$$
D S C 140 A
$$

Empirical Risk Minimization (ERM)

- Step 1: choose a hypothesis class
- We've chosen linear predictors.
> Step 2: choose a loss function
- Step 3: find H minimizing empirical risk

Minimizing Empirical Risk

- We want to minimize the empirical risk:

$$
\begin{aligned}
R(\vec{w}) & =\frac{1}{n} \sum_{i=1}^{n} \ell\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \ell\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}, y_{i}\right)
\end{aligned}
$$

- For some choices of loss function, we can find a formula for the minimizer.

Example: Least Squares

- With the square loss, risk becomes:

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2}
$$

- Setting gradient to zero, solving for \vec{w} gives:

$$
\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}
$$

Gradient Descent

- But sometimes we can't solve for \vec{w} directly.
- It's too costly.
- There's no closed-form solution.
- Idea: use gradient descent to iteratively minimize risk.

Gradient Descent

Starting from an initial guess $\vec{w}^{(0)}$, iteratively update:

$$
\vec{w}^{(t+1)}=\vec{w}^{(t)}-\eta \frac{d R}{d \vec{w}}\left(\vec{w}^{(t)}\right)
$$

Today

We'll address two issues with gradient descent.

1. Can be expensive to compute the exact gradient.

- Especially when we have a large data set.
- Solution: stochastic gradient descent.

2. Doesn't work as-is if risk is not differentiable.

- Such as with the absolute loss.
- Solution: subgradient descent.

140A Probabilistic Modeling \ddagger Machine Learning

Lecture 4 Part 2
Motivation: Large Scale Learning

Example

- Suppose you're doing least squares regression on a medium-to-large data set.
- Say, $n=200,000$ examples, $d=5,000$ features.
- Encoded as 64 bit floats, X is 8 GB.
- Fits in your laptop's memory, but barely.
- Example: predict sentiment from text.

Attempt 0: Normal Equations

- You start by solving the normal equations:
np.linalg.solve(X.T a X, X.T a y)
- Time: 30.7 seconds.
- Mean Squared Error: 7.2×10^{-7}.
- Can we speed this up?

Attempt 1: Gradient Descent

\Rightarrow Recall ${ }^{1}$ that the gradient of the MSE is:

$$
\begin{aligned}
\frac{d R}{d \vec{w}}(\vec{w}) & =\frac{2}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \operatorname{Aug}\left(\vec{x}^{(i)}\right) \\
& =\frac{1}{n}\left(2 X^{\top} X \vec{w}-2 X^{\top} \vec{y}\right)
\end{aligned}
$$

- You code up a function: ${ }^{2}$

```
def gradient(w):
n = len(y)
return (2/n) * X.T 0 (X a w - y)
```

${ }^{1}$ From Lecture 02, where we derived this.
${ }^{2}$ There's a good and a bad way to do this.

Attempt 1: Gradient Descent

- You plug this into gradient_descent from last lecture, run it, and...
- Time: 8.6 seconds total
> 14 iterations
$>\approx 0.6$ seconds per iteration
- Mean Squared Error: 9.4×10^{-7}.

Trivia: why is it faster?

- Solving normal equations takes $\Theta\left(n d^{2}+d^{3}\right)$ time.
$\Rightarrow \Theta\left(n d^{2}\right)$ time to compute $X^{\top} X$.
$\Rightarrow \Theta\left(d^{3}\right)$ time to solve the system.
- Gradient descent takes $\Theta(n d)$ time per iteration.
$\Rightarrow \Theta(n d)$ time to compute $X \vec{w}$.
$\Rightarrow \Theta(n d)$ time to compute $X^{\top}(X \vec{W}-\vec{y})$.

Looking Ahead

- What if you had a larger data set?
- Say, $n=10,000,000$ examples, $d=5,000$ features.
- Encoded as 64 bit floats, X is 400 GB.
- Doesn't fit in your laptop's memory!
- Barely fits on your hard drive.

Approach 0: Normal Equations

- You can try solving the normal equations:
np.linalg.solve(X.T a X, X.T a y)
- One of three things will happen:

1. You will receive an out of memory error.
2. The process will be killed (or your OS will freeze).
3. It will run, but take a very long time (paging).

Approach 1: Gradient Descent

- We can't store the data in memory all at once.
- But we can still compute the gradient, $\frac{d R}{d \overrightarrow{\tilde{p}}}$.
- Read a little bit of data at once.
- Or, distribute the computation to several machines.
- Computing gradient involves a loop over data:

$$
\frac{d R}{d \vec{w}}(\vec{w})=\frac{2}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \operatorname{Aug}\left(\vec{x}^{(i)}\right)
$$

Problem

$$
\frac{d R}{d \vec{w}}(\vec{w})=\frac{2}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \operatorname{Aug}\left(\vec{x}^{(i)}\right)
$$

- In machine learning, the number of training points n can be very large.
- Computing the gradient can be expensive when n is large.
- So each step of gradient descent is expensive.

Idea

- Don't worry about computing the exact gradient.

An approximation will do.

$$
\text { DSC } 140 \mathrm{~A}
$$

Gradient Descent for Minimizing Risk

- In ML, we often want to minimize a risk function:

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \ell\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

Observation

- The gradient of the risk is the average of the gradient of the losses:

$$
\frac{d}{d \vec{W}} R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d \vec{w}} l\left(H\left(\vec{x}^{(i)} ; \vec{W}\right), y_{i}\right)
$$

- The averaging is over all training points.
- This can take a long time when n is large. ${ }^{3}$

[^0]
Idea

- The (full) gradient of the risk uses all of the training data:

$$
\frac{d}{d \vec{w}} R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d \vec{w}} p\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- Idea: instead of using all n training points, randomly choose a smaller set, B :

$$
\frac{d}{d \vec{w}} R(\vec{w}) \approx \frac{1}{|B|} \sum_{i \in B} \frac{d}{d \vec{w}} P\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

Stochastic Gradient

- The smaller set B is called a mini-batch.
- We now compute a stochastic gradient:

$$
\frac{d}{d \vec{w}} R(\vec{w}) \approx \frac{1}{|B|} \sum_{i \in B} \frac{d}{d \vec{w}} P\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- "Stochastic," because it is a random.

Stochastic Gradient

$$
\frac{d}{d \vec{w}} R(\vec{w}) \approx \frac{1}{|B|} \sum_{i \in B} \frac{d}{d \vec{w}} \ell\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- The stochastic gradient is an approximation of the full gradient.
\downarrow When $|B| \ll n$, it is much faster to compute.
- But the approximation is noisy.

Stochastic Gradient Descent for ERM

To minimize empirical risk $R(\vec{w})$:

- Pick starting weights $\vec{w}^{(0)}$, learning rate $\eta>0$, batch size m.
- Until convergence, repeat:
- Randomly sample a batch B of m training data points.
- Compute stochastic gradient:

$$
\vec{g}=\frac{1}{|B|} \sum_{i \in B} \frac{d}{d \vec{w}} l\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- Update: $\vec{w}^{(t+1)}=\vec{w}^{(t)}-\eta \vec{g}$
- When converged, return $\vec{w}^{(t)}$.

Note

- A new batch should be randomly sampled on each iteration!
- This way, the entire training set is used over time.
- Size of batch should be small compared to n.
\rightarrow Think: $m=64, m=32$, or even $m=1$.

Example: Least Squares

- We can use SGD to perform least squares regression.
- Need to compute the gradient of the square loss:

$$
\ell_{s q}\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)=\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2}
$$

Exercise

What is the gradient of the square loss of a linear predictor? That is, what is $\frac{d}{d \vec{w}}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2}$?

Example: Least Squares

- The gradient of the square loss of a linear predictor is:

$$
\begin{aligned}
& \frac{d}{d \vec{w}} l_{s q}\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right) \\
&=\frac{d}{d \vec{w}}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2} \\
&=2\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \frac{d}{d \vec{w}}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \\
&=2\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \operatorname{Aug}\left(\vec{x}^{(i)}\right)
\end{aligned}
$$

Example: Least Squares

- Therefore, on each step we compute the stochastic gradient:

$$
\vec{g}=\frac{2}{m} \sum_{i \in B}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \operatorname{Aug}\left(\vec{x}^{(i)}\right)
$$

- The update rule is:

$$
\vec{w}^{(t+1)}=\vec{w}^{(t)}-\eta \vec{g}
$$

Example: Least Squares

- We can write in matrix-vector form, too:
\Rightarrow Let X_{B} be the design matrix using only the examples in batch B.
\checkmark Let y_{B} be the corresponding vector of labels.
- Then:

$$
\vec{g}=\frac{2}{m} X_{B}^{\top}\left(X_{B} \vec{w}-y_{B}\right)
$$

Example: SGD

SGD vs. GD

Tradeoffs

- In each step of GD, move in the "best" direction. - But slowly!
- In each step of SGD, move in a "good" direction. - But quickly!
- SGD may take more steps to converge, but can be faster overall.

Example

- Suppose you're doing least squares regression on a medium-to-large data set.
- Say, $n=200,000$ examples, $d=5,000$ features.
- Encoded as 64 bit floats, X is 8 GB.
- Fits in your laptop's memory, but barely.
- Example: predict sentiment from text.

We saw...

- Solving the normal equations took 30.7 seconds.
- Gradient descent took 8.6 seconds.
$\Rightarrow 14$ iterations, ≈ 0.6 seconds per iteration.
- Stochastic gradient descent takes 3 seconds.
- Batch size $m=16$.
> 13,900 iterations, ≈ 0.0002 seconds per iteration.

Aside: Terminology

- Some people say "stochastic gradient descent" only when batch size is 1 .
- They say "mini-batch gradient descent" for larger batch sizes.
- In this class: we'll use "SGD" for any batch size, as long as it's chosen randomly.

Aside: A Popular Variant

- One variant of SGD uses epochs.
- During each epoch, we:
- Randomly shuffle the training data.
- Divide the training data into n / m mini-batches.
- Perform one step for each mini-batch.

Usefulness of SGD

- SGD enables learning on massive data sets.
- Billions of training examples, or more.
- Useful even when exact solutions available.
- E.g., least squares regression / classification.

History: ADALINE

140A Probabilistic Modeling \ddagger Machine Learning

Lecture 4 Part 4
Motivation: Minimizing Absolute Loss

Empirical Risk Minimization (ERM)

- Step 1: choose a hypothesis class
- We've chosen linear predictors.
> Step 2: choose a loss function
- Step 3: find H minimizing empirical risk

Loss Functions

- The absolute loss is a natural first choice for regression.
- The empirical risk becomes:

$$
\begin{aligned}
R_{\mathrm{abs}}(\vec{w}) & =\frac{1}{n} \sum_{i=1}^{n}\left|H\left(\vec{x}^{(i)}\right)-y_{i}\right| \\
& =\frac{1}{n} \sum_{i=1}^{n}\left|\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)-y_{i}\right|
\end{aligned}
$$

Minimizing the Risk

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n}\left|\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)-y_{i}\right|
$$

- We might try computing the gradient, setting to zero, and solving.
- But the risk is not differentiable.

Risk for the Absolute Loss

Gradient Descent?

- Question: can we use gradient descent if the risk is not differentiable?
- Answer: yes, with a slight modification.

$$
\text { DSC } 140 A
$$

Differentiability

- A function $f(z)$ is differentiable if the derivative exists at every point.
- That is, it has a well-defined slope at every point.

Exercise

Where is the derivative not defined?

$$
f(z)= \begin{cases}-4 z-7 & \text { if } z<-3 \\ -z+2 & \text { if }-3 \leq z<0 \\ 0.5 z+2 & \text { if } 0 \leq z<2 \\ 3 z / 2 & \text { if } z \geq 2\end{cases}
$$

Differentiability

- A function $f(\vec{z})$ is differentiable if the gradient exists at every point.
- In other words, all of the slopes are well-defined:
$\triangleright \partial f / \partial z_{1}, \partial f / \partial z_{2}, \ldots$

Example

$$
f\left(Z_{1}, Z_{2}\right)=\left\{\begin{array}{lll}
-5 Z_{1}+Z_{2} & \text { if } Z_{1} \leq 0 \\
-2 Z_{1}+Z_{2} & \text { if } Z_{1}>0
\end{array}\right.
$$

Exercise

What is the gradient at $(-1,-1)$? $(1,-1) ?(0,1)$?

$$
f\left(z_{1}, z_{2}\right)= \begin{cases}-5 z_{1}+z_{2} & \text { if } z_{1} \leq 0 \\ -2 z_{1}+z_{2} & \text { if } z_{1}>0\end{cases}
$$

Answer

$\frac{d}{d \vec{w}} f(\vec{z})$ is defined everywhere except along $z_{1}=0$.

- If $z_{1}<0, f(\vec{z})=-5 z_{1}+z_{2}$.
gradient is $(-5,1)^{T}$ here
- If $z_{1}>0, f(\vec{z})=-2 z_{1}+z_{2}$.
gradient is $(-2,1)^{\top}$ here

Answer

$$
\frac{d f}{d \vec{z}}(\vec{z})= \begin{cases}(-5,1)^{T}, & \text { if } z_{1}<0, \\ (-2,1)^{T^{\prime}}, & \text { if } z_{1}>0, \\ \text { undefined, } & \text { if } z_{1}=0 .\end{cases}
$$

Problem

- We can try running gradient descent.
- But what do we do if we reach a point where the gradient is not defined?
- We need a replacement for the gradient that tells us where to go.

Idea

- Slope is undefined at $z_{1}=-3$.
\Rightarrow To the left, slope is -4
$>$ To the right, slope is -1

$$
f(z)= \begin{cases}-4 z-7 & \text { if } z<-3 \\ -z+2 & \text { if }-3 \leq z<0 \\ 0.5 z+2 & \text { if } 0 \leq z<2 \\ 3 z / 2 & \text { if } z \geq 2\end{cases}
$$

Idea

- Slope is undefined at $z_{1}=-3$.
- To the left, slope is -4
- To the right, slope is -1

$$
f(z)= \begin{cases}-4 z-7 & \text { if } z<-3 \\ -z+2 & \text { if }-3 \leq z<0 \\ 0.5 z+2 & \text { if } 0 \leq z<2 \\ 3 z / 2 & \text { if } z \geq 2\end{cases}
$$

Idea

- Slope is undefined at $z_{1}=-3$.
- To the left, slope is -4
- To the right, slope is -1

$$
f(z)= \begin{cases}-4 z-7 & \text { if } z<-3 \\ -z+2 & \text { if }-3 \leq z<0 \\ 0.5 z+2 & \text { if } 0 \leq z<2 \\ 3 z / 2 & \text { if } z \geq 2\end{cases}
$$

Idea

- Slope is undefined at $z_{1}=-3$.
- To the left, slope is -4
- To the right, slope is -1

$$
f(z)= \begin{cases}-4 z-7 & \text { if } z<-3 \\ -z+2 & \text { if }-3 \leq z<0 \\ 0.5 z+2 & \text { if } 0 \leq z<2 \\ 3 z / 2 & \text { if } z \geq 2\end{cases}
$$

Idea

- Any number between -4 and -1 adequately describes the behavior of f at $z=-3$.

$$
f(z)= \begin{cases}-4 z-7 & \text { if } z<-3 \\ -z+2 & \text { if }-3 \leq z<0 \\ 0.5 z+2 & \text { if } 0 \leq z<2 \\ 3 z / 2 & \text { if } z \geq 2\end{cases}
$$

Idea

- Any number between -4 and -1 is a subderivative of f at $z=-3$.

$$
f(z)= \begin{cases}-4 z-7 & \text { if } z<-3 \\ -z+2 & \text { if }-3 \leq z<0 \\ 0.5 z+2 & \text { if } 0 \leq z<2 \\ 3 z / 2 & \text { if } z \geq 2\end{cases}
$$

Exercise

What are the valid subderivatives of f at $z=2$?

$$
f(z)= \begin{cases}-4 z-7 & \text { if } z<-3 \\ -z+2 & \text { if }-3 \leq z<0 \\ 0.5 z+2 & \text { if } 0 \leq z<2 \\ 3 z / 2 & \text { if } z \geq 2\end{cases}
$$

Subderivatives

- Any valid subderivative defines a line that lies below the function.

Subderivatives

The equation of this line is:

$$
f_{s}(z)=f\left(z_{0}\right)+s\left(z-z_{0}\right)
$$

Subderivatives

A number s is a subderivative of f at z_{0} if:

$$
f(z) \geq f_{s}(z) \text { for all } z
$$

That is, if:

$$
f(z) \geq f\left(z_{0}\right)+s\left(z-z_{0}\right)
$$

Exercise

Is 0 a valid subderivative of f at $z=2$?

Intuition

- The subderivative tells us how the function changes when the slope doesn't exist.
- We can sometimes use it in place of a derivative.

Subgradient

- In higher dimensions, we have multiple slopes to worry about.
- We can use a subgradient to generalize the concept of a subderivative.

Example

- There's no well-defined gradient at $z_{1}=(0,0)$.
\Rightarrow The slope in the z_{1} direction is undefined
\Rightarrow Between -5 and -2 ?
\Rightarrow The slope in the z_{2} direction is 1
- We will call any vector ($s_{1}, 1$) with $-5 \leq s_{1} \leq-2$ a subgradient at (0,0).

$$
f\left(z_{1}, z_{2}\right)= \begin{cases}-5 z_{1}+z_{2} & \text { if } z_{1} \leq 0 \\ -2 z_{1}+z_{2} & \text { if } z_{1}>0\end{cases}
$$

Subgradient

- A vector \vec{s} defines a plane:
- Example: $(-5,1)^{\top}$
- Example: $(-2,1)^{T}$
- Example: $(-3,1)^{T}$

Subgradient

- A vector \vec{s} is a valid subgradient at $\vec{z}^{(0)}$ if the plane it defines lies at or below the function f. \rightarrow Example: $(-3,1)^{T}$

Subgradient

- The equation of the plane defined by \vec{s} at $\vec{z}^{(0)}$ is:

$$
f_{s}(\vec{z})=f\left(\vec{z}^{(0)}\right)+\vec{s} \cdot\left(\vec{z}-\vec{z}^{(0)}\right)
$$

Subgradients

\vec{s} is a subgradient of $f(\vec{z})$ at $\vec{z}^{(0)}$ if:

$$
f(\vec{z}) \geq f_{s}(\vec{z}) \quad \text { for all } \vec{z}
$$

- That is, if:

$$
f(\vec{z}) \geq f\left(\vec{z}^{(0)}\right)+\vec{s} \cdot\left(\vec{z}-\vec{z}^{(0)}\right)
$$

Finding Subgradients

- Here are two suggested ways to check that \vec{s} is a valid subgradient.

1) Visualize it.

- 2) Check if the inequality holds.

Example

$$
f\left(z_{1}, z_{2}\right)= \begin{cases}-5 z_{1}+z_{2} & \text { if } z_{1} \leq 0 \\ -2 z_{1}+z_{2} & \text { if } z_{1}>0\end{cases}
$$

- Is $(-5,0)^{T}$ a valid subgradient?

Example

$$
f\left(z_{1}, z_{2}\right)= \begin{cases}-5 z_{1}+z_{2} & \text { if } z_{1} \leq 0 \\ -2 z_{1}+z_{2} & \text { if } z_{1}>0\end{cases}
$$

- Is $(-5,0)^{T}$ a valid subgradient at the point $(0,0)$?
- Is $f(0,0)+(-5,0)^{T} \cdot\left(\left(z_{1}, z_{2}\right)-(0,0)^{\top}\right) \leq f\left(z_{1}, z_{2}\right)$ for all z_{1}, z_{2} ?

Tip

- If the slope is defined in a direction, the corresponding entry of the subgradient must be that slope.

Intuition

- A subgradient tells us where to go when the gradient is undefined.
- We can use it instead of the gradient in gradient descent.

Example

- $f\left(z_{1}, z_{2}\right)=z_{1}^{2}+\left|z_{2}\right|$
- A subgradient:

$$
\vec{s}\left(z_{1}, z_{2}\right)= \begin{cases}\left(2 z_{1}, 1\right)^{\top} & , \text { if } z_{2}>0, \\ \left(2 z_{1},-1\right)^{\top} & , \text { if } z_{2}<0, \\ \left(2 z_{1}, 0\right)^{\top} & , \text { if } z_{2}=0 .\end{cases}
$$

Example

Subgradient descent on $f\left(z_{1}, z_{2}\right)=z_{1}^{2}+\left|z_{2}\right|$

- Starting point: $(1 / 2,1 / 2)^{T}$
- Learning rate: $\eta=0.1$.

Problem

- Does not converge! Why?
- If f is differentiable, gradient gets smaller as we approach the minimum.
- Naturally take smaller steps.
- Not true if the function is not differentiable!
- Steps may stay the same size (too large).

Fix

- Decrease learning rate with each iteration.
- That is, choose a decreasing learning rate schedule $\eta(t)>0$.
- Theory: choose $\eta(t)=c / \sqrt{t}$, where t is iteration \#, c is a positive constant.

Subgradient Descent

To minimize $f(\vec{z})$:

- Pick arbitrary starting point $\vec{z}^{(0)}$, a decreasing learning rate schedule $\eta(t)>0$.
- Until convergence, repeat:
- Compute a subgradient \vec{s} of f at $\vec{z}^{(i)}$.
- Update $\vec{z}^{(t+1)}=\vec{z}^{(t)}-\eta(t) \vec{s}$
- When converged, return $\vec{z}^{(t)}$.

Next Time

When is (S)GD guaranteed to converge?

[^0]: ${ }^{3}$ Trivia: this usually takes $\Theta(n d)$ time.

