
Lecture 3 | Part 1

Recap



Empirical Risk▶ Last time, we framed the problem of learning as
minimizing the empirical risk.𝑅(𝐻) = 1𝑛 𝑛∑𝑖=1 ℓ(𝐻( ⃗𝑥(𝑖)), 𝑦𝑖)▶ In the case where 𝐻 is linear::𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 ℓ(𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)), 𝑦𝑖)



Minimizing Empirical Risk▶ Picking different loss functions changes the
optimization problem.▶ If we use square loss:𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 (𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) − 𝑦𝑖)2▶ We can minimize by setting the gradient to zero.▶ We get: 𝑤⃗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦.



Minimizing Empirical Risk▶ But sometimes we can’t use this approach.▶ If 𝑅 is not differentiable (absolute loss).▶ If computing 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦 is too expensive.▶ ...



Today▶ A general, very popular approach to
optimization: gradient descent.▶ Instead of solving for 𝑤⃗∗ “all at once”, we’ll
iterate towards it.
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What is the gradient?



What is the derivative?▶ Consider 𝑓(𝑧) = 3𝑧2 + 2𝑧 + 1.▶ What is the slope of the curve at 𝑧 = 1?
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What is the derivative?▶ Consider 𝑓(𝑧) = 3𝑧2 + 2𝑧 + 1.▶ What is the slope of the curve at 𝑧 = 1?
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What is the derivative?▶ Consider 𝑓(𝑧) = 3𝑧2 + 2𝑧 + 1.▶ What is the slope of the curve at 𝑧 = 1?
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What is the derivative?▶ The derivative gives the slope anywhere:𝑓(𝑧) = 3𝑧2 + 2𝑧 + 1𝑑𝑓𝑑𝑧(𝑧) =
The slope of the curve at 𝑧 = 1:𝑑𝑓𝑑𝑧(1) =

67 +2

6(1) + 2 = 8



What type of object?▶ The derivative of 𝑓 ∶ ℝ → ℝ is a function:▶ Input: scalar.▶ Output: scalar.▶ Example: 𝑑𝑓𝑑𝑧 (𝑧) = 6𝑧 + 2.▶ The derivative evaluated at a point is a scalar:▶ Example: 𝑑𝑓𝑑𝑧 (1) = 8.



Sign of the Derivative▶ If the derivative at a point is:▶ Positive: the function is increasing.▶ Negative: the function is decreasing.▶ Zero: the function is flat.
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Exercise
What is the height of the dashed line at 𝑧 + 𝛿?

𝑧 𝑧 + 𝛿
𝑓(𝑧)

𝑓(𝑧 + 𝛿)

𝛿
𝑓(𝑧) + ? f(z) +5 (z)
O

run x Slope =
rise

(z)



Derivatives and Change▶ The derivative tells us how much the function
changes with an infinitesimal increase in 𝑧.

𝑧 𝑧 + 𝛿

𝑓(𝑧) 𝑓(𝑧) + 𝛿 𝑑𝑓𝑑𝑧 (𝑧)
𝑓(𝑧 + 𝛿)



Increases and Decreases▶ The sign of the derivative tells us if the function
is increasing or decreasing.▶ Positive: 𝑓 is increasing at 𝑧.▶ Negative: 𝑓 is decreasing at 𝑧.



Multivariate Functions▶ Now consider 𝑓( ⃗𝑧) = 𝑓(𝑧1, 𝑧2) = 4𝑧21 + 2𝑧2 + 2𝑧1𝑧2.▶ What is the slope of the surface at (𝑧1, 𝑧2) = (3, 1)?



Multivariate Functions▶ Now consider 𝑓( ⃗𝑧) = 𝑓(𝑧1, 𝑧2) = 4𝑧21 + 2𝑧2 + 2𝑧1𝑧2.▶ What is the slope of the surface at (𝑧1, 𝑧2) = (3, 1)?



Partial Derivatives▶ When 𝑓 is a function of a vector ⃗𝑧 = (𝑧1, 𝑧2)𝑇, there
are two slopes to talk about:▶ 𝜕𝑓𝜕𝑧1 : slope in the 𝑧1 direction.▶ 𝜕𝑓𝜕𝑧2 : slope in the 𝑧2 direction.



Example
What is the slope of 𝑓 at (𝑧1, 𝑧2) = (3, 1) in:▶ The 𝑧1 direction?▶ The 𝑧2 direction?𝑓( ⃗𝑧) = 4𝑧21 + 2𝑧2 + 2𝑧1𝑧2 ▶ 𝜕𝑓𝜕𝑧1 (𝑧1, 𝑧2) =▶ 𝜕𝑓𝜕𝑧1 (2, 1) =▶ 𝜕𝑓𝜕𝑧2 (𝑧1, 𝑧2) =▶ 𝜕𝑓𝜕𝑧2 (2, 1) =
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What is the gradient?▶ We can package the partial derivatives into a
single object: the gradient.𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧) = ( 𝜕𝑓𝜕𝑧1 ( ⃗𝑧)𝜕𝑓𝜕𝑧2 ( ⃗𝑧))



What is the gradient?▶ In general, if 𝑓 ∶ ℝ𝑑 → ℝ, then the gradient is:
𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧) = ⎛⎜⎜⎜⎜⎜⎝

𝜕𝑓𝜕𝑧1 ( ⃗𝑧)𝜕𝑓𝜕𝑧2 ( ⃗𝑧)⋮𝜕𝑓𝜕𝑧𝑑 ( ⃗𝑧)
⎞⎟⎟⎟⎟⎟⎠



What type of object?▶ The gradient of a function 𝑓 ∶ ℝ𝑑 → ℝ is a
function1:▶ Input: vector in ℝ𝑑.▶ Output: vector in ℝ𝑑.▶ Example: 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧) = (8𝑧1 + 2𝑧2, 2 + 2𝑧1)𝑇.▶ The gradient of 𝑓 ∶ ℝ𝑑 → ℝ evaluated at a point
is a vector in ℝ𝑑:▶ Example: 𝑑𝑓𝑑 ⃗𝑧 (2, 1) = (18, 6)𝑇.

1Sometimes it is referred to as a vector field.

A
/1



Gradient Fields▶ The gradient can be viewed as a vector field:



Meaning of Gradient Vector▶ The gradient of a function 𝑓 ∶ ℝ𝑑 → ℝ at a point⃗𝑧 is a vector in ℝ𝑑.▶ The 𝑖th component is the slope of 𝑓 at ⃗𝑧 in the𝑖th direction.



Exercise

Which of these could possibly
be the gradient at the point(9, −4)?▶ A) (0, 0)▶ B) (4, −1)▶ C) (−4, −1)▶ D) (−4, 1)
-

O (+ , -1)

1
El



Gradients and Change▶ Recall: 𝑓(𝑧 + 𝛿) ≈ 𝑓(𝑧) + 𝛿 × 𝑑𝑓𝑑𝑧(𝑧).▶ In multiple dimensions:𝑓( ⃗𝑧 + 𝛿⃗) ≈ 𝑓( ⃗𝑧) + (𝛿1 × 𝜕𝑓𝜕𝑧1 ( ⃗𝑧)) + (𝛿2 × 𝜕𝑓𝜕𝑧2 ( ⃗𝑧)) + …≈ 𝑓( ⃗𝑧) + 𝛿⃗ ⋅ 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧)



Exercise
At a point ⃗𝑧 = (2, 3)𝑇, 𝑓( ⃗𝑧) is 7 and the gradient𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧) = (4, −2)𝑇.
What is the approximatea value of 𝑓(2.1, 3.1)?

aQuality of approximation depends on second derivative.

f(z+8) )+ (change in =,)x(Slopein 1)S

7 t (change in =2) x (slope in =2)O. 1 -2

7 + 4 - . 2 = 7.2



Steepest Ascent▶ Key property: the gradient vector points in the
direction of steepest ascent.



Proof▶ Remember: 𝑓( ⃗𝑧 + 𝛿⃗) ≈ 𝑓( ⃗𝑧) + 𝛿⃗ ⋅ 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧).▶ So the total change is 𝛿⃗ ⋅ 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧).▶ Also remember: 𝛿⃗ ⋅ 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧) = ‖𝛿⃗‖ ‖𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧)‖ cos 𝜃.▶ So the increase in 𝑓 is maximized when 𝜃 = 0.▶ That is, when 𝛿⃗ points in the direction of 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧).



Steepest Descent▶ The negative gradient points in the direction of
steepest descent.



Why?▶ The direction of steepest ascent is the opposite
of the direction of steepest descent.▶ Because, zoomed in, the function looks linear.



Contours



Contours



Contours



Contours



Contours
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Contours



Contours



Contours▶ The contours are the level sets of the function.



Contours and Gradients▶ The gradient is orthogonal to the contours.



Optimization▶ To find a minimum (or maximum), look for where the
gradient is 0⃗.
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Gradient Descent



Example▶ Goal: minimize 𝑓( ⃗𝑧) = 𝑒𝑧21+𝑧22 + (𝑧1 − 2)2 + (𝑧2 − 3)2.



Example▶ Try solving 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧) = 0.▶ The gradient is:𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧) = (2𝑧1𝑒𝑧21+𝑧22 + 2(𝑧1 − 2)2𝑧2𝑒𝑧21+𝑧22 + 2(𝑧2 − 3))▶ Can we solve the system?2𝑧1𝑒𝑧21+𝑧22 + 2(𝑧1 − 2) = 02𝑧2𝑒𝑧21+𝑧22 + 2(𝑧2 − 3) = 0
O

=

G



Example▶ Try solving 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧) = 0.▶ The gradient is:𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧) = (2𝑧1𝑒𝑧21+𝑧22 + 2(𝑧1 − 2)2𝑧2𝑒𝑧21+𝑧22 + 2(𝑧2 − 3))▶ Can we solve the system? Not in closed form.2𝑧1𝑒𝑧21+𝑧22 + 2(𝑧1 − 2) = 02𝑧2𝑒𝑧21+𝑧22 + 2(𝑧2 − 3) = 0



A Problem▶ The function is differentiable2.▶ But we can’t set gradient to zero and solve.▶ How do we find the minimum?

2The gradient exists everywhere.



A Solution

▶ Idea: iterate towards a minimum,
step by step.▶ Start at an arbitrary location.▶ At every step, move in direction
of steepest descent.▶ i.e., the negative gradient.



Exercise
The gradient of a function 𝑓( ⃗𝑧) at (1, 1) is (2, 1)𝑇.
If you’re trying tominimize 𝑓( ⃗𝑧), which place should
you go to next?▶ A) (1, 1)▶ B) (.8, .9)▶ C) (1.2, 1.1)



Direction of Steepest Descent▶ If 𝜂 is the learning rate, then the next step is:⃗𝑧(𝑡+1) = ⃗𝑧(𝑡) − 𝜂 × 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧(𝑡))

⃗𝑧(0)



Direction of Steepest Descent▶ If 𝜂 is the learning rate, then the next step is:⃗𝑧(𝑡+1) = ⃗𝑧(𝑡) − 𝜂 × 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧(𝑡))

⃗𝑧(0) −𝜂 × 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧(0))



Direction of Steepest Descent▶ If 𝜂 is the learning rate, then the next step is:⃗𝑧(𝑡+1) = ⃗𝑧(𝑡) − 𝜂 × 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧(𝑡))

⃗𝑧(0) −𝜂 × 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧(0)) ⃗𝑧(1)



Direction of Steepest Descent▶ If 𝜂 is the learning rate, then the next step is:⃗𝑧(𝑡+1) = ⃗𝑧(𝑡) − 𝜂 × 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧(𝑡))

⃗𝑧(0) −𝜂 × 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧(0)) ⃗𝑧(1) −𝜂 × 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧(1))



Direction of Steepest Descent▶ If 𝜂 is the learning rate, then the next step is:⃗𝑧(𝑡+1) = ⃗𝑧(𝑡) − 𝜂 × 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧(𝑡))

⃗𝑧(0) −𝜂 × 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧(0)) ⃗𝑧(1) −𝜂 × 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧(1)) ⃗𝑧(2)



Gradient Descent
To minimize 𝑓( ⃗𝑧):▶ Pick arbitrary starting point ⃗𝑧(0), learning rate 𝜂 > 0▶ Until convergence, repeat:▶ Compute gradient: 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧(𝑡)) at ⃗𝑧(𝑡).▶ Update: ⃗𝑧(𝑡+1) = ⃗𝑧(𝑡) − 𝜂 × 𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧(𝑡)).▶ When converged, return ⃗𝑧(𝑡).▶ It is (approximately) a local minimum.



Stopping Criterion

▶ Close to a minimum,
gradient is small.▶ Idea: stop when ‖𝑑𝑓𝑑 ⃗𝑧 ( ⃗𝑧(𝑡))‖
is small.▶ Alternative: stop when
‖ ⃗𝑧(𝑡+1) − ⃗𝑧(𝑡)‖ is small.



def gradient_descent(
gradient, z_0, learning_rate, stop_threshold

):
z = z_0
while True:

z_new = z - learning_rate * gradient(z)
if np.linalg.norm(z_new - z) < stop_threshold:

break
z = z_new

return z_new



Picking Parameters▶ The learning rate and stopping threshold are
parameters.▶ They need to be chosen carefully for each
problem.▶ If not, the algorithm may not converge.



Example



Example



Example



Example



Example



Example



Example



Example



Example



Example



Exercise
Let 𝑓(𝑧1, 𝑧2) = 𝑧41 + 3𝑧22 + 𝑧1𝑧2.
Starting at ⃗𝑧(0) = (1, 1), what is the next point after
one step of gradient descent with learning rate 𝜂 =0.1?

f() = (tz ) = + = ( )

&= (f) =() =o
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Gradient Descent for ERM



Gradient Descent for ERM▶ In ERM, our goal is to minimize empirical risk:3𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 ℓ(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗, 𝑦𝑖)▶ Often, we can minimize using gradient descent.

3We’ve assumed 𝐻 is a linear prediction function.



The Gradient of the Risk▶ The gradient of the empirical risk is:𝑑𝑅𝑑𝑤⃗(𝑤⃗) = 𝑑𝑑𝑤⃗ (1𝑛 𝑛∑𝑖=1 ℓ(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗, 𝑦𝑖))= 1𝑛 𝑛∑𝑖=1 𝑑ℓ𝑑𝑤⃗(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗, 𝑦𝑖)▶ Gradient of risk is average gradient of loss.▶ As far as we can go without knowing the loss.



The Gradient of the MSE▶ Recall: the mean squared error is the empirical
risk with respect to the square loss:𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)2▶ The gradient is:𝑑𝑅𝑑𝑤⃗(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 𝑑𝑑𝑤⃗(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)2



Exercise
Recall that the square loss for a linear predictor is:(Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)2.
What is the gradient of the square loss with respect
to 𝑤⃗?

a (w) = X

Ang() O

I2 (Auf(x(x) . -y:) (Ay. - (a)



The Gradient of the MSE▶ The gradient of the mean squared error is:4𝑑𝑅𝑑𝑤⃗(𝑤⃗) = 2𝑛 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)Aug( ⃗𝑥(𝑖))▶ Each training point ⃗𝑥(𝑖) contributes to the
gradient.

4We saw before that 𝑑𝑅𝑑𝑤⃗ (𝑤⃗) = 2𝑋𝑇𝑋𝑤⃗ − 2𝑋𝑇 ⃗𝑦. These two are actually equal.



Exercise
What will be the gradient if every prediction is ex-
actly correct?

𝑑𝑅𝑑𝑤⃗(𝑤⃗) = 2𝑛 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)Aug( ⃗𝑥(𝑖))



Gradient Descent for Least Squares▶ We can perform least squares regression by
solving the normal equations: 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦.▶ But we can find the same solution using gradient
descent:𝑤⃗(𝑡+1) = 𝑤⃗(𝑡) − 𝜂 × 2𝑛 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗(𝑡) − 𝑦𝑖)Aug( ⃗𝑥(𝑖))



Example▶ We will run gradient descent to train a least
squares regression model on the following data:



Exercise
The plot below shows a linear prediction function
using weight vector 𝑤⃗(0).
What is the sign of the second entry of 𝑑𝑅𝑑𝑤⃗ (𝑤⃗(0))?



Iteration #1



Iteration #2



Iteration #3



Iteration #4



Iteration #5
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Stochastic Gradient Descent



Gradient Descent for Minimizing Risk▶ In ML, we often want to minimize a risk function:𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 ℓ(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)



Observation▶ The gradient of the risk function is a sum of
gradients:𝑑𝑑𝑤⃗𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 𝑑𝑑𝑤⃗ℓ(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)▶ One term for each point in training data.



Problem▶ In machine learning, the number of training
points 𝑛 can be very large.▶ Computing the gradient can be expensive when𝑛 is large.▶ Therefore, each step of gradient descent can be
expensive.



Idea▶ The (full) gradient of the risk uses all of the
training data:𝑑𝑑𝑤⃗𝑅(𝑤⃗) = 1𝑛 𝑛∑𝑖=1 𝑑𝑑𝑤⃗𝐿(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)▶ It is an average of 𝑛 gradients.▶ Idea: instead of using all 𝑛 points, randomly
choose ≪ 𝑛.



Stochastic Gradient▶ Choose a random subset (mini-batch) 𝐵 of the
training data.▶ Compute a stochastic gradient:𝑑𝑑𝑤⃗𝑅(𝑤⃗) ≈ ∑𝑖∈𝐵 𝑑𝑑𝑤⃗𝐿(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)



Stochastic Gradient𝑑𝑑𝑤⃗𝑅(𝑤⃗) ≈ ∑𝑖∈𝐵 𝑑𝑑𝑤⃗ℓ(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)▶ Good: if |𝐵| ≪ 𝑛, this is much faster to compute.▶ Bad: it is a (random) approximation of the full
gradient, noisy.



Stochastic Gradient Descent (SGD)
for ERM▶ Pick arbitrary starting point ⃗𝑥(0), learning rate

parameter 𝜂 > 0, batch size 𝑚 ≪ 𝑛.▶ Until convergence, repeat:▶ Randomly sample a batch 𝐵 of 𝑚 training data points.▶ Compute stochastic gradient of 𝑓 at ⃗𝑥(𝑖):𝑔⃗ = ∑𝑖∈𝐵 𝑑𝑑𝑤⃗ℓ(𝐻( ⃗𝑥(𝑖); 𝑤⃗), 𝑦𝑖)▶ Update 𝑤⃗(𝑖+1) = 𝑤⃗(𝑖) − 𝜂𝑔⃗



Idea▶ In practice, a stochastic gradient often works
well enough.▶ It is better to take many noisy steps quickly than
few exact steps slowly.



Batch Size▶ Batch size 𝑚 is a parameter of the algorithm.▶ The larger 𝑚, the more reliable the stochastic
gradient, but the more time it takes to compute.▶ Extreme case when 𝑚 = 1 will still work.
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Usefulness of SGD▶ SGD allows learning on massive data sets.▶ Useful even when exact solutions available.▶ E.g., least squares regression / classification.



Example▶ Trained on data set with 𝑑 = 20,000 features and𝑛 = 60,000 examples.▶ Solving the normal equations, 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦:▶ about 3 minutes▶ MSE: 6.7 × 10−7▶ Using SGD with 𝑚 = 16 and 𝜂 = 0.0005:▶ about 30 seconds▶ MSE: 1.9 × 10−6



Lecture 3 | Part 6

From Theory to Practice



In Practice▶ (S)GD is heavily used in machine learning.▶ Can be used to solve many optimization
problems.▶ But it can be tricky to get working.

M



Learning Rate▶ The learning rate has to be chosen carefully.▶ If too large, the algorithm may diverge.▶ If too small, the algorithm may converge slowly.



Diverging
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Diverging▶ To diagnose, print 𝑅(𝑤⃗) at each iteration.▶ If it is increasing consistently, the algorithm is
diverging.▶ Fix: decrease the learning rate.▶ But not by too much! Then it may converge too

slowly.



Problem▶ When the contours are “long and skinny,” you will
be forced to pick a very small learning rate.



A Fix▶ Scaling (standardizing) the features can help.▶ This makes the contours more circular.▶ Doesn’t change the prediction!



Iteration #1



Iteration #2



Iteration #3



Iteration #4



Iteration #5



Iteration #6



Iteration #7



Next Time▶ How do we minimize the risk with respect to
absolute loss?▶ When is gradient descent guaranteed to
converge?


