

Lecture 4 | Part 1

Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
 We've chosen linear predictors.

- Step 2: choose a loss function
- Step 3: find *H* minimizing **empirical risk**

Minimizing Empirical Risk

We want to minimize the empirical risk:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \ell(\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w}, y_i)$$

For some choices of loss function, we can find a formula for the minimizer.

With the square loss, risk becomes:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$$

Setting gradient to zero, solving for \vec{w} gives:

$$\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$$

Gradient Descent

- But sometimes we **can't** solve for \vec{w} **directly**.
 - It's too costly.
 - There's no closed-form solution.
- Idea: use gradient descent to iteratively minimize risk.

Gradient Descent

Starting from an initial guess $\vec{w}^{(0)}$, iteratively update:

$$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \eta \frac{dR}{d\vec{w}}(\vec{w}^{(t)})$$

Today

We'll address two issues with gradient descent.

- 1. Can be **expensive** to compute the exact gradient.
 - Especially when we have a large data set.
 - Solution: stochastic gradient descent.
- 2. Doesn't work as-is if risk is **not differentiable**.
 - Such as with the absolute loss.
 - Solution: subgradient descent.

Lecture 4 | Part 2

Motivation: Large Scale Learning

Example

Suppose you're doing least squares regression on a medium-to-large data set.

► Say, *n* = 200,000 examples, *d* = 5,000 features.

- Encoded as 64 bit floats, X is 8 GB.
 Fits in your laptop's memory, but barely.
- **Example:** predict sentiment from text.

Attempt 0: Normal Equations

You start by solving the normal equations: np.linalg.solve(X.T @ X, X.T @ y)

▶ Time: 30.7 seconds.

• Mean Squared Error: 7.2×10^{-7} .

Can we speed this up?

Attempt 1: Gradient Descent

Recall¹ that the gradient of the MSE is:

$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} \left(\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \operatorname{Aug}(\vec{x}^{(i)})$$
$$= \frac{1}{n} \left(2X^T X \vec{w} - 2X^T \vec{y} \right)$$

You code up a function:²

¹From Lecture 02, where we derived this. ²There's a good and a bad way to do this.

Attempt 1: Gradient Descent

- You plug this into gradient_descent from last lecture, run it, and...
- ► Time: 8.6 seconds total
 - 14 iterations
 - ► ≈ 0.6 seconds per iteration
- Mean Squared Error: 9.4×10^{-7} .

Trivia: why is it faster?

- Solving normal equations takes $\Theta(nd^2 + d^3)$ time.
 - $\Theta(nd^2)$ time to compute $X^T X$.
 - $\Theta(d^3)$ time to solve the system.

Gradient descent takes Θ(*nd*) time per iteration.

- Θ(nd) time to compute Xw.
- $\Theta(nd)$ time to compute $X^{T}(X\vec{w} \vec{y})$.

Looking Ahead

What if you had a larger data set?

Say, n = 10,000,000 examples, d = 5,000 features.

Encoded as 64 bit floats, X is 400 GB.

- Doesn't fit in your laptop's memory!
- Barely fits on your hard drive.

Approach 0: Normal Equations

You can try solving the normal equations: np.linalg.solve(X.T @ X, X.T @ y)

One of three things will happen:

- 1. You will receive an **out of memory** error.
- 2. The process will be killed (or your OS will freeze).
- 3. It will run, but take a **very long time** (paging).

Approach 1: Gradient Descent

- We can't store the data in memory all at once.
- But we can **still** compute the **gradient**, $\frac{dR}{dw}$.
 - Read a little bit of data at once.
 - Or, distribute the computation to several machines.
- Computing gradient involves a loop over data:

$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} \left(\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \operatorname{Aug}(\vec{x}^{(i)})$$

Problem

$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} \left(\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \operatorname{Aug}(\vec{x}^{(i)})$$

- In machine learning, the number of training points n can be very large.
- Computing the gradient can be expensive when n is large.
 - So each step of gradient descent is **expensive**.

Idea

Don't worry about computing the exact gradient.

An **approximation** will do.

Lecture 4 | Part 3

Stochastic Gradient Descent

Gradient Descent for Minimizing Risk

In ML, we often want to minimize a risk function:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Observation

The gradient of the risk is the average of the gradient of the losses:

$$\frac{d}{d\vec{w}}R(\vec{w}) = \frac{1}{n}\sum_{i=1}^{n}\frac{d}{d\vec{w}}\ell(H(\vec{x}^{(i)};\vec{w}),y_i)$$

- The averaging is over all training points.
- This can take a long time when n is large.³

³Trivia: this usually takes $\Theta(nd)$ time.

Idea

The (full) gradient of the risk uses all of the training data:

$$\frac{d}{d\vec{w}}R(\vec{w}) = \frac{1}{n}\sum_{i=1}^{n}\frac{d}{d\vec{w}}\ell(H(\vec{x}^{(i)};\vec{w}),y_{i})$$

Idea: instead of using all n training points, randomly choose a smaller set, B:

$$\frac{d}{d\vec{w}}R(\vec{w})\approx\frac{1}{|B|}\sum_{i\in B}\frac{d}{d\vec{w}}\ell(H(\vec{x}^{(i)};\vec{w}),y_i)$$

Stochastic Gradient

- The smaller set B is called a mini-batch.
- We now compute a stochastic gradient:

$$\frac{d}{d\vec{w}}R(\vec{w}) \approx \frac{1}{|B|} \sum_{i \in B} \frac{d}{d\vec{w}} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

"Stochastic," because it is a random.

Stochastic Gradient

$$\frac{d}{d\vec{w}}R(\vec{w}) \approx \frac{1}{|B|} \sum_{i \in B} \frac{d}{d\vec{w}} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

- The stochastic gradient is an **approximation** of the full gradient.
- When $|B| \ll n$, it is **much faster** to compute.
- But the approximation is **noisy**.

Stochastic Gradient Descent for ERM

To minimize empirical risk $R(\vec{w})$:

- Pick starting weights $\vec{w}^{(0)}$, learning rate $\eta > 0$, batch size *m*.
- Until convergence, repeat:
 - Randomly sample a batch B of m training data points.
 - Compute stochastic gradient:

$$\vec{g} = \frac{1}{|B|} \sum_{i \in B} \frac{d}{d\vec{w}} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

• When converged, return $\vec{w}^{(t)}$.

Note

- A new batch should be randomly sampled on each iteration!
- This way, the entire training set is used over time.
- Size of batch should be small compared to n.
 Think: m = 64, m = 32, or even m = 1.

- We can use SGD to perform least squares regression.
- Need to compute the gradient of the square loss:

$$\ell_{sq}(H(\vec{x}^{(i)}; \vec{w}), y_i) = (Aug(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$$

Exercise

What is the gradient of the square loss of a linear predictor? That is, what is $\frac{d}{d\vec{w}} \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right)^2$?

The gradient of the square loss of a linear predictor is:

$$\begin{aligned} \frac{d}{d\vec{w}} \ell_{sq}(H(\vec{x}^{(i)};\vec{w}),y_i) \\ &= \frac{d}{d\vec{w}} \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right)^2 \\ &= 2 \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \frac{d}{d\vec{w}} \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \\ &= 2 \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \text{Aug}(\vec{x}^{(i)}) \end{aligned}$$

Therefore, on each step we compute the stochastic gradient:

$$\vec{g} = \frac{2}{m} \sum_{i \in B} \left(\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \operatorname{Aug}(\vec{x}^{(i)})$$

► The update rule is:

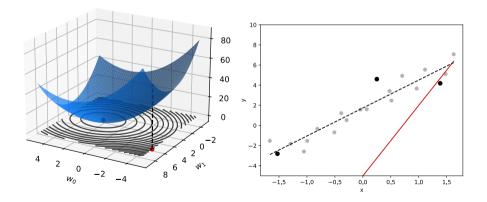
$$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \eta \vec{g}$$

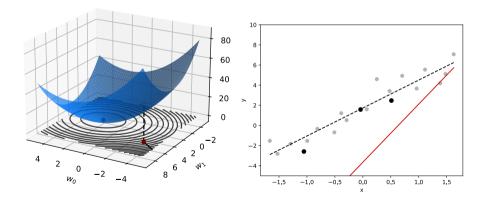
We can write in matrix-vector form, too:

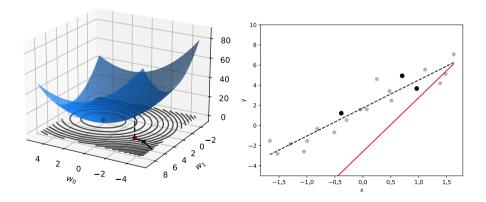
- Let X_B be the design matrix using only the examples in batch B.
- Let $y_{_{B}}$ be the corresponding vector of labels.

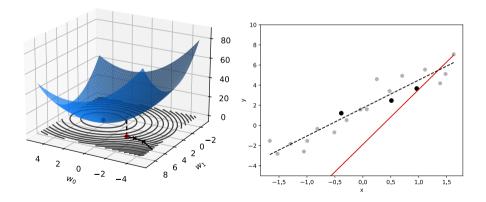
Then:

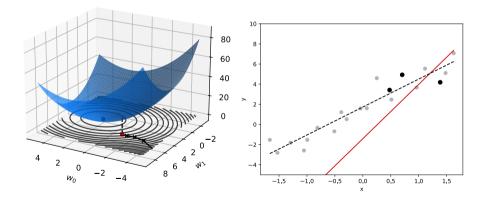
$$\vec{g} = \frac{2}{m} X_B^T (X_B \vec{w} - y_B)$$

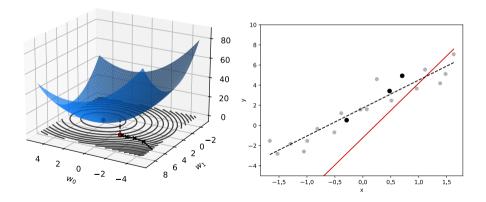


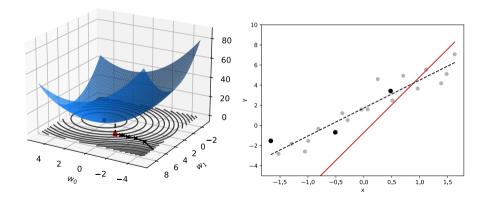


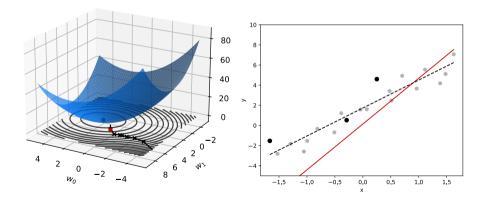


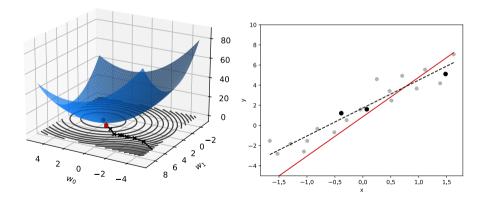


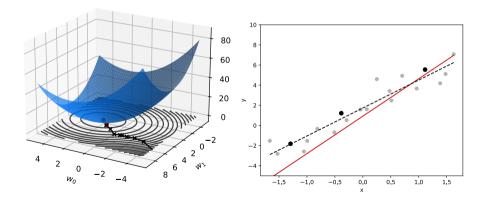


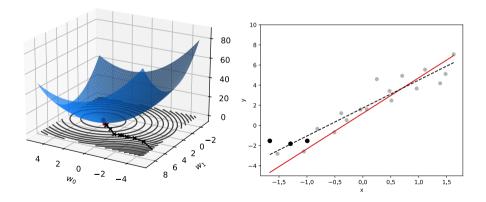


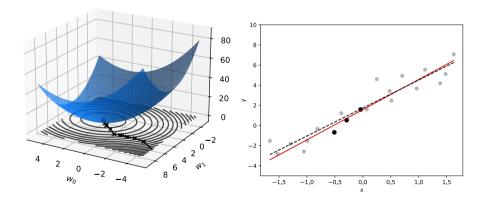


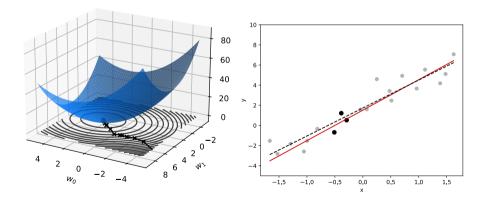


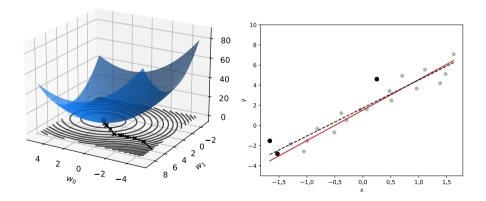


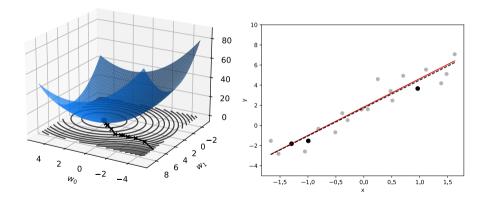




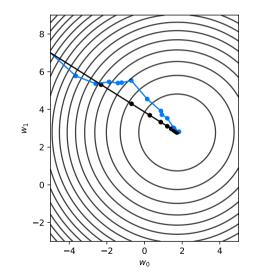








SGD vs. GD



Tradeoffs

In each step of GD, move in the "best" direction.
 But slowly!

In each step of SGD, move in a "good" direction.
 But quickly!

SGD may take more steps to converge, but can be faster overall.

Example

Suppose you're doing least squares regression on a medium-to-large data set.

► Say, *n* = 200,000 examples, *d* = 5,000 features.

- Encoded as 64 bit floats, X is 8 GB.
 Fits in your laptop's memory, but barely.
- **Example:** predict sentiment from text.

We saw...

- Solving the normal equations took 30.7 seconds.
- Gradient descent took 8.6 seconds.
 ▶ 14 iterations, ≈ 0.6 seconds per iteration.
- Stochastic gradient descent takes 3 seconds.
 Batch size m = 16.
 - ▶ 13,900 iterations, \approx 0.0002 seconds per iteration.

Aside: Terminology

- Some people say "stochastic gradient descent" only when batch size is 1.
- They say "mini-batch gradient descent" for larger batch sizes.
- In this class: we'll use "SGD" for any batch size, as long as it's chosen randomly.

Aside: A Popular Variant

One variant of SGD uses epochs.

During each epoch, we:

- Randomly shuffle the training data.
- Divide the training data into n/m mini-batches.
- Perform one step for each mini-batch.

Usefulness of SGD

- SGD enables learning on massive data sets.
 Billions of training examples, or more.
- Useful even when exact solutions available.
 E.g., least squares regression / classification.

History: ADALINE



Lecture 4 | Part 4

Motivation: Minimizing Absolute Loss

Empirical Risk Minimization (ERM)

Step 1: choose a hypothesis class
 We've chosen linear predictors.

- Step 2: choose a loss function
- Step 3: find *H* minimizing **empirical risk**

Loss Functions

- The absolute loss is a natural first choice for regression.
- The empirical risk becomes:

$$R_{abs}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} |H(\vec{x}^{(i)}) - y_i|$$

= $\frac{1}{n} \sum_{i=1}^{n} |\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) - y_i|$

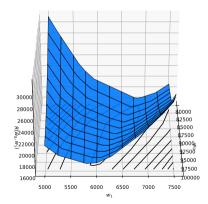
Minimizing the Risk

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} |\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) - y_i|$$

We might try computing the gradient, setting to zero, and solving.

But the risk is **not differentiable**.

Risk for the Absolute Loss



Gradient Descent?

- Question: can we use gradient descent if the risk is not differentiable?
- Answer: yes, with a slight modification.

Lecture 4 | Part 5

Subgradient Descent

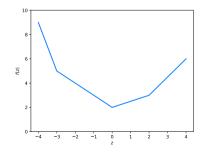
Differentiability

- A function f(z) is differentiable if the derivative exists at every point.
- That is, it has a well-defined slope at every point.

Exercise

Where is the derivative **not** defined?

$$f(z) = \begin{cases} -4z - 7 & \text{if } z < -3 \\ -z + 2 & \text{if } -3 \le z < 0 \\ 0.5z + 2 & \text{if } 0 \le z < 2 \\ 3z/2 & \text{if } z \ge 2 \end{cases}$$

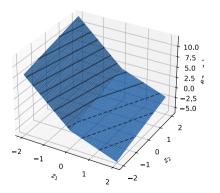


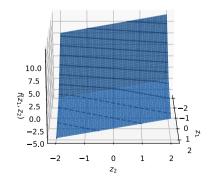
Differentiability

- A function f(z) is differentiable if the gradient exists at every point.
- In other words, all of the slopes are well-defined:
 ∂f/∂z₁, ∂f/∂z₂, ...

Example

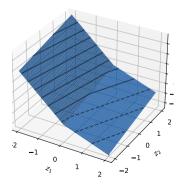
►
$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$





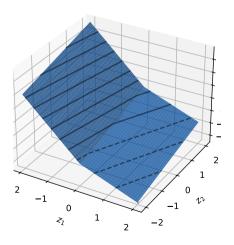
Exercise

$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$

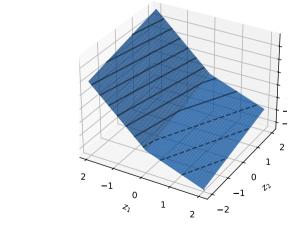


Answer

- ► $\frac{d}{d\vec{w}}f(\vec{z})$ is defined everywhere except along $z_1 = 0$.
- ▶ If $z_1 < 0$, $f(\vec{z}) = -5z_1 + z_2$. ▶ gradient is $(-5, 1)^T$ here
- ► If $z_1 > 0$, $f(\vec{z}) = -2z_1 + z_2$. ► gradient is $(-2, 1)^T$ here



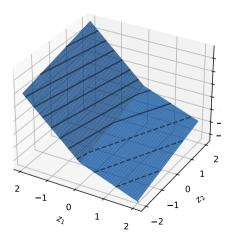
Answer



$$\frac{df}{d\vec{z}}(\vec{z}) = \begin{cases} (-5,1)^T, & \text{if } z_1 < 0, \\ (-2,1)^T, & \text{if } z_1 > 0, \\ \text{undefined}, & \text{if } z_1 = 0. \end{cases}$$

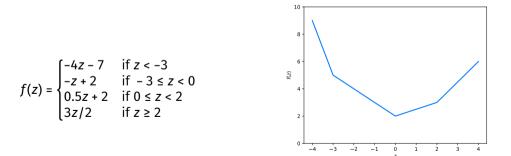
Problem

- We can try running gradient descent.
- But what do we do if we reach a point where the gradient is not defined?
- We need a replacement for the gradient that tells us where to go.



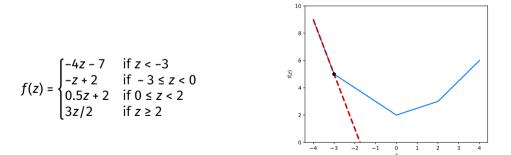
Idea

Slope is undefined at z₁ = −3.
 To the left, slope is -4
 To the right, slope is -1



Idea

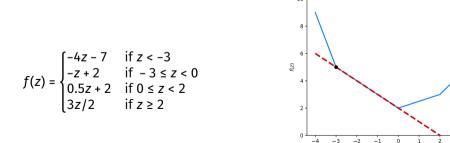
Slope is undefined at z₁ = −3.
 To the left, slope is -4
 To the right, slope is -1



Idea

Slope is undefined at $z_1 = -3$.

- ► To the left, slope is -4
- ▶ To the right, slope is -1



-4

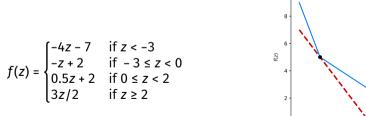
-1

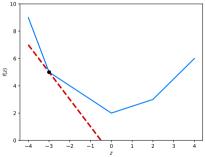
3

Idea

Slope is undefined at $z_1 = -3$.

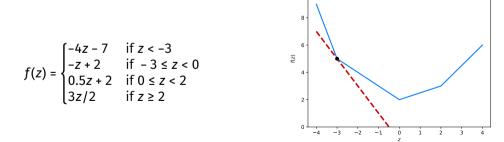
- ▶ To the left, slope is -4
- ▶ To the right, slope is -1





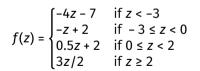
Idea

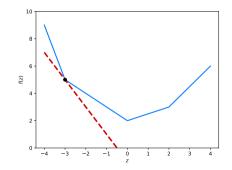
Any number between -4 and -1 adequately describes the behavior of f at z = -3.



Idea

Any number between -4 and -1 is a subderivative of f at z = -3.

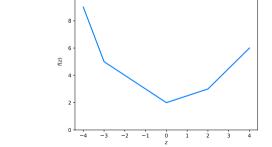




Exercise

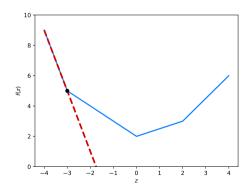
What are the valid subderivatives of
$$f$$
 at $z = 2$?

10

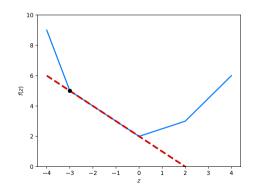


$$f(z) = \begin{cases} -4z - 7 & \text{if } z < -3 \\ -z + 2 & \text{if } -3 \le z < 0 \\ 0.5z + 2 & \text{if } 0 \le z < 2 \\ 3z/2 & \text{if } z \ge 2 \end{cases}$$

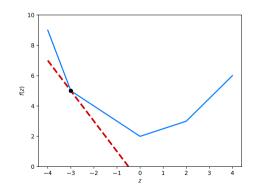
Any valid subderivative defines a line that lies below the function.



Any valid subderivative defines a line that lies below the function.

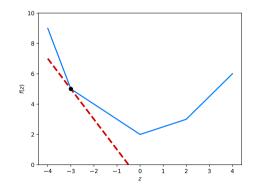


Any valid subderivative defines a line that lies below the function.



The equation of this line is:

$$f_{s}(z) = f(z_{0}) + s(z - z_{0})$$

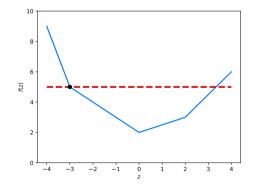


A number s is a subderivative of f at z_0 if: $f(z) \ge f_s(z)$ for all z

► That is, if: $f(z) \ge f(z_0) + s(z - z_0)$

Exercise

Is 0 a valid subderivative of f at z = 2?



Intuition

- The subderivative tells us how the function changes when the slope doesn't exist.
- We can sometimes use it in place of a derivative.

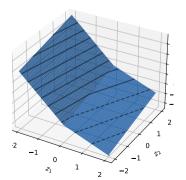
- In higher dimensions, we have multiple slopes to worry about.
- We can use a subgradient to generalize the concept of a subderivative.

Example

There's no well-defined gradient at $z_1 = (0, 0)$.

- The slope in the z₁ direction is undefined
 Between -5 and -2?
- The slope in the z_2 direction is 1

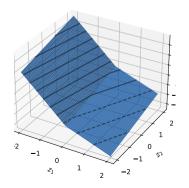
$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$



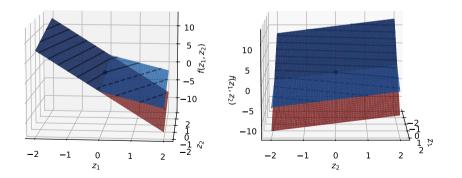
Example

▶ We will call any vector $(s_1, 1)$ with $-5 \le s_1 \le -2$ a subgradient at (0, 0).

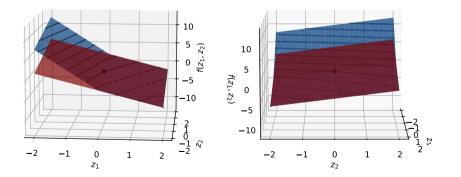
$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$



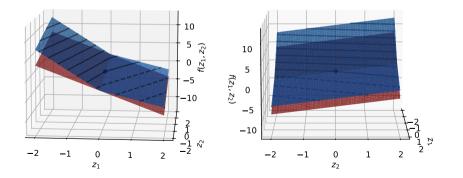
A vector s defines a plane: Example: (-5, 1)^T



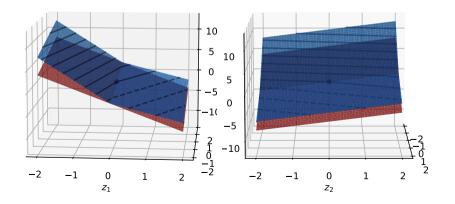
A vector s defines a plane: Example: (-2, 1)^T



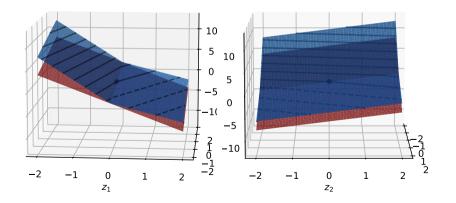
A vector s defines a plane: Example: (-3, 1)^T



A vector s is a valid subgradient at z⁽⁰⁾ if the plane it defines lies at or below the function f.
 Example: (-3, 1)^T



The equation of the plane defined by \vec{s} at $\vec{z}^{(0)}$ is: $f_s(\vec{z}) = f(\vec{z}^{(0)}) + \vec{s} \cdot (\vec{z} - \vec{z}^{(0)})$



► \vec{s} is a **subgradient** of $f(\vec{z})$ at $\vec{z}^{(0)}$ if: $f(\vec{z}) \ge f_s(\vec{z})$ for all \vec{z}

► That is, if:

$$f(\vec{z}) \geq f(\vec{z}^{(0)}) + \vec{s} \cdot (\vec{z} - \vec{z}^{(0)})$$

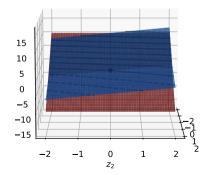
Finding Subgradients

- Here are two suggested ways to check that s is a valid subgradient.
- ▶ 1) Visualize it.
- > 2) Check if the inequality holds.

Example

$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$

► Is $(-5, 0)^T$ a valid subgradient?



Example

$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$

► Is $(-5, 0)^{T}$ a valid subgradient at the point (0,0)?

► Is
$$f(0,0) + (-5,0)^T \cdot ((z_1, z_2) - (0,0)^T) \le f(z_1, z_2)$$
 for all z_1, z_2 ?

Тір

If the slope is defined in a direction, the corresponding entry of the subgradient must be that slope.

Intuition

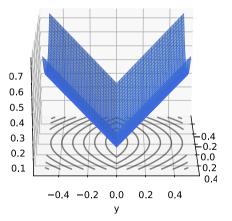
- A subgradient tells us where to go when the gradient is undefined.
- We can use it instead of the gradient in gradient descent.

Example

$$f(z_1, z_2) = z_1^2 + |z_2|$$

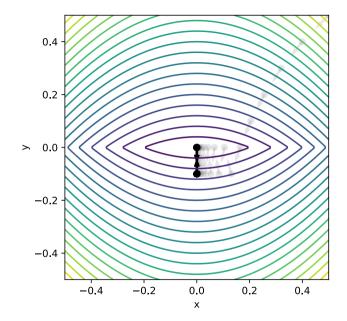
A subgradient:

$$\vec{s}(z_1, z_2) = \begin{cases} (2z_1, 1)^T & \text{, if } z_2 > 0, \\ (2z_1, -1)^T & \text{, if } z_2 < 0, \\ (2z_1, 0)^T & \text{, if } z_2 = 0. \end{cases}$$



Example

- Subgradient descent on $f(z_1, z_2) = z_1^2 + |z_2|$
- Starting point: $(1/2, 1/2)^T$
- Learning rate: $\eta = 0.1$.

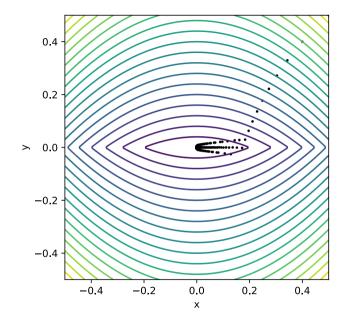


Problem

- Does not converge! Why?
- If f is differentiable, gradient gets smaller as we approach the minimum.
 - Naturally take smaller steps.
- Not true if the function is not differentiable!
 Steps may stay the same size (too large).

Fix

- Decrease learning rate with each iteration.
- That is, choose a decreasing learning rate schedule η(t) > 0.
- **Theory:** choose $\eta(t) = c/\sqrt{t}$, where *t* is iteration *#*, *c* is a positive constant.



Subgradient Descent

To minimize $f(\vec{z})$:

- Pick arbitrary starting point $\vec{z}^{(0)}$, a decreasing learning rate schedule $\eta(t) > 0$.
- Until convergence, repeat:
 Compute a subgradient s
 š of *f* at z
 i i Update z
 i i j i j i j j i j

• When converged, return $\vec{z}^{(t)}$.

Next Time

When is (S)GD guaranteed to converge?