
Lecture 4 | Part 1

Introduction



Empirical Risk Minimization (ERM)

▶ Step 1: choose a hypothesis class▶ We’ve chosen linear predictors.▶ Step 2: choose a loss function▶ Step 3: find 𝐻 minimizing empirical risk



Minimizing Empirical Risk▶ We want to minimize the empirical risk:𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 ℓ(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)= 1𝑛 𝑛∑𝑖=1 ℓ(Aug( ⃗𝑥(𝑖)) ⋅ �⃗�, 𝑦𝑖)▶ For some choices of loss function, we can find a
formula for the minimizer.



Example: Least Squares▶ With the square loss, risk becomes:𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)2▶ Setting gradient to zero, solving for �⃗� gives:�⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦



Gradient Descent▶ But sometimes we can’t solve for �⃗� directly.▶ It’s too costly.▶ There’s no closed-form solution.▶ Idea: use gradient descent to iteratively
minimize risk.



Gradient Descent▶ Starting from an initial guess �⃗�(0), iteratively
update: �⃗�(𝑡+1) = �⃗�(𝑡) − 𝜂𝑑𝑅𝑑�⃗�(�⃗�(𝑡))



Today
We’ll address two issues with gradient descent.

1. Can be expensive to compute the exact gradient.▶ Especially when we have a large data set.▶ Solution: stochastic gradient descent.

2. Doesn’t work as-is if risk is not differentiable.▶ Such as with the absolute loss.▶ Solution: subgradient descent.



Lecture 4 | Part 2

Motivation: Large Scale Learning



Example▶ Suppose you’re doing least squares regression
on a medium-to-large data set.▶ Say, 𝑛 = 200,000 examples, 𝑑 = 5,000 features.▶ Encoded as 64 bit floats, 𝑋 is 8 GB.▶ Fits in your laptop’s memory, but barely.▶ Example: predict sentiment from text.



Attempt 0: Normal Equations▶ You start by solving the normal equations:
np.linalg.solve(X.T @ X, X.T @ y)▶ Time: 30.7 seconds.▶ Mean Squared Error: 7.2 × 10−7.▶ Can we speed this up?



Attempt 1: Gradient Descent▶ Recall1 that the gradient of the MSE is:𝑑𝑅𝑑�⃗�(�⃗�) = 2𝑛 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)Aug( ⃗𝑥(𝑖))= 1𝑛 (2𝑋𝑇𝑋�⃗� − 2𝑋𝑇 ⃗𝑦)▶ You code up a function:2

def gradient(w):
n = len(y)
return (2/n) * X.T @ (X @ w - y)

1From Lecture 02, where we derived this.
2There’s a good and a bad way to do this.



Attempt 1: Gradient Descent▶ You plug this into gradient_descent from last
lecture, run it, and...▶ Time: 8.6 seconds total▶ 14 iterations▶ ≈ 0.6 seconds per iteration▶ Mean Squared Error: 9.4 × 10−7.



Trivia: why is it faster?▶ Solving normal equations takes Θ(𝑛𝑑2 + 𝑑3) time.▶ Θ(𝑛𝑑2) time to compute 𝑋𝑇𝑋.▶ Θ(𝑑3) time to solve the system.▶ Gradient descent takes Θ(𝑛𝑑) time per iteration.▶ Θ(𝑛𝑑) time to compute 𝑋�⃗�.▶ Θ(𝑛𝑑) time to compute 𝑋𝑇(𝑋�⃗� − ⃗𝑦).



Looking Ahead▶ What if you had a larger data set?▶ Say, 𝑛 = 10,000,000 examples, 𝑑 = 5,000 features.▶ Encoded as 64 bit floats, 𝑋 is 400 GB.▶ Doesn’t fit in your laptop’s memory!▶ Barely fits on your hard drive.



Approach 0: Normal Equations▶ You can try solving the normal equations:
np.linalg.solve(X.T @ X, X.T @ y)▶ One of three things will happen:

1. You will receive an out of memory error.
2. The process will be killed (or your OS will freeze).
3. It will run, but take a very long time (paging).



Approach 1: Gradient Descent▶ We can’t store the data in memory all at once.▶ But we can still compute the gradient, 𝑑𝑅𝑑�⃗� .▶ Read a little bit of data at once.▶ Or, distribute the computation to several machines.▶ Computing gradient involves a loop over data:𝑑𝑅𝑑�⃗�(�⃗�) = 2𝑛 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)Aug( ⃗𝑥(𝑖))



Problem

𝑑𝑅𝑑�⃗�(�⃗�) = 2𝑛 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)Aug( ⃗𝑥(𝑖))▶ In machine learning, the number of training
points 𝑛 can be very large.▶ Computing the gradient can be expensive when𝑛 is large.▶ So each step of gradient descent is expensive.



Idea▶ Don’t worry about computing the exact gradient.▶ An approximation will do.



Lecture 4 | Part 3

Stochastic Gradient Descent



Gradient Descent for Minimizing Risk▶ In ML, we often want to minimize a risk function:𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 ℓ(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)



Observation▶ The gradient of the risk is the average of the
gradient of the losses:𝑑𝑑�⃗�𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 𝑑𝑑�⃗�ℓ(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)▶ The averaging is over all training points.▶ This can take a long time when 𝑛 is large.3

3Trivia: this usually takes Θ(𝑛𝑑) time.



Idea▶ The (full) gradient of the risk uses all of the
training data:𝑑𝑑�⃗�𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 𝑑𝑑�⃗�ℓ(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)▶ Idea: instead of using all 𝑛 training points,
randomly choose a smaller set, 𝐵:𝑑𝑑�⃗�𝑅(�⃗�) ≈ 1|𝐵|∑𝑖∈𝐵 𝑑𝑑�⃗�ℓ(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)



Stochastic Gradient▶ The smaller set 𝐵 is called a mini-batch.▶ We now compute a stochastic gradient:𝑑𝑑�⃗�𝑅(�⃗�) ≈ 1|𝐵|∑𝑖∈𝐵 𝑑𝑑�⃗�ℓ(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)▶ “Stochastic,” because it is a random.



Stochastic Gradient𝑑𝑑�⃗�𝑅(�⃗�) ≈ 1|𝐵|∑𝑖∈𝐵 𝑑𝑑�⃗�ℓ(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)▶ The stochastic gradient is an approximation of
the full gradient.▶ When |𝐵| ≪ 𝑛, it is much faster to compute.▶ But the approximation is noisy.



Stochastic Gradient Descent for ERM
To minimize empirical risk 𝑅(�⃗�):▶ Pick starting weights �⃗�(0), learning rate 𝜂 > 0, batch size 𝑚.▶ Until convergence, repeat:▶ Randomly sample a batch 𝐵 of 𝑚 training data points.▶ Compute stochastic gradient:�⃗� = 1|𝐵| ∑𝑖∈𝐵 𝑑𝑑�⃗�ℓ(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)▶ Update: �⃗�(𝑡+1) = �⃗�(𝑡) − 𝜂�⃗�▶ When converged, return �⃗�(𝑡).



Note▶ A new batch should be randomly sampled on
each iteration!▶ This way, the entire training set is used over time.▶ Size of batch should be small compared to 𝑛.▶ Think: 𝑚 = 64, 𝑚 = 32, or even 𝑚 = 1.



Example: Least Squares▶ We can use SGD to perform least squares
regression.▶ Need to compute the gradient of the square loss:ℓsq(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖) = (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)2



Exercise
What is the gradient of the square loss of a linear
predictor? That is, what is 𝑑𝑑�⃗� (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)2?
w(xw -y) z = 2(xw -y) + =w(xw-y)

= 2(xw -y) x



Example: Least Squares▶ The gradient of the square loss of a linear
predictor is:𝑑𝑑�⃗�ℓsq(𝐻( ⃗𝑥(𝑖); �⃗�), 𝑦𝑖)= 𝑑𝑑�⃗� (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)2= 2 (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖) 𝑑𝑑�⃗� (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)= 2 (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)Aug( ⃗𝑥(𝑖))



Example: Least Squares▶ Therefore, on each step we compute the
stochastic gradient:�⃗� = 2𝑚∑𝑖∈𝐵 (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)Aug( ⃗𝑥(𝑖))▶ The update rule is:�⃗�(𝑡+1) = �⃗�(𝑡) − 𝜂�⃗�



Example: Least Squares▶ We can write in matrix-vector form, too:▶ Let 𝑋𝐵 be the design matrix using only the examples
in batch 𝐵.▶ Let 𝑦𝐵 be the corresponding vector of labels.▶ Then: �⃗� = 2𝑚𝑋𝑇𝐵(𝑋𝐵�⃗� − 𝑦𝐵)



Example: SGD



Example: SGD



Example: SGD



Example: SGD



Example: SGD



Example: SGD



Example: SGD



Example: SGD



Example: SGD



Example: SGD



Example: SGD



Example: SGD



Example: SGD



Example: SGD



Example: SGD



SGD vs. GD



Tradeoffs▶ In each step of GD, move in the “best” direction.▶ But slowly!▶ In each step of SGD, move in a “good” direction.▶ But quickly!▶ SGD may take more steps to converge, but can be
faster overall.



Example▶ Suppose you’re doing least squares regression
on a medium-to-large data set.▶ Say, 𝑛 = 200,000 examples, 𝑑 = 5,000 features.▶ Encoded as 64 bit floats, 𝑋 is 8 GB.▶ Fits in your laptop’s memory, but barely.▶ Example: predict sentiment from text.



We saw...▶ Solving the normal equations took 30.7 seconds.▶ Gradient descent took 8.6 seconds.▶ 14 iterations, ≈ 0.6 seconds per iteration.▶ Stochastic gradient descent takes 3 seconds.▶ Batch size 𝑚 = 16.▶ 13,900 iterations, ≈ 0.0002 seconds per iteration.



Aside: Terminology▶ Some people say “stochastic gradient descent”
only when batch size is 1.▶ They say “mini-batch gradient descent” for larger
batch sizes.▶ In this class: we’ll use “SGD” for any batch size,
as long as it’s chosen randomly.



Aside: A Popular Variant▶ One variant of SGD uses epochs.▶ During each epoch, we:▶ Randomly shuffle the training data.▶ Divide the training data into 𝑛/𝑚 mini-batches.▶ Perform one step for each mini-batch.



Usefulness of SGD▶ SGD enables learning on massive data sets.▶ Billions of training examples, or more.▶ Useful even when exact solutions available.▶ E.g., least squares regression / classification.



History: ADALINE



Lecture 4 | Part 4

Motivation: Minimizing Absolute Loss



Empirical Risk Minimization (ERM)

▶ Step 1: choose a hypothesis class▶ We’ve chosen linear predictors.▶ Step 2: choose a loss function▶ Step 3: find 𝐻 minimizing empirical risk



Loss Functions▶ The absolute loss is a natural first choice for
regression.▶ The empirical risk becomes:𝑅abs(�⃗�) = 1𝑛 𝑛∑𝑖=1 |𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖|= 1𝑛 𝑛∑𝑖=1 |�⃗� ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖|



Minimizing the Risk

𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 |�⃗� ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖|▶ We might try computing the gradient, setting to
zero, and solving.▶ But the risk is not differentiable.



Risk for the Absolute Loss



Gradient Descent?▶ Question: can we use gradient descent if the risk
is not differentiable?▶ Answer: yes, with a slight modification.



Lecture 4 | Part 5

Subgradient Descent



Differentiability▶ A function 𝑓(𝑧) is differentiable if the derivative
exists at every point.▶ That is, it has a well-defined slope at every point.



Exercise
Where is the derivative not defined?

𝑓(𝑧) = {−4𝑧 − 7 if 𝑧 < −3−𝑧 + 2 if − 3 ≤ 𝑧 < 00.5𝑧 + 2 if 0 ≤ 𝑧 < 23𝑧/2 if 𝑧 ≥ 2
-4

312
- I

1/2



Differentiability▶ A function 𝑓( ⃗𝑧) is differentiable if the gradient
exists at every point.▶ In other words, all of the slopes are well-defined:▶ 𝜕𝑓/𝜕𝑧1, 𝜕𝑓/𝜕𝑧2, …



Example▶ 𝑓(𝑧1, 𝑧2) = {−5𝑧1 + 𝑧2 if 𝑧1 ≤ 0−2𝑧1 + 𝑧2 if 𝑧1 > 0

/



Exercise
What is the gradient at (-1, -1)? (1, -1)? (0, 1)?

𝑓(𝑧1, 𝑧2) = {−5𝑧1 + 𝑧2 if 𝑧1 ≤ 0−2𝑧1 + 𝑧2 if 𝑧1 > 0
* 5, (a)

a
·
e



Answer

▶ 𝑑𝑑�⃗�𝑓( ⃗𝑧) is defined everywhere
except along 𝑧1 = 0.▶ If 𝑧1 < 0, 𝑓( ⃗𝑧) = −5𝑧1 + 𝑧2.▶ gradient is (−5, 1)𝑇 here▶ If 𝑧1 > 0, 𝑓( ⃗𝑧) = −2𝑧1 + 𝑧2.▶ gradient is (−2, 1)𝑇 here



Answer

𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧) = {(−5, 1)𝑇, if 𝑧1 < 0,(−2, 1)𝑇, if 𝑧1 > 0,
undefined, if 𝑧1 = 0.



Problem

▶ We can try running gradient
descent.▶ But what do we do if we reach
a point where the gradient is
not defined?▶ We need a replacement for
the gradient that tells us
where to go.



Idea▶ Slope is undefined at 𝑧1 = −3.▶ To the left, slope is -4▶ To the right, slope is -1

𝑓(𝑧) = {−4𝑧 − 7 if 𝑧 < −3−𝑧 + 2 if − 3 ≤ 𝑧 < 00.5𝑧 + 2 if 0 ≤ 𝑧 < 23𝑧/2 if 𝑧 ≥ 2
N

↑

N

↑

↑

·

:



Idea▶ Slope is undefined at 𝑧1 = −3.▶ To the left, slope is -4▶ To the right, slope is -1

𝑓(𝑧) = {−4𝑧 − 7 if 𝑧 < −3−𝑧 + 2 if − 3 ≤ 𝑧 < 00.5𝑧 + 2 if 0 ≤ 𝑧 < 23𝑧/2 if 𝑧 ≥ 2



Idea▶ Slope is undefined at 𝑧1 = −3.▶ To the left, slope is -4▶ To the right, slope is -1

𝑓(𝑧) = {−4𝑧 − 7 if 𝑧 < −3−𝑧 + 2 if − 3 ≤ 𝑧 < 00.5𝑧 + 2 if 0 ≤ 𝑧 < 23𝑧/2 if 𝑧 ≥ 2



Idea▶ Slope is undefined at 𝑧1 = −3.▶ To the left, slope is -4▶ To the right, slope is -1

𝑓(𝑧) = {−4𝑧 − 7 if 𝑧 < −3−𝑧 + 2 if − 3 ≤ 𝑧 < 00.5𝑧 + 2 if 0 ≤ 𝑧 < 23𝑧/2 if 𝑧 ≥ 2
- 2



Idea▶ Any number between -4 and -1 adequately
describes the behavior of 𝑓 at 𝑧 = −3.

𝑓(𝑧) = {−4𝑧 − 7 if 𝑧 < −3−𝑧 + 2 if − 3 ≤ 𝑧 < 00.5𝑧 + 2 if 0 ≤ 𝑧 < 23𝑧/2 if 𝑧 ≥ 2



Idea▶ Any number between -4 and -1 is a subderivative
of 𝑓 at 𝑧 = −3.

𝑓(𝑧) = {−4𝑧 − 7 if 𝑧 < −3−𝑧 + 2 if − 3 ≤ 𝑧 < 00.5𝑧 + 2 if 0 ≤ 𝑧 < 23𝑧/2 if 𝑧 ≥ 2



Exercise
What are the valid subderivatives of 𝑓 at 𝑧 = 2?

𝑓(𝑧) = {−4𝑧 − 7 if 𝑧 < −3−𝑧 + 2 if − 3 ≤ 𝑧 < 00.5𝑧 + 2 if 0 ≤ 𝑧 < 23𝑧/2 if 𝑧 ≥ 2

2 .

31



Subderivatives▶ Any valid subderivative defines a line that lies
below the function.



Subderivatives▶ Any valid subderivative defines a line that lies
below the function.



Subderivatives▶ Any valid subderivative defines a line that lies
below the function.



Subderivatives▶ The equation of this line is:𝑓𝑠(𝑧) = 𝑓(𝑧0) + 𝑠(𝑧 − 𝑧0)
f(z)

:
f. s(z)

Zo



Subderivatives▶ A number 𝑠 is a subderivative of 𝑓 at 𝑧0 if:𝑓(𝑧) ≥ 𝑓𝑠(𝑧) for all 𝑧▶ That is, if: 𝑓(𝑧) ≥ 𝑓(𝑧0) + 𝑠(𝑧 − 𝑧0)



Exercise
Is 0 a valid subderivative of 𝑓 at 𝑧 = 2?

fs(z) = f ( -3) + 0 . (z - ( 3)) = f (-3)



Intuition▶ The subderivative tells us how the function
changes when the slope doesn’t exist.▶ We can sometimes use it in place of a derivative.



Subgradient▶ In higher dimensions, we have multiple slopes to
worry about.▶ We can use a subgradient to generalize the
concept of a subderivative.



Example▶ There’s no well-defined gradient at 𝑧1 = (0, 0).▶ The slope in the 𝑧1 direction is undefined▶ Between -5 and -2?▶ The slope in the 𝑧2 direction is 1
𝑓(𝑧1, 𝑧2) = {−5𝑧1 + 𝑧2 if 𝑧1 ≤ 0−2𝑧1 + 𝑧2 if 𝑧1 > 0 -



Example▶ We will call any vector (𝑠1, 1) with −5 ≤ 𝑠1 ≤ −2 a
subgradient at (0, 0).

𝑓(𝑧1, 𝑧2) = {−5𝑧1 + 𝑧2 if 𝑧1 ≤ 0−2𝑧1 + 𝑧2 if 𝑧1 > 0



Subgradient▶ A vector ⃗𝑠 defines a plane:▶ Example: (−5, 1)𝑇



Subgradient▶ A vector ⃗𝑠 defines a plane:▶ Example: (−2, 1)𝑇



Subgradient▶ A vector ⃗𝑠 defines a plane:▶ Example: (−3, 1)𝑇



Subgradient▶ A vector ⃗𝑠 is a valid subgradient at ⃗𝑧(0) if the
plane it defines lies at or below the function 𝑓.▶ Example: (−3, 1)𝑇



Subgradient▶ The equation of the plane defined by ⃗𝑠 at ⃗𝑧(0) is:𝑓𝑠( ⃗𝑧) = 𝑓( ⃗𝑧(0)) + ⃗𝑠 ⋅ ( ⃗𝑧 − ⃗𝑧(0))



Subgradients▶ ⃗𝑠 is a subgradient of 𝑓( ⃗𝑧) at ⃗𝑧(0) if:𝑓( ⃗𝑧) ≥ 𝑓𝑠( ⃗𝑧) for all ⃗𝑧▶ That is, if: 𝑓( ⃗𝑧) ≥ 𝑓( ⃗𝑧(0)) + ⃗𝑠 ⋅ ( ⃗𝑧 − ⃗𝑧(0))



Finding Subgradients▶ Here are two suggested ways to check that ⃗𝑠 is a
valid subgradient.▶ 1) Visualize it.▶ 2) Check if the inequality holds.



Example
𝑓(𝑧1, 𝑧2) = {−5𝑧1 + 𝑧2 if 𝑧1 ≤ 0−2𝑧1 + 𝑧2 if 𝑧1 > 0▶ Is (−5, 0)𝑇 a valid subgradient? No

-



Example

𝑓(𝑧1, 𝑧2) = {−5𝑧1 + 𝑧2 if 𝑧1 ≤ 0−2𝑧1 + 𝑧2 if 𝑧1 > 0▶ Is (−5, 0)𝑇 a valid subgradient at the point (0,0)?▶ Is 𝑓(0, 0) + (−5, 0)𝑇 ⋅ (𝑧1, 𝑧2) ≤ 𝑓(𝑧1, 𝑧2) for all 𝑧1, 𝑧2?

(+,
-1)
+ f( 1

,
-1) = 5 - 1 = 4

- fs( , -1) = 5

5
-

0 -5z ,
+Ozz

fs(z) = -5z1



Tip▶ If the slope is defined in a direction, the
corresponding entry of the subgradient must be
that slope.



Intuition▶ A subgradient tells us where to go when the
gradient is undefined.▶ We can use it instead of the gradient in gradient
descent.



Example

▶ 𝑓(𝑧1, 𝑧2) = 𝑧21 + |𝑧2|▶ A subgradient:

⃗𝑠(𝑧1, 𝑧2) = {(2𝑧1, 1)𝑇 , if 𝑧2 > 0,(2𝑧1, −1)𝑇 , if 𝑧2 < 0,(2𝑧1, 0)𝑇 , if 𝑧2 = 0.



Example▶ Subgradient descent on 𝑓(𝑧1, 𝑧2) = 𝑧21 + |𝑧2|▶ Starting point: (1/2, 1/2)𝑇▶ Learning rate: 𝜂 = 0.1.





Problem▶ Does not converge! Why?▶ If 𝑓 is differentiable, gradient gets smaller as we
approach the minimum.▶ Naturally take smaller steps.▶ Not true if the function is not differentiable!▶ Steps may stay the same size (too large).

I



Fix▶ Decrease learning rate with each iteration.▶ That is, choose a decreasing learning rate
schedule 𝜂(𝑡) > 0.▶ Theory: choose 𝜂(𝑡) = 𝑐/√𝑡, where 𝑡 is iteration #,𝑐 is a positive constant.





Subgradient Descent
To minimize 𝑓( ⃗𝑧):▶ Pick arbitrary starting point ⃗𝑧(0), a decreasing learning rate

schedule 𝜂(𝑡) > 0.▶ Until convergence, repeat:▶ Compute a subgradient ⃗𝑠 of 𝑓 at ⃗𝑧(𝑖).▶ Update ⃗𝑧(𝑡+1) = ⃗𝑧(𝑡) − 𝜂(𝑡) ⃗𝑠▶ When converged, return ⃗𝑧(𝑡).



Lecture 4 | Part 6

Minimizing Absolute Loss



Regression with Absolute Loss▶ The risk with respect to the absolute loss:𝑅(�⃗�) = 1𝑛 𝑛∑𝑖=1 |�⃗� ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖|▶ We were stuck before because the risk is not
differentiable.▶ Now: we can minimize the risk with respect to
the absolute loss using subgradient descent.



Subgradient of the Absolute Loss▶ We need a subgradient of the absolute loss.ℓabs(�⃗� ⋅ Aug( ⃗𝑥(𝑖)), 𝑦𝑖) = |�⃗� ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖|▶ If �⃗� ⋅ Aug( ⃗𝑥(𝑖)) > 𝑦𝑖:▶ Loss is �⃗� ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖.▶ Gradient is Aug( ⃗𝑥(𝑖)).



Subgradient of the Absolute Loss▶ We need a subgradient of the absolute loss.ℓabs(�⃗� ⋅ Aug( ⃗𝑥(𝑖)), 𝑦𝑖) = |�⃗� ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖|▶ If �⃗� ⋅ Aug( ⃗𝑥(𝑖)) < 𝑦𝑖:▶ Loss is 𝑦𝑖 − �⃗� ⋅ Aug( ⃗𝑥(𝑖)).▶ Gradient is −Aug( ⃗𝑥(𝑖)).



Subgradient of the Absolute Loss▶ We need a subgradient of the absolute loss.ℓabs(�⃗� ⋅ Aug( ⃗𝑥(𝑖)), 𝑦𝑖) = |�⃗� ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖|▶ If �⃗� ⋅ Aug( ⃗𝑥(𝑖)) = 𝑦𝑖:▶ We need a subgradient.



Subgradient of the Absolute Loss



Subgradient of the Absolute Loss▶ The zero vector works as a subgradient.▶ Our subgradient of the absolute loss:

𝑠(�⃗�; ⃗𝑥(𝑖), 𝑦𝑖) = {Aug( ⃗𝑥(𝑖)), if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) > 𝑦𝑖,−Aug( ⃗𝑥(𝑖)), if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) < 𝑦𝑖,0⃗, if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) = 𝑦𝑖.



Minimizing the Absolute Loss▶ The subgradient of the empirical risk is the
average of the subgradients of the loss:

subgrad. of 𝑅(�⃗�)= 1𝑛 𝑛∑𝑖=1 𝑠(�⃗�, ⃗𝑥(𝑖), 𝑦𝑖)= 1𝑛 𝑛∑𝑖=1 {Aug( ⃗𝑥(𝑖)), if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) > 𝑦𝑖,−Aug( ⃗𝑥(𝑖)), if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) < 𝑦𝑖,0⃗, if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) = 𝑦𝑖.



Subgradient Descent▶ We minimize the empirical risk with respect to
the absolute loss using subgradient descent.▶ Pick an initial �⃗�(0), a decreasing learning rate
schedule 𝜂(𝑡) > 0.▶ Until convergence, repeat:▶ Update�⃗�(𝑡+1) = �⃗�(𝑡)−𝜂(𝑡)× 1𝑛 𝑛∑𝑖=1 {Aug( ⃗𝑥(𝑖)), if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) > 𝑦𝑖,−Aug( ⃗𝑥(𝑖)), if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) < 𝑦𝑖,0⃗, if �⃗� ⋅ Aug( ⃗𝑥(𝑖)) = 𝑦𝑖.



In Practice▶ Regression with absolute loss has different
names:▶ Quantile regression▶ Minimum Absolute Deviations (MAD)▶ Solvable by (S)GD, or as a linear program.



Next Time▶ When is (S)GD guaranteed to converge?


