Ds<c /40A

Z /’bbﬂb}ﬂfs"fc Mﬂ&ﬂ}iy ¢ Maehime ﬁﬁrmh?,

Lecture 4 Part1

Introduction

Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
We've chosen linear predictors.

Step 2: choose a loss function

Step 3: find H minimizing empirical risk

Minimizing Empirical Risk
We want to minimize the empirical risk:

R(W) = % D AHED; i), y,)

For some choices of loss function, we can find a
formula for the minimizer.

Example: Least Squares

With the square loss, risk becomes:

a_1” S
-nZAugx) W-y.)?

i=1

Setting gradient to zero, solving for W gives:

= (XX X7y

Gradient Descent

But sometimes we can’t solve for w directly.
It's too costly.
There's no closed-form solution.

Idea: use gradient descent to iteratively
minimize risk.

Gradient Descent

Starting from an initial guess W%, iteratively
update:

Today
We'll address two issues with gradient descent.

Can be expensive to compute the exact gradient.
Especially when we have a large data set.
Solution: stochastic gradient descent.

Doesn’t work as-is if risk is not differentiable.
Such as with the absolute loss.
Solution: subgradient descent.

Ds<C /40A

Prbatifiche Medihiy ¢ Wnchine arone),

Lecture 4 Part 2

Motivation: Large Scale Learning

Example

Suppose you're doing least squares regression
on a medium-to-large data set.

Say, n = 200,000 examples, d = 5,000 features.

Encoded as 64 bit floats, X is 8 GB.
Fits in your laptop’s memory, but barely.

Example: predict sentiment from text.

Attempt 0: Normal Equations

You start by solving the normal equations:
np.linalg.solve(X.T @ X, X.T @ y)

Time: 30.7 seconds.
Mean Squared Error: 7.2 x 1077,

Can we speed this up?

Attempt 1: Gradient Descent

Recall’ that the gradient of the MSE is:

You code up a function:?

def gradient(w):
n = len(y)
return (2/n) * X.Ta (X w - vy)

"From Lecture 02, where we derived this.
2There's a good and a bad way to do this.

Attempt 1: Gradient Descent

You plug this into gradient_descent from last
lecture, run it, and...

Time: 8.6 seconds total
14 iterations
~ 0.6 seconds per iteration

Mean Squared Error: 9.4 x 1077,

Trivia: why is it faster?

Solving normal equations takes ©(nd? + d3) time.
O(nd?) time to compute X'X.
0(d?) time to solve the system.

Gradient descent takes ©(nd) time per iteration.
O(nd) time to compute Xw.
O(nd) time to compute X"(XW - y).

Looking Ahead
What if you had a larger data set?
Say, n = 10,000,000 examples, d = 5,000 features.

Encoded as 64 bit floats, X is 400 GB.
Doesn’t fit in your laptop’s memory!
Barely fits on your hard drive.

Approach 0: Normal Equations

You can try solving the normal equations:
np.linalg.solve(X.T @ X, X.T @ y)

One of three things will happen:
You will receive an out of memory error.
The process will be killed (or your 0S will freeze).
It will run, but take a very long time (paging).

Approach 1: Gradient Descent
We can't store the data in memory all at once.

But we can still compute the gradient, Z—;.

Read a little bit of data at once.
Or, distribute the computation to several machines.

Computing gradient involves a loop over data:

9R5) - 23 (aug(s) - s -) Aug(s)
dw n < !

Problem

dR) = 2 C y
el Ez Aug(x) - - y.) Aug(X()

In machine learning, the number of training
points n can be very large.

Computing the gradient can be expensive when

nis large.
So each step of gradient descent is expensive.

Idea
Don't worry about computing the exact gradient.

An approximation will do.

Ds<c /40A

Prbabfete Modfry ¢ Vachine darone),

Lecture 4 Part 3

Stochastic Gradient Descent

Gradient Descent for Minimizing Risk

In ML, we often want to minimize a risk function:

n

R() = - > (H(KD;), ;)

i=1

Observation

The gradient of the risk is the average of the
gradient of the losses:

The averaging is over all training points.

This can take a long time when n is large.?

3Trivia: this usually takes ©(nd) time.

Idea

The (full) gradient of the risk uses all of the
training data:

d ey 1 d poesin. o
d_|7VR(W) - Z —L(H(X";), y.)

Idea: instead of using all n training points,
randomly choose a smaller set, B:

d - 1 d (] -
—R(W) = — » —=LHED; W),y
AT PGS

ieB

Stochastic Gradient
The smaller set B is called a mini-batch.

We now compute a stochastic gradient:

J R = 157 3 JZHHE),)

“Stochastic,” because it is a random.

Stochastic Gradient

d - 1 d (] -
—R(W) = = > —=UHED; W)y,
dw () |B| s dw (RO W), ;)

The stochastic gradient is an approximation of
the full gradient.

When |B| « n, it is much faster to compute.

But the approximation is noisy.

Stochastic Gradient Descent for ERM
To minimize empirical risk R(W):

Pick starting weights w(?, learning rate n > 0, batch size m.

Until convergence, repeat:
Randomly sample a batch B of m training data points.
Compute stochastic gradient:

- 1 d =(f -
=— > —UHEFED; W),y
G- 1a7 2 MO
Update: " = @9 - ng

When converged, return w®.

Note

A new batch should be randomly sampled on
each iteration!

This way, the entire training set is used over time.

Size of batch should be small compared to n.
Think: m = 64, m =32, oreven m = 1.

Example: Least Squares

We can use SGD to perform least squares
regression.

Need to compute the gradient of the square loss:

0 (HGED W), y,) = (Aug(D) - W - y,)’

What is the gradient of the square loss of a linear
predictor? That is, what is 2 (Aug(X") - # - y,)'?

Example: Least Squares

The gradient of the square loss of a linear
predictor is:

d (7). »
ot (HE;),)
d (i 2
-2 (A (i) -
= (Aug(x®) - - y;)
- 2 (Aug(3) - i - y;) diw (Aug(xD) - i - ;)
= 2 (Aug(XD) - i - y;) Aug(X()

Example: Least Squares

Therefore, on each step we compute the
stochastic gradient:

2
m

> (Aug(xD)- i - y;) Aug(x)

ieB

g

The update rule is:

N = @0 - pg

Example: Least Squares

We can write in matrix-vector form, too:
Let X, be the design matrix using only the examples
in batch B.
Let y, be the corresponding vector of labels.

Then: N
g = EX;(XBW - yB)

Example: SGD

-
e
-0.5

°
-1.0

SGD

]
-15

[]
[]
10
8
6
4
2
0
2
—a

Example

Example: SGD

=15 -1.0 -0.5 0.0 0.5 1.0 15

Example: SGD

Example: SGD

Example: SGD

Example: SGD

Example: SGD

Example: SGD

Example: SGD

Example: SGD

Example: SGD

Example: SGD

Example: SGD

Example: SGD

=15 -1.0 -0.5 0.0 0.5 1.0 15

SGD

vs. GD

7

i-
v,

18
2§\\ o 2 a4

Tradeoffs

In each step of GD, move in the “best” direction.
But slowly!

In each step of SGD, move in a “good” direction.
But quickly!

SGD may take more steps to converge, but can be
faster overall.

Example

Suppose you're doing least squares regression
on a medium-to-large data set.

Say, n = 200,000 examples, d = 5,000 features.

Encoded as 64 bit floats, X is 8 GB.
Fits in your laptop’s memory, but barely.

Example: predict sentiment from text.

We saw...
Solving the normal equations took 30.7 seconds.

Gradient descent took 8.6 seconds.
14 iterations, = 0.6 seconds per iteration.

Stochastic gradient descent takes 3 seconds.
Batch size m = 16.
13,900 iterations, = 0.0002 seconds per iteration.

Aside: Terminology

Some people say “stochastic gradient descent”
only when batch size is 1.

They say “mini-batch gradient descent” for larger
batch sizes.

In this class: we’ll use “SGD” for any batch size,
as long as it's chosen randomly.

Aside: A Popular Variant
One variant of SGD uses epochs.

During each epoch, we:
Randomly shuffle the training data.
Divide the training data into n/m mini-batches.
Perform one step for each mini-batch.

Usefulness of SGD

SGD enables learning on massive data sets.
Billions of training examples, or more.

Useful even when exact solutions available.
E.g., least squares regression / classification.

History: ADALINE

Ds<C /40A

Prbatifiche Medihiy ¢ Wnchine arone),

Lecture 4 Part 4

Motivation: Minimizing Absolute Loss

Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
We've chosen linear predictors.

Step 2: choose a loss function

Step 3: find H minimizing empirical risk

Loss Functions

The absolute loss is a natural first choice for
regression.

The empirical risk becomes:

n
==) IHED)-y,]

i=1

abs
71 .
> 1w - Aug(x) - y,|

1=1

Si- 3|—\

Minimizing the Risk

n

- 1 - (]
R =~ > |- Aug(x") - ;|
i=1
We might try computing the gradient, setting to

zero, and solving.

But the risk is not differentiable.

Risk for the Absolute Loss

30000

28000
26000
4000

(womy

2000
2000t
18000|

000

500

// 5000
7. Y7500

100000

16000
5000 5500 6000 6500 7000 7500
wy

Gradient Descent?

Question: can we use gradient descent if the risk
is not differentiable?

Answer: yes, with a slight modification.

Ds<C /40A

P/’bbﬂb}ﬂ/sﬁ‘c MM&}? ¢ WMachine /éarmh?

Lecture 4 Part5s

Subgradient Descent

Differentiability

A function f(z) is differentiable if the derivative
exists at every point.

That is, it has a well-defined slope at every point.

Where is the derivative not defined?

-4z-7 ifz<-3
£(2) = -z+2 if -3<z<0
“105z+2 ifo<z<2
3z/2 ifz=2

Differentiability

A function f(2) is differentiable if the gradient
exists at every point.

In other words, all of the slopes are well-defined:
of [oz,, of [oz,, ...

Example

flz, 2

) < -5z, +2, ifz150
2 -2z, +2, ifz1>0

10.0

=25

What is the gradient at (-1, -1)? (1, -1)? (0, 1)?

_[-5z,+z, ifZ1 <0
f(z1tz) - [_221 +22 ifZ1 >0

Answer

d%,f(f) is defined everywhere
except along z, = 0.

Ifz, <0, f.(Z') =-52,+2,
gradient is (-5, 1)" here

Ifz, >0, f.(é') =.—2z1 +2,.
gradient is (-2, 1)" here

Answer

; .
d (-5,1), ifz, <0,
Toy-{21 itz >0
dz undefined, ifz, =0.

Problem

We can try running gradient
descent.

But what do we do if we reach
a point where the gradient is
not defined?

We need a replacement for
the gradient that tells us
where to go.

Idea

Slope is undefined at z, = -3.
To the left, slope is -4
To the right, slope is -1

-4z-7 ifz<-3]

-z+2 if-3<z<0 =
f@)=105242 ifosz<2

3z/2 ifz>2 2

Idea

Slope is undefined at z, = -3.
To the left, slope is -4
To the right, slope is -1

-4z-7 ifz<-3]

-z+2 if-3<z<0 =
f@)=105242 ifosz<2

3z/2 ifz>2 2

Idea

Slope is undefined at z, = -3.
To the left, slope is -4
To the right, slope is -1

-4z -7
-Z+2
0.5z+2
3z/2

f(2) =

ifz<-3]
if -3<z<0 =
if0<sz<2

ifz>2 N

f(2)

Idea

Slope is undefined at z, = -3.
To the left, slope is -4
To the right, slope is -1

-4z-7 ifz<-3]
-z+2 if-35z<0 =
0.5z+2 if0<z<2

3z/2 ifz>2]

Idea

Any number between -4 and -1 adequately
describes the behavior of fat z = -3.

10

-4z-7 ifz<-3 9

-z+2 if-3<z<0 =
f@)=1052+2 ifocz<2 N

3z/2 ifz=2 N

Idea

Any number between -4 and -1 is a subderivative
of fatz=-3.

10

-4z-7 ifz<-3 -

-z+2 if-3<z<0 =
f@)=105242 ifosz<2 N

3z/2 ifz=2 N

What are the valid subderivatives of f at z = 2?

10

-4z-7 ifz<-3 *
-Z+2 if -3<z<0
0.5z+2 if0<z<?2

3z/2 ifz=2 2

Subderivatives

Any valid subderivative defines a line that lies
below the function.

Subderivatives

Any valid subderivative defines a line that lies
below the function.

10

Subderivatives

Any valid subderivative defines a line that lies
below the function.

Subderivatives

The equation of this line is:

fs(z) = f(zo) + S(Z - zo)

Subderivatives

A number s is a subderivative of f at z, if:
f(z)2f(z) forallz

That is, if:
f(2) 2 f(z;) + s(z - z,)

Is 0 a valid subderivative of f at z = 2?

fiz)

Intuition

The subderivative tells us how the function
changes when the slope doesn’t exist.

We can sometimes use it in place of a derivative.

Subgradient

In higher dimensions, we have multiple slopes to
worry about.

We can use a subgradient to generalize the
concept of a subderivative.

Example

There’s no well-defined gradient at z, = (0, 0).
The slope in the z, direction is undefined

Between -5 and -2?
The slope in the z, direction is 1

[-52,+2, ifz, <0
f(z,2) = [—221 vz, ifz,>0

Example

We will call any vector (s,,) with-5<s, <-2a
subgradient at (0, 0).

f(z,2,) = [—521 +z, ifz; <0

-2z, + 2, ifz1 >0

Subgradient

A vector S defines a plane:
Example: (-5,1)"

Subgradient

A vector S defines a plane:
Example: (-2,1)"

Subgradient

A vector S defines a plane:
Example: (-3,1)"

Subgradient

A vector § is a valid subgradient at 2 if the

plane it defines lies at or below the function f.
Example: (-3, 1)"

Subgradient

The equation of the plane defined by § at Z© is:
f(2) = f(ZD)+3-(2-2)

Subgradients

3 is a subgradient of f(2) at 2 if:

f(2)2 f(2) forallZ

That is, if:

F(2)2 FZO) 3 (2 - 20)

Finding Subgradients

Here are two suggested ways to check that Sis a
valid subgradient.

1) Visualize it.

2) Check if the inequality holds.

Example

_[-5z,+2z, ifz;<0
f(z1,z)-[_221+zz ifz, >0

Is (-5,0)" a valid subgradient?

15
10

-5
-10
-15

Example

_[-5z,+2z, ifz; <0
f(z;,2,) = {—221 +z, ifz,>0

Is (-5,0)" a valid subgradient at the point (0,0)?

Is £(0,0) +(-5,0)" - ((z,,2,) - (0,0)") < f(z,,z,) forallz,z,?

1172

Tip

If the slope is defined in a direction, the
corresponding entry of the subgradient must be
that slope.

Intuition

A subgradient tells us where to go when the
gradient is undefined.

We can use it instead of the gradient in gradient
descent.

f(z,,2,) =

2
zi +z,|

A subgradient:

(22,1
8(z,,2,) =

(2z,,0)

,ifz,>0,
,ifz, <0,
,ifz,=0.

(221 ’ -1)T

Example

-04 -0.2 00 02 0.4
y

Example

Subgradient descent on f(z,,2,) = z2 + |z, |
Starting point: (1/2,1/2)"

Learning rate: n = 0.1.

44444

00000

Problem
Does not converge! Why?

If fis differentiable, gradient gets smaller as we

approach the minimum.
Naturally take smaller steps.

Not true if the function is not differentiable!
Steps may stay the same size (too large).

Fix
Decrease learning rate with each iteration.

That is, choose a decreasing learning rate
schedule n(t) > 0.

Theory: choose n(t) = c/\/t, where t is iteration #,
C is a positive constant.

44444

00000

Subgradient Descent
To minimize f(2):

Pick arbitrary starting point 7%, a decreasing learning rate
schedule n(t) > 0.

Until convergence, repeat: .
Compute a subgradient 3 of f at 2.
Update 2" = 20 _ n(t)3

When converged, return 2.

Next Time

When is (S)GD guaranteed to converge?

