR(i) = - SoH(K; ), y)

= dw

Idea: instead of using all n training points,
randomly choose a smaller set, B:

EZ_P(H(X W), Y;)
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Stochastic Gradient
The smaller set B is called a mini-batch.
We now compute a stochastic gradient:

4R

5 1
“ZR() = m,zd_w"‘”(x ), )

“Stochastic,” because it is a random.
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Stochastic Gradient

- 1 d ->(f -
R = —= > ——tHED; W), y,)

The stochastic gradient is an approximation of
the full gradient.

When |B| « n, it is much faster to compute.

But the approximation is noisy.
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Stochastic Gradient Descent for ERM
To minimize empirical risk R(wW):

Pick starting weights W%, learning rate n > 0, batch size m.

Until convergence, repeat:

Randomly sample a batch B of m training data points.

Compute stochastic gradient:
*(I)
= 5 Z W), y;)
IEB

Update: W = w® - ng

When converged, return w®.
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Note

A new batch should be randomly sampled on
each iteration!

This way, the entire training set is used over time.

Size of batch should be small compared to n.
Think: m = 64, m =32, oreven m = 1.
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Example: Least Squares

We can use SGD to perform least squares
regression.

Need to compute the gradient of the square loss:

L (HEO; ), ) = (Rug(i?) - - )’
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What is the gradient of the square loss of a linear
predictor? That is, what is - (Aug(x") - # - y,)’?
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Example: Least Squares

The gradient of the square loss of a linear
predictor is:

d S(). @
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Example: Least Squares

Therefore, on each step we compute the
stochastic gradient:

§=2 (Augla®)- i - y,) Aug(x)

ieB
The update rule is:

@ = @0 - pg
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Example: Least Squares

We can write in matrix-vector form, too:
Let X, be the design matrix using only the examples
in batch B.
Let y, be the corresponding vector of labels.

Then:
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Example: SGD
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SGD vs. GD

7
| : @
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Tradeoffs

In each step of GD, move in the “best” direction.
But slowly!

In each step of SGD, move in a “good” direction.
But quickly!

SGD may take more steps to converge, but can be
faster overall.
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Example

Suppose you're doing least squares regression
on a medium-to-large data set.

Say, n = 200,000 examples, d = 5,000 features.

Encoded as 64 bit floats, X is 8 GB.
Fits in your laptop’s memory, but barely.

Example: predict sentiment from text.
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We saw...
Solving the normal equations took 30.7 seconds.

Gradient descent took 8.6 seconds.
14 iterations, = 0.6 seconds per iteration.

Stochastic gradient descent takes 3 seconds.
Batch size m = 16.
13,900 iterations, ~ 0.0002 seconds per iteration.
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Aside: Terminology

Some people say “stochastic gradient descent”
only when batch size is 1.

They say “mini-batch gradient descent” for larger
batch sizes.

In this class: we’ll use “SGD” for any batch size,
as long as it's chosen randomly.
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Aside: A Popular Variant
One variant of SGD uses epochs.

During each epoch, we:
Randomly shuffle the training data.
Divide the training data into n/m mini-batches.
Perform one step for each mini-batch.
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Usefulness of SGD

SGD enables learning on massive data sets.
Billions of training examples, or more.

Useful even when exact solutions available.
E.g., least squares regression / classification.
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History: ADALINE
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Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
We've chosen linear predictors.

Step 2: choose a loss function

Step 3: find H minimizing empirical risk
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Loss Functions

The absolute loss is a natural first choice for
regression.

The empirical risk becomes:
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Minimizing the Risk

1< . y
=15 lir-aug(i)-

We might try computing the gradient, setting to
zero, and solving.

But the risk is not differentiable.
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Risk for the Absolute Loss
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Gradient Descent?

Question: can we use gradient descent if the risk
is not differentiable?

Answer: yes, with a slight modification.
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Subgradient Descent
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Differentiability

A function f(z) is differentiable if the derivative
exists at every point.

That is, it has a well-defined slope at every point.
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Where is the derivative not defined?

-4z-7 ifz<-3
£(2) = -z+2 if -3<z<0
“105z+2 ifo<z<2
3z/2 ifz=2
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Differentiability

A function f(Z) is differentiable if the gradient
exists at every point.

In other words, all of the slopes are well-defined:
of [0z, of [oz,, ...
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Example

f(z, 2

)= -5z, +2, ifz150
2 -2z,+z, ifz,>0

10.0

7.5
= 5.0
2.5
0.0
=25
—-5.0

(¢z'1z
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What is the gradient at (-1, -1)? (1, -1)? (0, 1)?

-5z, +z, ifz, <0
f(z12,) [—221 +z, ifz,>0
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Answer

%.Vf(f) is defined everywhere
except along z, = 0.

Ifz, <0, f(Z) = -5z, + z,.
gradient is (-5,1)" here

Ifz, >0, f(2) = -2z, + z,.
gradient is (-2,1)" here
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Answer

(-5,1), ifz, <0,
d_{(z‘) = (_21 1)Tr if Z,> 0,
dz undefined, if z, = 0.
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Problem

We can try running gradient
descent.

But what do we do if we reach
a point where the gradient is
not defined?

We need a replacement for
the gradient that tells us
where to go.
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Idea

Slope is undefined at z, = -3.
To the left, slope is -4
To the right, slope is -1

10

-4z-7 ifz<-3 9
-z+2 if-3<z<0 <
f@)=3052+2 ifocz<2 N

3z/2 ifz=2 2
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Idea

Slope is undefined at z, = -3.
To the left, slope is -4
To the right, slope is -1

-4z-7 ifz<-3 ]
fz)=]2r2 if-3sz<0

0.5z+2 if0<z<2

3z/2 ifz=2 N
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Slope is undefined at z, = -3.

Idea

To the left, slope is -4
To the right, slope is -1

-4z -7

-Z+2
f@)=105z2+2

3z/2

10

ifz<-3 *

if -3<z<0 g
if0<z<2

ifz=2 2]
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Idea

Slope is undefined at z, = -3.
To the left, slope is -4
To the right, slope is -1

-4z-7 ifz<-3 ]
fz)=]2r2 if-3sz<0

0.5z+2 if0<z<2

3z/2 ifz=2 N
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Idea

Any number between -4 and -1 adequately
describes the behavior of fat z = -3.

10

-47-7 ifz<-3 9

-z+2 if-3<z<0
f@)=10524+2 ifocz<2

3z/2 ifz=2 2
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Idea

Any number between -4 and -1is a subderivative
of fatz=-3.

10

“4z-7 ifz<-3 9

-z+2 if-3<z<0
f@)=10524+2 ifocz<2

3z/2 ifz=2 2
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What are the valid subderivatives of f at z = 2?

10

-4z-7 ifz<-3 ]
-z+2 if-352<0 =
0.5z+2 if0<z<2

3z/2 ifz>2 N
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Subderivatives

Any valid subderivative defines a line that lies
below the function.
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Subderivatives

The equation of this line is:

fo(2) = f(zp) + s(z - 2;)
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Subderivatives

A number s is a subderivative of f at z, if:

f(z)2f(z) forallz

That is, if:
f(Z) 2 f(zo) + S(Z - zo)
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Is 0 a valid subderivative of f at z = 27

flz)
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Intuition

The subderivative tells us how the function
changes when the slope doesn’t exist.

We can sometimes use it in place of a derivative.
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Subgradient

In higher dimensions, we have multiple slopes to
worry about.

We can use a subgradient to generalize the
concept of a subderivative.
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Example

There’s no well-defined gradient at z, = (0, 0).
The slope in the z, direction is undefined
Between -5 and -2?
The slope in the z, direction is 1
We will call any vector (s,, 1) with-5<s, <-2a
subgradient at (0, 0).

_[-5z,+2z, ifz;<0
f(z1,z)-<_221+22 ifz,>0
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Subgradient

A vector S defines a plane:
Example: (-5,1)"
Example: (-2,1)"
Example: (-3, 1)"

(2z'1z)4
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Subgradient

A vector § is a valid subgradient at 2 if the

plane it defines lies at or below the function f.
Example: (-3, 1)"

66 /81



Subgradient

The equation of the plane defined by § at Z© is:
f(2) = f(ZD)+3-(2-2)
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Subgradients

3 is a subgradient of f(2) at 2 if:

f(2)2f(2) forallZ

That is, if:

f(2)2 f(Z9)+3-(2-2)
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Finding Subgradients

Here are two suggested ways to check that S is a
valid subgradient.

1) Visualize it.

2) Check if the inequality holds.
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Example

_[-5z,+2z, ifz;<0
f(z1,z)-[_221+zz ifz, >0

Is (-5,0)" a valid subgradient?
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Example

_[-5z,+2, ifz;<0
f(z1,2)) = {_221 +z, ifz,>0

Is (-5, 0)" a valid subgradient at the point (0,0)?

Is £(0,0) +(-5,0)" - ((z,,2,) - (0,0)") < f(z,,2,) forallz,z,?
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Tip

If the slope is defined in a direction, the
corresponding entry of the subgradient must be
that slope.
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Intuition

A subgradient tells us where to go when the
gradient is undefined.

We can use it instead of the gradient in gradient
descent.
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f(z1rzz) = Z% + Izzl

A subgradient:

(2211 1)T

8(z,,2,) = {(2z,,-1)"

(22,,0)

Example

,ifz,>0,
,ifz,<0,
,ifz,=0.

-04 -0.2 00 0.2 0.4
y
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Example
Subgradient descent on f(z,,z,) = 22 + |z, |
Starting point: (1/2,1/2)"

Learning rate: n = 0.1.
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Problem
Does not converge! Why?

If f is differentiable, gradient gets smaller as we

approach the minimum.
Naturally take smaller steps.

Not true if the function is not differentiable!
Steps may stay the same size (too large).
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Fix
Decrease learning rate with each iteration.

That is, choose a decreasing learning rate
schedule n(t) > 0.

Theory: choose n(t) = c/y/t, where t is iteration #,
C is a positive constant.
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Subgradient Descent
To minimize f(2):

Pick arbitrary starting point 7%, a decreasing learning rate
schedule n(t) > 0.

Until convergence, repeat: _
Compute a subgradient 3 of f at ().
Update 2V = 20 _ n(t)3

When converged, return 2,
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Next Time

When is (S)GD guaranteed to converge?
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