$$
\text { DSC } 140 A
$$

## Empirical Risk Minimization (ERM)

- Step 1: choose a hypothesis class
- We've chosen linear predictors.
- Step 2: choose a loss function
> Step 3: find $H$ minimizing empirical risk


## Minimizing Empirical Risk

- We want to minimize the empirical risk:

$$
\begin{aligned}
R(\vec{w}) & =\frac{1}{n} \sum_{i=1}^{n} \ell\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \ell\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}, y_{i}\right)
\end{aligned}
$$

- For some choices of loss function, we can find a formula for the minimizer.


## Example: Least Squares

- With the square loss, risk becomes:

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2}
$$

- Setting gradient to zero, solving for $\vec{W}$ gives:

$$
\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}
$$

## Gradient Descent

- But sometimes we can't solve for $\vec{w}$ directly.
- It's too costly.
- There's no closed-form solution.
- Idea: use gradient descent to iteratively minimize risk.


## Gradient Descent

- Starting from an initial guess $\vec{w}^{(0)}$, iteratively update:

$$
\vec{w}^{(t+1)}=\vec{w}^{(t)}-\eta \frac{d R}{d \vec{w}}\left(\vec{w}^{(t)}\right)
$$

## Today

We'll address two issues with gradient descent.

1. Can be expensive to compute the exact gradient.

- Especially when we have a large data set.
> Solution: stochastic gradient descent.

2. Doesn't work as-is if risk is not differentiable.

- Such as with the absolute loss.
- Solution: subgradient descent.

Probatilistic Modeling $\&$ Machine Learning
Lecture 4 Part 2
Motivation: Large Scale Learning

## Example

- Suppose you're doing least squares regression on a medium-to-large data set.
- Say, $n=200,000$ examples, $d=5,000$ features.
- Encoded as 64 bit floats, $X$ is 8 GB.
$\Rightarrow$ Fits in your laptop's memory, but barely.
- Example: predict sentiment from text.


## Attempt 0: Normal Equations

- You start by solving the normal equations:
np.linalg.solve(X.T a X, X.T a y)
- Time: 30.7 seconds.
- Mean Squared Error: $7.2 \times 10^{-7}$.
- Can we speed this up?


## Attempt 1: Gradient Descent

$\Rightarrow$ Recall $^{1}$ that the gradient of the MSE is:

$$
\begin{aligned}
\frac{d R}{d \vec{w}}(\vec{w}) & =\frac{2}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \operatorname{Aug}\left(\vec{x}^{(i)}\right) \\
& =\frac{1}{n}\left(2 X^{\top} X \vec{w}-2 X^{\top} \vec{y}\right)
\end{aligned}
$$

- You code up a function: ${ }^{2}$

```
def gradient(w):
    n = len(y)
    return (2/n) * X.T จ (X จ w - y)
```

${ }^{1}$ From Lecture 02, where we derived this.
${ }^{2}$ There's a good and a bad way to do this.

## Attempt 1: Gradient Descent

- You plug this into gradient_descent from last lecture, run it, and...
- Time: 8.6 seconds total
- 14 iterations
$>\approx 0.6$ seconds per iteration
- Mean Squared Error: $9.4 \times 10^{-7}$.


## Trivia: why is it faster?

- Solving normal equations takes $\Theta\left(n d^{2}+d^{3}\right)$ time.
$\Rightarrow \Theta\left(n d^{2}\right)$ time to compute $X^{\top} X$.
$\Rightarrow \Theta\left(d^{3}\right)$ time to solve the system.
- Gradient descent takes $\Theta$ (nd) time per iteration.
$\Rightarrow \Theta(n d)$ time to compute $X \vec{w}$.
$-\Theta(n d)$ time to compute $X^{\top}(X \vec{w}-\vec{y})$.


## Looking Ahead

- What if you had a larger data set?
- Say, $n=10,000,000$ examples, $d=5,000$ features.
- Encoded as 64 bit floats, $X$ is 400 GB.
- Doesn't fit in your laptop's memory!
- Barely fits on your hard drive.


## Approach 0: Normal Equations

- You can try solving the normal equations:
np.linalg.solve(X.T a X, X.T a y)
- One of three things will happen:

1. You will receive an out of memory error.
2. The process will be killed (or your OS will freeze).
3. It will run, but take a very long time (paging).

## Approach 1: Gradient Descent

- We can't store the data in memory all at once.
- But we can still compute the gradient, $\frac{d R}{d \vec{w}}$.
- Read a little bit of data at once.
- Or, distribute the computation to several machines.
- Computing gradient involves a loop over data:

$$
\frac{d R}{d \vec{w}}(\vec{w})=\frac{2}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \operatorname{Aug}\left(\vec{x}^{(i)}\right)
$$

## Problem

$$
\frac{d R}{d \vec{w}}(\vec{w})=\frac{2}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \operatorname{Aug}\left(\vec{x}^{(i)}\right)
$$

- In machine learning, the number of training points $n$ can be very large.
- Computing the gradient can be expensive when $n$ is large.
- So each step of gradient descent is expensive.


## Idea

- Don't worry about computing the exact gradient.
- An approximation will do.

$$
\text { DSC } 140 A
$$

## Gradient Descent for Minimizing Risk

- In ML, we often want to minimize a risk function:

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \ell\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

## Observation

- The gradient of the risk is the average of the gradient of the losses:

$$
\frac{d}{d \vec{w}} R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d \vec{w}} \ell\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- The averaging is over all training points.
- This can take a long time when $n$ is large. ${ }^{3}$
${ }^{3}$ Trivia: this usually takes $\Theta(n d)$ time.


## Idea

- The (full) gradient of the risk uses all of the training data:

$$
\frac{d}{d \vec{w}} R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d \vec{w}} \ell\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- Idea: instead of using all $n$ training points, randomly choose a smaller set, $B$ :

$$
\frac{d}{d \vec{w}} R(\vec{w}) \approx \frac{1}{|B|} \sum_{i \in B} \frac{d}{d \vec{w}} P\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

## Stochastic Gradient

- The smaller set $B$ is called a mini-batch.
- We now compute a stochastic gradient:

$$
\frac{d}{d \vec{w}} R(\vec{w}) \approx \frac{1}{|B|} \sum_{i \in B} \frac{d}{d \vec{w}} P\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- "Stochastic," because it is a random.


## Stochastic Gradient

$$
\frac{d}{d \vec{w}} R(\vec{w}) \approx \frac{1}{|B|} \sum_{i \in B} \frac{d}{d \vec{w}} l\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- The stochastic gradient is an approximation of the full gradient.
$>$ When $|B| \ll n$, it is much faster to compute.
$\downarrow$ But the approximation is noisy.


## Stochastic Gradient Descent for ERM

To minimize empirical risk $R(\vec{w})$ :

- Pick starting weights $\vec{w}^{(0)}$, learning rate $\eta>0$, batch size $m$.
- Until convergence, repeat:
- Randomly sample a batch $B$ of $m$ training data points.
- Compute stochastic gradient:

$$
\vec{g}=\frac{1}{|B|} \sum_{i \in B} \frac{d}{d \vec{w}} l\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- Update: $\vec{w}^{(t+1)}=\vec{w}^{(t)}-\eta \vec{g}$
- When converged, return $\vec{w}^{(t)}$.


## Note

- A new batch should be randomly sampled on each iteration!
- This way, the entire training set is used over time.
- Size of batch should be small compared to $n$.
> Think: $m=64, m=32$, or even $m=1$.


## Example: Least Squares

- We can use SGD to perform least squares regression.
- Need to compute the gradient of the square loss:

$$
\ell_{\mathrm{sq}}\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)=\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2}
$$

Exercise
What is the gradient of the square loss of a linear predictor? That is, what is $\frac{d}{d \vec{w}}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2}$ ?

$$
\begin{aligned}
\frac{d}{d w}(x w-y)^{2} & =2(x w-y) \times \frac{d}{d w}(x w-y) \\
& =2(x w-y) \times
\end{aligned}
$$

## Example: Least Squares

- The gradient of the square loss of a linear predictor is:

$$
\begin{aligned}
& \frac{d}{d \vec{w}} l_{\text {sq }}\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right) \\
& \quad=\frac{d}{d \vec{w}}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2} \\
& \quad=2\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \frac{d}{d \vec{w}}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \\
& \quad=2\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \operatorname{Aug}\left(\vec{x}^{(i)}\right)
\end{aligned}
$$

## Example: Least Squares

- Therefore, on each step we compute the stochastic gradient:

$$
\vec{g}=\frac{2}{m} \sum_{i \in B}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \operatorname{Aug}\left(\vec{x}^{(i)}\right)
$$

- The update rule is:

$$
\vec{w}^{(t+1)}=\vec{w}^{(t)}-\eta \vec{g}
$$

## Example: Least Squares

- We can write in matrix-vector form, too:
$\Rightarrow$ Let $X_{B}$ be the design matrix using only the examples in batch $B$.
$\Rightarrow$ Let $y_{B}$ be the corresponding vector of labels.
> Then:

$$
\vec{g}=\frac{2}{m} X_{B}^{\top}\left(X_{B} \vec{w}-y_{B}\right)
$$

## Example: SGD




## SGD vs. GD



## Tradeoffs

- In each step of GD, move in the "best" direction. > But slowly!
- In each step of SGD, move in a "good" direction. > But quickly!
- SGD may take more steps to converge, but can be faster overall.


## Example

- Suppose you're doing least squares regression on a medium-to-large data set.
- Say, $n=200,000$ examples, $d=5,000$ features.
- Encoded as 64 bit floats, $X$ is 8 GB.
$\Rightarrow$ Fits in your laptop's memory, but barely.
- Example: predict sentiment from text.


## We saw...

- Solving the normal equations took 30.7 seconds.
- Gradient descent took 8.6 seconds.
$\Rightarrow 14$ iterations, $\approx 0.6$ seconds per iteration.
- Stochastic gradient descent takes 3 seconds.
- Batch size $m=16$.
> 13,900 iterations, $\approx 0.0002$ seconds per iteration.


## Aside: Terminology

- Some people say "stochastic gradient descent" only when batch size is 1 .
- They say "mini-batch gradient descent" for larger batch sizes.
- In this class: we'll use "SGD" for any batch size, as long as it's chosen randomly.


## Aside: A Popular Variant

- One variant of SGD uses epochs.
- During each epoch, we:
- Randomly shuffle the training data.
- Divide the training data into $n / m$ mini-batches.
- Perform one step for each mini-batch.


## Usefulness of SGD

- SGD enables learning on massive data sets.
- Billions of training examples, or more.
- Useful even when exact solutions available.
- E.g., least squares regression / classification.


## History: ADALINE



140A
Probabilistic Modeling $\&$ Machine Learning
Lecture 4 Part 4
Motivation: Minimizing Absolute Loss

## Empirical Risk Minimization (ERM)

- Step 1: choose a hypothesis class
- We've chosen linear predictors.
- Step 2: choose a loss function
> Step 3: find $H$ minimizing empirical risk


## Loss Functions

- The absolute loss is a natural first choice for regression.
- The empirical risk becomes:

$$
\begin{aligned}
R_{\mathrm{abs}}(\vec{w}) & =\frac{1}{n} \sum_{i=1}^{n}\left|H\left(\vec{x}^{(i)}\right)-y_{i}\right| \\
& =\frac{1}{n} \sum_{i=1}^{n}\left|\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)-y_{i}\right|
\end{aligned}
$$

## Minimizing the Risk

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n}\left|\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)-y_{i}\right|
$$

- We might try computing the gradient, setting to zero, and solving.
- But the risk is not differentiable.


## Risk for the Absolute Loss



## Gradient Descent?

- Question: can we use gradient descent if the risk is not differentiable?
- Answer: yes, with a slight modification.

$$
\text { DSC } 140 A
$$

## Differentiability

- A function $f(z)$ is differentiable if the derivative exists at every point.
- That is, it has a well-defined slope at every point.


## Exercise

Where is the derivative not defined?

$$
f(z)= \begin{cases}-4 z-7 & \text { if } z<-3 \\ -z+2 & \text { if }-3 \leq z<0 \\ 0.5 z+2 & \text { if } 0 \leq z<2 \\ 3 z / 2 & \text { if } z \geq 2\end{cases}
$$



## Differentiability

- A function $f(\vec{z})$ is differentiable if the gradient exists at every point.
- In other words, all of the slopes are well-defined:

$$
\partial \partial f / \partial z_{1}, \partial f / \partial z_{2}, \ldots
$$

## Example

$$
f\left(z_{1}, z_{2}\right)= \begin{cases}-5 z_{1}+z_{2} & \text { if } z_{1} \leq 0 \\ -2 z_{1}+z_{2} & \text { if } z_{1}>0\end{cases}
$$




Exercise
What is the gradient at $(-1,-1) ?(1,-1) ?(0,1)$ ?

$$
f\left(z_{1}, z_{2}\right)= \begin{cases}-5 z_{1}+z_{2} & \text { if } z_{1} \leq 0 \\ -2 z_{1}+z_{2} & \text { if } z_{1}>0\end{cases}
$$



## Answer

$\frac{d}{d \vec{w}} f(\vec{z})$ is defined everywhere except along $z_{1}=0$.

- If $z_{1}<0, f(\vec{z})=-5 z_{1}+z_{2}$. gradient is $(-5,1)^{T}$ here
- If $z_{1}>0, f(\vec{z})=-2 z_{1}+z_{2}$.
gradient is $(-2,1)^{\top}$ here



## Answer

$$
\frac{d f}{d \vec{z}}(\vec{z})= \begin{cases}(-5,1)^{\top}, & \text { if } z_{1}<0, \\ (-2,1)^{T^{\prime}}, & \text { if } z_{1}>0, \\ \text { undefined, } & \text { if } z_{1}=0 .\end{cases}
$$



## Problem

- We can try running gradient descent.
- But what do we do if we reach a point where the gradient is not defined?
- We need a replacement for the gradient that tells us where to go.



## Idea

$\Rightarrow$ Slope is undefined at $z_{1}=-3$.

- To the left, slope is -4
- To the right, slope is -1

$$
f(z)= \begin{cases}-4 z-7 & \text { if } z<-3 \\ -z+2 & \text { if }-3 \leq z<0 \\ 0.5 z+2 & \text { if } 0 \leq z<2 \\ 3 z / 2 & \text { if } z \geq 2\end{cases}
$$



## Idea

$\Rightarrow$ Slope is undefined at $z_{1}=-3$.

- To the left, slope is -4
- To the right, slope is -1

$$
f(z)= \begin{cases}-4 z-7 & \text { if } z<-3 \\ -z+2 & \text { if }-3 \leq z<0 \\ 0.5 z+2 & \text { if } 0 \leq z<2 \\ 3 z / 2 & \text { if } z \geq 2\end{cases}
$$



## Idea

$\Rightarrow$ Slope is undefined at $z_{1}=-3$.

- To the left, slope is -4
- To the right, slope is -1

$$
f(z)= \begin{cases}-4 z-7 & \text { if } z<-3 \\ -z+2 & \text { if }-3 \leq z<0 \\ 0.5 z+2 & \text { if } 0 \leq z<2 \\ 3 z / 2 & \text { if } z \geq 2\end{cases}
$$



## Idea

$\Rightarrow$ Slope is undefined at $z_{1}=-3$.

- To the left, slope is -4
- To the right, slope is -1

$$
f(z)= \begin{cases}-4 z-7 & \text { if } z<-3 \\ -z+2 & \text { if }-3 \leq z<0 \\ 0.5 z+2 & \text { if } 0 \leq z<2 \\ 3 z / 2 & \text { if } z \geq 2\end{cases}
$$



## Idea

- Any number between -4 and -1 adequately describes the behavior of $f$ at $z=-3$.

$$
f(z)= \begin{cases}-4 z-7 & \text { if } z<-3 \\ -z+2 & \text { if }-3 \leq z<0 \\ 0.5 z+2 & \text { if } 0 \leq z<2 \\ 3 z / 2 & \text { if } z \geq 2\end{cases}
$$



## Idea

- Any number between -4 and -1 is a subderivative of $f$ at $z=-3$.

$$
f(z)= \begin{cases}-4 z-7 & \text { if } z<-3 \\ -z+2 & \text { if }-3 \leq z<0 \\ 0.5 z+2 & \text { if } 0 \leq z<2 \\ 3 z / 2 & \text { if } z \geq 2\end{cases}
$$



## Exercise

What are the valid subderivatives of $f$ at $z=2$ ?

$$
f(z)= \begin{cases}-4 z-7 & \text { if } z<-3 \\ -z+2 & \text { if }-3 \leq z<0 \\ 0.5 z+2 & \text { if } 0 \leq z<2 \\ 3 z / 2 & \text { if } z \geq 2\end{cases}
$$



## Subderivatives

- Any valid subderivative defines a line that lies below the function.



## Subderivatives

- Any valid subderivative defines a line that lies below the function.



## Subderivatives

- Any valid subderivative defines a line that lies below the function.



## Subderivatives

The equation of this line is:

$$
f_{s}(z)=f\left(z_{0}\right)+s\left(z-z_{0}\right)
$$



## Subderivatives

$\Rightarrow$ A number $s$ is a subderivative of $f$ at $z_{0}$ if:

$$
f(z) \geq f_{s}(z) \quad \text { for all } z
$$

- That is, if:

$$
f(z) \geq f\left(z_{0}\right)+s\left(z-z_{0}\right)
$$

Exercise
Is 0 a valid subderivative of $f$ at $z=2$ ?


## Intuition

- The subderivative tells us how the function changes when the slope doesn't exist.
- We can sometimes use it in place of a derivative.


## Subgradient

- In higher dimensions, we have multiple slopes to worry about.
- We can use a subgradient to generalize the concept of a subderivative.


## Example

- There's no well-defined gradient at $z_{1}=(0,0)$.
$\Rightarrow$ The slope in the $z_{1}$ direction is undefined
$>$ Between -5 and -2 ?
$\Rightarrow$ The slope in the $z_{2}$ direction is 1

$$
f\left(z_{1}, z_{2}\right)= \begin{cases}-5 z_{1}+z_{2} & \text { if } z_{1} \leq 0 \\ -2 z_{1}+z_{2} & \text { if } z_{1}>0\end{cases}
$$



## Example

We will call any vector $\left(s_{1}, 1\right)$ with $-5 \leq s_{1} \leq-2$ a subgradient at $(0,0)$.

$$
f\left(z_{1}, z_{2}\right)= \begin{cases}-5 z_{1}+z_{2} & \text { if } z_{1} \leq 0 \\ -2 z_{1}+z_{2} & \text { if } z_{1}>0\end{cases}
$$



## Subgradient

- A vector $\vec{s}$ defines a plane:
- Example: $(-5,1)^{\top}$




## Subgradient

- A vector $\vec{s}$ defines a plane:
- Example: $(-2,1)^{\top}$



## Subgradient

- A vector $\vec{s}$ defines a plane:
- Example: $(-3,1)^{\top}$




## Subgradient

- A vector $\vec{s}$ is a valid subgradient at $\vec{z}^{(0)}$ if the plane it defines lies at or below the function $f$. $\rightarrow$ Example: $(-3,1)^{T}$



## Subgradient

- The equation of the plane defined by $\vec{s}$ at $\vec{z}^{(0)}$ is:

$$
f_{s}(\vec{z})=f\left(\vec{z}^{(0)}\right)+\vec{s} \cdot\left(\vec{z}-\vec{z}^{(0)}\right)
$$



## Subgradients

$\vec{s}$ is a subgradient of $f(\vec{z})$ at $\vec{z}^{(0)}$ if:

$$
f(\vec{z}) \geq f_{s}(\vec{z}) \text { for all } \vec{z}
$$

> That is, if:

$$
f(\vec{z}) \geq f\left(\vec{z}^{(0)}\right)+\vec{s} \cdot\left(\vec{z}-\vec{z}^{(0)}\right)
$$

## Finding Subgradients

- Here are two suggested ways to check that $\vec{s}$ is a valid subgradient.
- 1) Visualize it.
- 2) Check if the inequality holds.


## Example

$$
f\left(z_{1}, z_{2}\right)= \begin{cases}-5 z_{1}+z_{2} & \text { if } z_{1} \leq 0 \\ -2 z_{1}+z_{2} & \text { if } z_{1}>0\end{cases}
$$

- Is $(-5,0)^{T}$ a valid subgradient? No.


$$
\begin{gathered}
(-1,-1) \nRightarrow \begin{array}{l}
f(-1,-1)=5-1=4 \\
f_{5}(-1,-1)=5 \\
\text { Example }
\end{array} \\
f\left(z_{1}, z_{2}\right)= \begin{cases}-5 z_{1}+z_{2} & \text { if } z_{1} \leq 0 \\
-2 z_{1}+z_{2} & \text { if } z_{1}>0\end{cases}
\end{gathered}
$$

Is $(-5,0)^{T}$ a valid subgradient at the point $(0,0)$ ?
Is $f(0,0)+\overbrace{(-5,0)^{T}}^{\stackrel{\rightharpoonup}{s}} \cdot\left(z_{1}, z_{2}\right) \leq f\left(z_{1}, z_{2}\right)$ for all $z_{1}, z_{2}$ ?

$$
\begin{aligned}
& 0-5 z_{1}+0 z_{2} \\
& \quad f_{5}\left(\frac{s}{z}\right)=-5 z_{1}
\end{aligned}
$$

## Tip

- If the slope is defined in a direction, the corresponding entry of the subgradient must be that slope.


## Intuition

- A subgradient tells us where to go when the gradient is undefined.
$\Rightarrow$ We can use it instead of the gradient in gradient descent.


## Example

- $f\left(z_{1}, z_{2}\right)=z_{1}^{2}+\left|z_{2}\right|$
- A subgradient:

$$
\vec{s}\left(z_{1}, z_{2}\right)= \begin{cases}\left(2 z_{1}, 1\right)^{\top} & , \text { if } z_{2}>0, \\ \left(2 z_{1},-1\right)^{\top} & , \text { if } z_{2}<0, \\ \left(2 z_{1}, 0\right)^{\top} & , \text { if } z_{2}=0 .\end{cases}
$$



## Example

- Subgradient descent on $f\left(z_{1}, z_{2}\right)=z_{1}^{2}+\left|z_{2}\right|$
- Starting point: $(1 / 2,1 / 2)^{\top}$
- Learning rate: $\eta=0.1$.



## Problem

- Does not converge! Why?
- If $f$ is differentiable, gradient gets smaller as we approach the minimum.
- Naturally take smaller steps.
- Not true if the function is not differentiable!
- Steps may stay the same size (too large).


## Fix

- Decrease learning rate with each iteration.
- That is, choose a decreasing learning rate schedule $\eta(t)>0$.
- Theory: choose $\eta(t)=c / \sqrt{t}$, where $t$ is iteration \#, $c$ is a positive constant.



## Subgradient Descent

To minimize $f(\vec{z})$ :

- Pick arbitrary starting point $\vec{z}^{(0)}$, a decreasing learning rate schedule $\eta(t)>0$.
- Until convergence, repeat:
- Compute a subgradient $\vec{s}$ of $f$ at $\vec{z}^{(i)}$.
- Update $\vec{z}^{(t+1)}=\vec{z}^{(t)}-\eta(t) \vec{s}$
- When converged, return $\vec{z}^{(t)}$.

140A
Probabilistic Modeling \& Machine Learning
Lecture 4 Part 6
Minimizing Absolute Loss

## Regression with Absolute Loss

- The risk with respect to the absolute loss:

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n}\left|\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)-y_{i}\right|
$$

- We were stuck before because the risk is not differentiable.
- Now: we can minimize the risk with respect to the absolute loss using subgradient descent.


## Subgradient of the Absolute Loss

$\Rightarrow$ We need a subgradient of the absolute loss.

$$
\ell_{\mathrm{abs}}\left(\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right), y_{i}\right)=\left|\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)-y_{i}\right|
$$

- If $\vec{W} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)>y_{i}$ :
- Loss is $\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)-y_{i}$.
$\Rightarrow$ Gradient is $\operatorname{Aug}\left(\vec{X}^{(i)}\right)$.


## Subgradient of the Absolute Loss

- We need a subgradient of the absolute loss.

$$
\ell_{\mathrm{abs}}\left(\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right), y_{i}\right)=\left|\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)-y_{i}\right|
$$

- If $\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)<y_{i}$ :

Loss is $y_{i}-\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)$.

- Gradient is $-\operatorname{Aug}\left(\vec{x}^{(i)}\right)$.


## Subgradient of the Absolute Loss

- We need a subgradient of the absolute loss.

$$
\ell_{\mathrm{abs}}\left(\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right), y_{i}\right)=\left|\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)-y_{i}\right|
$$

- If $\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)=y_{i}$ :
- We need a subgradient.


## Subgradient of the Absolute Loss



## Subgradient of the Absolute Loss

- The zero vector works as a subgradient.
- Our subgradient of the absolute loss:

$$
s\left(\vec{w} ; \vec{x}^{(i)}, y_{i}\right)= \begin{cases}\operatorname{Aug}\left(\vec{x}^{(i)}\right), & \text { if } \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)>y_{i}, \\ -\operatorname{Aug}\left(\vec{x}^{(i)}\right), & \text { if } \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)<y_{i}, \\ \overrightarrow{0}, & \text { if } \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)=y_{i} .\end{cases}
$$

## Minimizing the Absolute Loss

- The subgradient of the empirical risk is the average of the subgradients of the loss:
subgrad. of $R(\vec{w})$

$$
\begin{aligned}
& =\frac{1}{n} \sum_{i=1}^{n} s\left(\vec{w}, \vec{x}^{(i)}, y_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \begin{cases}\operatorname{Aug}\left(\vec{x}^{(i)},,\right. & \text { if } \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)>y_{i}, \\
-\operatorname{Aug}\left(\vec{x}^{(i)}\right), & \text { if } \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)<y_{i}, \\
0, & \text { if } \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)=y_{i} .\end{cases}
\end{aligned}
$$

## Subgradient Descent

- We minimize the empirical risk with respect to the absolute loss using subgradient descent.
- Pick an initial $\vec{w}^{(0)}$, a decreasing learning rate schedule $\eta(t)>0$.
- Until convergence, repeat:
- Update

$$
\vec{w}^{(t+1)}=\vec{w}^{(t)}-\eta(t) \times \frac{1}{n} \sum_{i=1}^{n} \begin{cases}\operatorname{Aug}\left(\vec{x}^{(i)}\right), & \text { if } \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)>y_{i}, \\ -\operatorname{Aug}\left(\vec{x}^{(i)}\right), & \text { if } \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)<y_{i}, \\ \overrightarrow{0}, & \text { if } \vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)=y_{i}\end{cases}
$$

## In Practice

- Regression with absolute loss has different names:
- Quantile regression
- Minimum Absolute Deviations (MAD)
> Solvable by (S)GD, or as a linear program.


## Next Time

When is (S)GD guaranteed to converge?

