

Lecture 4 | Part 1

## **Empirical Risk Minimization (ERM)**

Step 1: choose a hypothesis class
 We've chosen linear predictors.

- Step 2: choose a loss function
- Step 3: find *H* minimizing **empirical risk**

# **Minimizing Empirical Risk**

We want to minimize the empirical risk:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \ell(\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w}, y_i)$$

For some choices of loss function, we can find a formula for the minimizer.

With the square loss, risk becomes:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$$

Setting gradient to zero, solving for  $\vec{w}$  gives:

$$\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$$

## **Gradient Descent**

- But sometimes we **can't** solve for  $\vec{w}$  **directly**.
  - It's too costly.
  - There's no closed-form solution.
- Idea: use gradient descent to iteratively minimize risk.

## **Gradient Descent**

Starting from an initial guess  $\vec{w}^{(0)}$ , iteratively update:

$$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \eta \frac{dR}{d\vec{w}}(\vec{w}^{(t)})$$

# Today

We'll address two issues with gradient descent.

- 1. Can be **expensive** to compute the exact gradient.
  - Especially when we have a large data set.
  - Solution: stochastic gradient descent.
- 2. Doesn't work as-is if risk is **not differentiable**.
  - Such as with the absolute loss.
  - Solution: subgradient descent.



Lecture 4 | Part 2

Motivation: Large Scale Learning

## Example

Suppose you're doing least squares regression on a medium-to-large data set.

► Say, *n* = 200,000 examples, *d* = 5,000 features.

- Encoded as 64 bit floats, X is 8 GB.
  Fits in your laptop's memory, but barely.
- **Example:** predict sentiment from text.

## **Attempt 0: Normal Equations**

You start by solving the normal equations: np.linalg.solve(X.T @ X, X.T @ y)

▶ Time: 30.7 seconds.

• Mean Squared Error:  $7.2 \times 10^{-7}$ .

Can we speed this up?

## **Attempt 1: Gradient Descent**

Recall<sup>1</sup> that the gradient of the MSE is:

$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} \left( \operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \operatorname{Aug}(\vec{x}^{(i)})$$
$$= \frac{1}{n} \left( 2X^T X \vec{w} - 2X^T \vec{y} \right)$$

You code up a function:<sup>2</sup>

<sup>1</sup>From Lecture 02, where we derived this. <sup>2</sup>There's a good and a bad way to do this.

## **Attempt 1: Gradient Descent**

- You plug this into gradient\_descent from last lecture, run it, and...
- ► Time: 8.6 seconds total
  - 14 iterations
  - ► ≈ 0.6 seconds per iteration
- Mean Squared Error:  $9.4 \times 10^{-7}$ .

## Trivia: why is it faster?

- Solving normal equations takes  $\Theta(nd^2 + d^3)$  time.
  - $\Theta(nd^2)$  time to compute  $X^T X$ .
  - $\Theta(d^3)$  time to solve the system.

#### **Gradient descent** takes Θ(*nd*) time per iteration.

- Θ(nd) time to compute Xw.
- $\Theta(nd)$  time to compute  $X^{T}(X\vec{w} \vec{y})$ .

## **Looking Ahead**

What if you had a larger data set?

Say, n = 10,000,000 examples, d = 5,000 features.

Encoded as 64 bit floats, X is 400 GB.

- Doesn't fit in your laptop's memory!
- Barely fits on your hard drive.

## **Approach 0: Normal Equations**

You can try solving the normal equations: np.linalg.solve(X.T @ X, X.T @ y)

One of three things will happen:

- 1. You will receive an **out of memory** error.
- 2. The process will be killed (or your OS will freeze).
- 3. It will run, but take a **very long time** (paging).

## **Approach 1: Gradient Descent**

- We can't store the data in memory all at once.
- But we can **still** compute the **gradient**,  $\frac{dR}{dw}$ .
  - Read a little bit of data at once.
  - Or, distribute the computation to several machines.
- Computing gradient involves a loop over data:

$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} \left( \operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \operatorname{Aug}(\vec{x}^{(i)})$$

#### Problem

$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} \left( \operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \operatorname{Aug}(\vec{x}^{(i)})$$

- In machine learning, the number of training points n can be very large.
- Computing the gradient can be expensive when n is large.
  - So each step of gradient descent is **expensive**.

### Idea

Don't worry about computing the exact gradient.

An **approximation** will do.



Lecture 4 | Part 3

**Stochastic Gradient Descent** 

## **Gradient Descent for Minimizing Risk**

In ML, we often want to minimize a risk function:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

## Observation

The gradient of the risk is the average of the gradient of the losses:

$$\frac{d}{d\vec{w}}R(\vec{w}) = \frac{1}{n}\sum_{i=1}^{n}\frac{d}{d\vec{w}}\ell(H(\vec{x}^{(i)};\vec{w}),y_i)$$

- The averaging is over all training points.
- This can take a long time when n is large.<sup>3</sup>

<sup>&</sup>lt;sup>3</sup>Trivia: this usually takes  $\Theta(nd)$  time.

#### Idea

The (full) gradient of the risk uses all of the training data:

$$\frac{d}{d\vec{w}}R(\vec{w}) = \frac{1}{n}\sum_{i=1}^{n}\frac{d}{d\vec{w}}\ell(H(\vec{x}^{(i)};\vec{w}),y_{i})$$

Idea: instead of using all n training points, randomly choose a smaller set, B:

$$\frac{d}{d\vec{w}}R(\vec{w})\approx\frac{1}{|B|}\sum_{i\in B}\frac{d}{d\vec{w}}\ell(H(\vec{x}^{(i)};\vec{w}),y_i)$$

#### **Stochastic Gradient**

- The smaller set B is called a mini-batch.
- We now compute a stochastic gradient:

$$\frac{d}{d\vec{w}}R(\vec{w}) \approx \frac{1}{|B|} \sum_{i \in B} \frac{d}{d\vec{w}} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

"Stochastic," because it is a random.

### **Stochastic Gradient**

$$\frac{d}{d\vec{w}}R(\vec{w}) \approx \frac{1}{|B|} \sum_{i \in B} \frac{d}{d\vec{w}} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

- The stochastic gradient is an **approximation** of the full gradient.
- When  $|B| \ll n$ , it is **much faster** to compute.
- But the approximation is **noisy**.

## **Stochastic Gradient Descent for ERM**

#### To minimize empirical risk $R(\vec{w})$ :

- Pick starting weights  $\vec{w}^{(0)}$ , learning rate  $\eta > 0$ , batch size *m*.
- Until convergence, repeat:
  - Randomly sample a batch B of m training data points.
  - Compute stochastic gradient:

$$\vec{g} = \frac{1}{|B|} \sum_{i \in B} \frac{d}{d\vec{w}} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

• When converged, return  $\vec{w}^{(t)}$ .

#### Note

- A new batch should be randomly sampled on each iteration!
- This way, the entire training set is used over time.
- Size of batch should be small compared to n.
  Think: m = 64, m = 32, or even m = 1.

- We can use SGD to perform least squares regression.
- Need to compute the gradient of the square loss:

$$\ell_{sq}(H(\vec{x}^{(i)}; \vec{w}), y_i) = (Aug(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$$

#### Exercise

What is the gradient of the square loss of a linear predictor? That is, what is  $\frac{d}{d\vec{w}} \left( \text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right)^2$ ?

The gradient of the square loss of a linear predictor is:

$$\begin{aligned} \frac{d}{d\vec{w}} \ell_{sq}(H(\vec{x}^{(i)};\vec{w}),y_i) \\ &= \frac{d}{d\vec{w}} \left( \text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right)^2 \\ &= 2 \left( \text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \frac{d}{d\vec{w}} \left( \text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \\ &= 2 \left( \text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \text{Aug}(\vec{x}^{(i)}) \end{aligned}$$

Therefore, on each step we compute the stochastic gradient:

$$\vec{g} = \frac{2}{m} \sum_{i \in B} \left( \operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \operatorname{Aug}(\vec{x}^{(i)})$$

► The update rule is:

$$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \eta \vec{g}$$

#### We can write in matrix-vector form, too:

- Let X<sub>B</sub> be the design matrix using only the examples in batch B.
- Let  $y_{_{B}}$  be the corresponding vector of labels.

Then:

$$\vec{g} = \frac{2}{m} X_B^T (X_B \vec{w} - y_B)$$































#### SGD vs. GD



### Tradeoffs

In each step of GD, move in the "best" direction.
 But slowly!

In each step of SGD, move in a "good" direction.
 But quickly!

SGD may take more steps to converge, but can be faster overall.

# Example

Suppose you're doing least squares regression on a medium-to-large data set.

► Say, *n* = 200,000 examples, *d* = 5,000 features.

- Encoded as 64 bit floats, X is 8 GB.
  Fits in your laptop's memory, but barely.
- **Example:** predict sentiment from text.

#### We saw...

- Solving the normal equations took 30.7 seconds.
- Gradient descent took 8.6 seconds.
  ▶ 14 iterations, ≈ 0.6 seconds per iteration.
- Stochastic gradient descent takes 3 seconds.
  Batch size m = 16.
  - ▶ 13,900 iterations,  $\approx$  0.0002 seconds per iteration.

# Aside: Terminology

- Some people say "stochastic gradient descent" only when batch size is 1.
- They say "mini-batch gradient descent" for larger batch sizes.
- In this class: we'll use "SGD" for any batch size, as long as it's chosen randomly.

# **Aside: A Popular Variant**

One variant of SGD uses epochs.

#### During each epoch, we:

- Randomly shuffle the training data.
- Divide the training data into n/m mini-batches.
- Perform one step for each mini-batch.

# **Usefulness of SGD**

- SGD enables learning on massive data sets.
  Billions of training examples, or more.
- Useful even when exact solutions available.
  E.g., least squares regression / classification.

# **History: ADALINE**





Lecture 4 | Part 4

**Motivation: Minimizing Absolute Loss** 

# **Empirical Risk Minimization (ERM)**

Step 1: choose a hypothesis class
 We've chosen linear predictors.

- Step 2: choose a loss function
- Step 3: find *H* minimizing **empirical risk**

### **Loss Functions**

- The absolute loss is a natural first choice for regression.
- The empirical risk becomes:

$$R_{abs}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} |H(\vec{x}^{(i)}) - y_i|$$
  
=  $\frac{1}{n} \sum_{i=1}^{n} |\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) - y_i|$ 

# Minimizing the Risk

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} |\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) - y_i|$$

We might try computing the gradient, setting to zero, and solving.

But the risk is **not differentiable**.

#### **Risk for the Absolute Loss**



# **Gradient Descent?**

- Question: can we use gradient descent if the risk is not differentiable?
- Answer: yes, with a slight modification.



Lecture 4 | Part 5

**Subgradient Descent** 

# Differentiability

- A function f(z) is differentiable if the derivative exists at every point.
- That is, it has a well-defined slope at every point.

#### Exercise

Where is the derivative **not** defined?

$$f(z) = \begin{cases} -4z - 7 & \text{if } z < -3 \\ -z + 2 & \text{if } -3 \le z < 0 \\ 0.5z + 2 & \text{if } 0 \le z < 2 \\ 3z/2 & \text{if } z \ge 2 \end{cases}$$



# Differentiability

- A function f(z) is differentiable if the gradient exists at every point.
- In other words, all of the slopes are well-defined:
  ∂f/∂z₁, ∂f/∂z₂, ...

# Example

► 
$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$





#### Exercise

$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$



#### Answer

- ►  $\frac{d}{d\vec{w}}f(\vec{z})$  is defined everywhere except along  $z_1 = 0$ .
- ▶ If  $z_1 < 0$ ,  $f(\vec{z}) = -5z_1 + z_2$ . ▶ gradient is  $(-5, 1)^T$  here
- ► If  $z_1 > 0$ ,  $f(\vec{z}) = -2z_1 + z_2$ . ► gradient is  $(-2, 1)^T$  here



#### Answer



$$\frac{df}{d\vec{z}}(\vec{z}) = \begin{cases} (-5,1)^T, & \text{if } z_1 < 0, \\ (-2,1)^T, & \text{if } z_1 > 0, \\ \text{undefined}, & \text{if } z_1 = 0. \end{cases}$$

# Problem

- We can try running gradient descent.
- But what do we do if we reach a point where the gradient is not defined?
- We need a replacement for the gradient that tells us where to go.



# Idea

Slope is undefined at z<sub>1</sub> = −3.
 To the left, slope is -4
 To the right, slope is -1



# Idea

Slope is undefined at z<sub>1</sub> = −3.
 To the left, slope is -4
 To the right, slope is -1



# Idea

Slope is undefined at  $z_1 = -3$ .

- ► To the left, slope is -4
- ▶ To the right, slope is -1



-4

-1

3

### Idea

Slope is undefined at  $z_1 = -3$ .

- ▶ To the left, slope is -4
- ▶ To the right, slope is -1





### Idea

Any number between -4 and -1 adequately describes the behavior of f at z = -3.



### Idea

Any number between -4 and -1 is a subderivative of f at z = -3.





### Exercise

What are the valid subderivatives of 
$$f$$
 at  $z = 2$ ?

10



$$f(z) = \begin{cases} -4z - 7 & \text{if } z < -3 \\ -z + 2 & \text{if } -3 \le z < 0 \\ 0.5z + 2 & \text{if } 0 \le z < 2 \\ 3z/2 & \text{if } z \ge 2 \end{cases}$$

Any valid subderivative defines a line that lies below the function.



Any valid subderivative defines a line that lies below the function.



Any valid subderivative defines a line that lies below the function.



The equation of this line is:

$$f_{s}(z) = f(z_{0}) + s(z - z_{0})$$



A number s is a subderivative of f at  $z_0$  if:  $f(z) \ge f_s(z)$  for all z

► That is, if:  $f(z) \ge f(z_0) + s(z - z_0)$ 

#### Exercise

Is 0 a valid subderivative of f at z = 2?



# Intuition

- The subderivative tells us how the function changes when the slope doesn't exist.
- We can sometimes use it in place of a derivative.

- In higher dimensions, we have multiple slopes to worry about.
- We can use a subgradient to generalize the concept of a subderivative.

## Example

### There's no well-defined gradient at $z_1 = (0, 0)$ .

- The slope in the z<sub>1</sub> direction is undefined
  Between -5 and -2?
- The slope in the  $z_2$  direction is 1

$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$



### Example

▶ We will call any vector  $(s_1, 1)$  with  $-5 \le s_1 \le -2$  a subgradient at (0, 0).

$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$



# A vector s defines a plane: Example: (-5, 1)<sup>T</sup>



# A vector s defines a plane: Example: (-2, 1)<sup>T</sup>



# A vector s defines a plane: Example: (-3, 1)<sup>T</sup>



A vector s is a valid subgradient at z<sup>(0)</sup> if the plane it defines lies at or below the function f.
 Example: (-3, 1)<sup>T</sup>



The equation of the plane defined by  $\vec{s}$  at  $\vec{z}^{(0)}$  is:  $f_s(\vec{z}) = f(\vec{z}^{(0)}) + \vec{s} \cdot (\vec{z} - \vec{z}^{(0)})$ 



►  $\vec{s}$  is a **subgradient** of  $f(\vec{z})$  at  $\vec{z}^{(0)}$  if:  $f(\vec{z}) \ge f_s(\vec{z})$  for all  $\vec{z}$ 

► That is, if:

$$f(\vec{z}) \geq f(\vec{z}^{(0)}) + \vec{s} \cdot (\vec{z} - \vec{z}^{(0)})$$

# **Finding Subgradients**

- Here are two suggested ways to check that s is a valid subgradient.
- ▶ 1) Visualize it.
- > 2) Check if the inequality holds.

### Example

$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$

### ► Is $(-5, 0)^T$ a valid subgradient?



### Example

$$f(z_1, z_2) = \begin{cases} -5z_1 + z_2 & \text{if } z_1 \le 0\\ -2z_1 + z_2 & \text{if } z_1 > 0 \end{cases}$$

► Is  $(-5, 0)^{T}$  a valid subgradient at the point (0,0)?

► Is 
$$f(0,0) + (-5,0)^T \cdot ((z_1, z_2) - (0,0)^T) \le f(z_1, z_2)$$
 for all  $z_1, z_2$ ?

# Тір

If the slope is defined in a direction, the corresponding entry of the subgradient must be that slope.

# Intuition

- A subgradient tells us where to go when the gradient is undefined.
- We can use it instead of the gradient in gradient descent.

## Example

$$f(z_1, z_2) = z_1^2 + |z_2|$$

A subgradient:

$$\vec{s}(z_1, z_2) = \begin{cases} (2z_1, 1)^T & \text{, if } z_2 > 0, \\ (2z_1, -1)^T & \text{, if } z_2 < 0, \\ (2z_1, 0)^T & \text{, if } z_2 = 0. \end{cases}$$



# Example

- Subgradient descent on  $f(z_1, z_2) = z_1^2 + |z_2|$
- Starting point:  $(1/2, 1/2)^T$
- Learning rate:  $\eta = 0.1$ .



### Problem

- Does not converge! Why?
- If f is differentiable, gradient gets smaller as we approach the minimum.
  - Naturally take smaller steps.
- Not true if the function is not differentiable!
  Steps may stay the same size (too large).

## Fix

- Decrease learning rate with each iteration.
- That is, choose a decreasing learning rate schedule η(t) > 0.
- **Theory:** choose  $\eta(t) = c/\sqrt{t}$ , where *t* is iteration *#*, *c* is a positive constant.



### **Subgradient Descent**

#### To minimize $f(\vec{z})$ :

- Pick arbitrary starting point  $\vec{z}^{(0)}$ , a decreasing learning rate schedule  $\eta(t) > 0$ .
- Until convergence, repeat:
  Compute a subgradient s
   *š* of *f* at z
   *i i* Update z
   *i i j i j i j j i j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j*

• When converged, return  $\vec{z}^{(t)}$ .

# **Next Time**

When is (S)GD guaranteed to converge?