Lecture 3 Part 1
Recap

Empirical Risk

- Last time, we framed the problem of learning as minimizing the empirical risk.

$$
R(H)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(H\left(\vec{x}^{(i)}\right), y_{i}\right)
$$

- In the case where H is linear::

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} l\left(\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right), y_{i}\right)
$$

Minimizing Empirical Risk

- Picking different loss functions changes the optimization problem.
- If we use square loss:

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n}\left(\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2}
$$

- We can minimize by setting the gradient to zero.
\Rightarrow We get: $\vec{w}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}$.

Minimizing Empirical Risk

- But sometimes we can't use this approach. \Rightarrow If R is not differentiable (absolute loss).
- If computing $\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}$ is too expensive. - ...

Today

- A general, very popular approach to optimization: gradient descent.
- Instead of solving for \vec{w}^{*} "all at once", we'll iterate towards it.

$$
\text { DSC } 140 \mathrm{~A}
$$

What is the derivative?

Consider $f(z)=3 z^{2}+2 z+1$.

- What is the slope of the curve at $z=1$?

What is the derivative?

- Consider $f(z)=3 z^{2}+2 z+1$.
- What is the slope of the curve at $z=1$?

What is the derivative?

Consider $f(z)=3 z^{2}+2 z+1$.

- What is the slope of the curve at $z=1$?

What is the derivative?

The derivative gives the slope anywhere:

$$
\begin{aligned}
& f(z)=3 z^{2}+2 z+1 \\
& \frac{d f}{d z}(z)=6 z+2
\end{aligned}
$$

The slope of the curve at $z=1$:

$$
\frac{d f}{d z}(1)=6(1)+2=8
$$

What type of object?

- The derivative of $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function:
- Input: scalar.
- Output: scalar.
- Example: $\frac{d f}{d z}(z)=6 z+2$.
- The derivative evaluated at a point is a scalar:
\Rightarrow Example: $\frac{d f}{d z}(1)=8$.

Sign of the Derivative

- If the derivative at a point is:
$>$ Positive: the function is increasing.
- Negative: the function is decreasing.
- Zero: the function is flat.

Exercise
What is the height of the dashed line at $z+\delta$?

Derivatives and Change

- The derivative tells us how much the function changes with an infinitesimal increase in z.

Increases and Decreases

- The sign of the derivative tells us if the function is increasing or decreasing.
- Positive: f is increasing at z.
- Negative: f is decreasing at z.

Multivariate Functions

\Rightarrow Now consider $f(\vec{z})=f\left(z_{1}, z_{2}\right)=4 z_{1}^{2}+2 z_{2}+2 z_{1} z_{2}$.
\checkmark What is the slope of the surface at $\left(z_{1}, z_{2}\right)=(3,1)$?

Multivariate Functions

- Now consider $f(\vec{z})=f\left(z_{1}, z_{2}\right)=4 z_{1}^{2}+2 z_{2}+2 z_{1} z_{2}$.
\Rightarrow What is the slope of the surface at $\left(z_{1}, z_{2}\right)=(3,1)$?

Partial Derivatives

- When f is a function of a vector $\vec{z}=\left(z_{1}, z_{2}\right)^{T}$, there are two slopes to talk about:
$\downarrow \frac{\partial f}{\partial z_{1}}:$ slope in the z_{1} direction.
$\downarrow \frac{\partial f}{\partial z_{2}}:$ slope in the z_{2} direction.

Example

What is the slope of f at $\left(z_{1}, z_{2}\right)=(3,1)$ in:
\checkmark The z_{1} direction?

- The z_{2} direction?

$$
f(\vec{z})=4 z_{1}^{2}+2 z_{2}+2 z_{1} z_{2}
$$

$$
\begin{aligned}
& \Rightarrow \frac{\partial f}{\partial z_{1}}\left(z_{1}, z_{2}\right)=8 z_{1}+2 z_{2} \\
& \frac{\partial f}{\partial z_{1}}(3,1)=8(3)+2(1)=26 \\
& \frac{\partial f}{\partial z_{2}}\left(z_{1}, z_{2}\right)=2+2 z_{1} \\
& \frac{\partial f}{\partial z_{2}}(3,1)=2+2(3)=8
\end{aligned}
$$

What is the gradient?

- We can package the partial derivatives into a single object: the gradient.

$$
\frac{d f}{d \vec{z}}(\vec{z})=\binom{\frac{\partial f}{\partial z_{1}}(\vec{z})}{\frac{\partial f}{\partial z_{2}}(\vec{z})}
$$

What is the gradient?

\checkmark In general, if $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, then the gradient is:

$$
\frac{d f}{d \vec{z}}(\vec{z})=\left(\begin{array}{c}
\frac{\partial f}{\partial z_{1}}(\vec{z}) \\
\frac{\partial f}{\partial z_{2}}(\vec{z}) \\
\vdots \\
\frac{\partial f}{\partial z_{d}}(\vec{z})
\end{array}\right)
$$

What type of object?

\Rightarrow The gradient of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a function ${ }^{1}$:
\Rightarrow Input: vector in \mathbb{R}^{d}.
$>$ Output: vector in \mathbb{R}^{d}.

- Example: $\frac{d f}{d \tilde{z}}(\vec{z})=\left(8 z_{1}+2 z_{2}, 2+2 z_{1}\right)^{T}$.
\Rightarrow The gradient of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ evaluated at a point is a vector in \mathbb{R}^{d} :
\Rightarrow Example: $\frac{d f}{d \bar{z}}(2,1)=(18,6)^{\top}$.

Gradient Fields

- The gradient can be viewed as a vector field:

Meaning of Gradient Vector

- The gradient of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ at a point \vec{z} is a vector in \mathbb{R}^{d}.
- The i th component is the slope of f at \vec{z} in the i th direction.

Exercise

Gradients and Change

- Recall: $f(z+\delta) \approx f(z)+\delta \times \frac{d f}{d z}(z)$.
- In multiple dimensions:

$$
\begin{aligned}
f(\vec{z}+\vec{\delta}) & \approx f(\vec{z})+\left(\delta_{1} \times \frac{\partial f}{\partial z_{1}}(\vec{z})\right)+\left(\delta_{2} \times \frac{\partial f}{\partial z_{2}}(\vec{z})\right)+\ldots \\
& \approx f(\vec{z})+\vec{\delta} \cdot \frac{d f}{d \vec{z}}(\vec{z})
\end{aligned}
$$

$$
\begin{aligned}
f(\vec{z}+\delta) & \approx \frac{f(\vec{z})}{}+\left(\text { change in } z_{1}\right) \times\left(\text { slope in } z_{1}\right) \\
7 & +\left(\text { change in } z_{2}\right) \times\left(\text { slope in } z_{2}\right)
\end{aligned}
$$

Exercise
At a point $\vec{z}=(2,3)^{T}, f(\vec{z})$ is 7 and the gradient $\frac{d f}{d \vec{z}}(\vec{z})=(4,-2)^{T}$.

What is the approximate ${ }^{a}$ value of $f(2.1,3.1)$?
${ }^{a}$ Quality of approximation depends on second derivative.

$$
7+.4-.2=7.2
$$

Steepest Ascent

- Key property: the gradient vector points in the direction of steepest ascent.

Proof

- Remember: $f(\vec{z}+\vec{\delta}) \approx f(\vec{z})+\vec{\delta} \cdot \frac{d f}{d \vec{z}}(\vec{z})$.
- So the total change is $\vec{\delta} \cdot \frac{d f}{d \bar{z}}(\vec{z})$.
- Also remember: $\vec{\delta} \cdot \frac{d f}{d \tilde{z}}(\vec{z})=\|\vec{\delta}\|\left\|\frac{d f}{d \bar{z}}(\vec{z})\right\| \cos \theta$.
- So the increase in f is maximized when $\theta=0$. - That is, when $\vec{\delta}$ points in the direction of $\frac{d f}{d \bar{z}}(\vec{z})$.

Steepest Descent

- The negative gradient points in the direction of steepest descent.

Why?

$>$ The direction of steepest ascent is the opposite of the direction of steepest descent.

- Because, zoomed in, the function looks linear.

Contours

Contours

- The contours are the level sets of the function.

Contours and Gradients

- The gradient is orthogonal to the contours.

Optimization

- To find a minimum (or maximum), look for where the gradient is $\overrightarrow{0}$.

$$
\text { DSC } 140 A
$$

Example

Goal: minimize $f(\vec{z})=e^{z_{1}^{2}+z_{2}^{2}}+\left(z_{1}-2\right)^{2}+\left(z_{2}-3\right)^{2}$.

Example

Try solving $\frac{d f}{d \grave{z}}(\vec{z})=0$.
The gradient is:

$$
\frac{d f}{d \vec{z}}(\vec{z})=\binom{2 z_{1} e^{z_{1}^{2}+z_{2}^{2}}+2\left(z_{1}-2\right)}{2 z_{2} e^{z_{1}^{2}+z_{2}^{2}}+2\left(z_{2}-3\right)}=\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$

- Can we solve the system?

$$
\begin{aligned}
& 2 z_{1} e^{z_{1}^{2}+z_{2}^{2}}+2\left(z_{1}-2\right)=0 \\
& 2 z_{2} e^{z_{1}^{2}+z_{2}^{2}}+2\left(z_{2}-3\right)=0
\end{aligned}
$$

Example

Try solving $\frac{d f}{d \bar{z}}(\vec{z})=0$.

- The gradient is:

$$
\frac{d f}{d \vec{z}}(\vec{z})=\binom{2 z_{1} e^{z_{1}^{2}+z_{2}^{2}}+2\left(z_{1}-2\right)}{2 z_{2} e^{z_{1}^{2}+z_{2}^{2}}+2\left(z_{2}-3\right)}
$$

- Can we solve the system? Not in closed form.

$$
\begin{aligned}
& 2 z_{1} e^{z_{1}^{2}+z_{2}^{2}}+2\left(z_{1}-2\right)=0 \\
& 2 z_{2} e^{z_{1}^{2}+z_{2}^{2}}+2\left(z_{2}-3\right)=0
\end{aligned}
$$

A Problem

- The function is differentiable ${ }^{2}$.
- But we can't set gradient to zero and solve.

How do we find the minimum?
${ }^{2}$ The gradient exists everywhere.

A Solution

- Idea: iterate towards a minimum, step by step.
- Start at an arbitrary location.
- At every step, move in direction of steepest descent.
- i.e., the negative gradient.

Exercise

The gradient of a function $f(\vec{z})$ at $(1,1)$ is $(2,1)^{\top}$.
If you're trying to minimize $f(\vec{z})$, which place should you go to next?

- A) $(1,1)$
- B) $(.8, .9)$
- C) $(1.2,1.1)$

Direction of Steepest Descent

- If η is the learning rate, then the next step is:

$$
\vec{z}^{(t+1)}=\vec{z}^{(t)}-\eta \times \frac{d f}{d \vec{z}}\left(\vec{z}^{(t)}\right)
$$

Direction of Steepest Descent

- If η is the learning rate, then the next step is:

$$
\vec{z}^{(t+1)}=\vec{z}^{(t)}-\eta \times \frac{d f}{d \vec{z}}\left(\vec{z}^{(t)}\right)
$$

Direction of Steepest Descent

- If η is the learning rate, then the next step is:

$$
\vec{z}^{(t+1)}=\vec{z}^{(t)}-\eta \times \frac{d f}{d \vec{z}}\left(\vec{z}^{(t)}\right)
$$

Direction of Steepest Descent

- If η is the learning rate, then the next step is:

Direction of Steepest Descent

- If η is the learning rate, then the next step is:

Gradient Descent

To minimize $f(\vec{z})$:

- Pick arbitrary starting point $\vec{z}^{(0)}$, learning rate $\eta>0$
- Until convergence, repeat:
\Rightarrow Compute gradient: $\frac{d f}{d \bar{z}}\left(\vec{z}^{(t)}\right)$ at $\vec{z}^{(t)}$.
\Rightarrow Update: $\vec{z}^{(t+1)}=\vec{z}^{(t)}-\eta \times \frac{d f}{d \vec{z}}\left(\vec{z}^{(t)}\right)$.
- When converged, return $\vec{z}^{(t)}$.
- It is (approximately) a local minimum.

Stopping Criterion

- Close to a minimum, gradient is small.
- Idea: stop when $\left\|\frac{d f}{d \vec{z}}\left(\vec{z}^{(t)}\right)\right\|$ is small.
- Alternative: stop when $\left\|\vec{z}^{(t+1)}-\overrightarrow{\mathbf{z}}^{(t)}\right\|$ is small.

def gradient_descent(

gradient, z_@, learning_rate, stop_threshold):
z = z_0
while True:
z_new = z - learning_rate * gradient(z)
if np.linalg.norm(z_new - z) < stop_threshold: break
z = z_new
return z_new

Picking Parameters

- The learning rate and stopping threshold are parameters.
- They need to be chosen carefully for each problem.
- If not, the algorithm may not converge.

Example

$$
\begin{aligned}
& \frac{d}{d \vec{z}} f(\vec{z})=\binom{4 z_{1}^{3}+z_{2}}{6 z_{2}+z_{1}} \quad \vec{z}(1)=\vec{z}^{(0)}+q=\binom{.5}{.3} \\
& \text { Exercise } \\
& \begin{array}{l}
\text { Let } f\left(z_{1}, z_{2}\right)=z_{1}^{4}+3 z_{2}^{2}+z_{1} z_{2} . \\
\begin{array}{l}
\text { Starting at } \vec{z}^{(0)}=(1,1), \text { what is the next point after } \\
\text { one step of gradient descent with learning rate } \eta= \\
0.1 ?
\end{array} \\
\frac{d f}{d \vec{z}}\left(\vec{z}^{(0)}\right)=\binom{4+1}{6+1}=\binom{5}{7}-\eta \cdot \frac{d f}{d z^{3}}\left(\vec{z}^{(0)}\right)=-\phi .1 \times\binom{ 5}{7}
\end{array}
\end{aligned}
$$

$$
\text { DSC } 140 A
$$

Gradient Descent for ERM

- In ERM, our goal is to minimize empirical risk: ${ }^{3}$

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}, y_{i}\right)
$$

\downarrow Often, we can minimize using gradient descent.

[^0]
The Gradient of the Risk

- The gradient of the empirical risk is:

$$
\begin{aligned}
\frac{d R}{d \vec{w}}(\vec{w}) & =\frac{d}{d \vec{w}}\left(\frac{1}{n} \sum_{i=1}^{n} \ell\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}, y_{i}\right)\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{d \ell}{d \vec{w}}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}, y_{i}\right)
\end{aligned}
$$

- Gradient of risk is average gradient of loss.
\downarrow As far as we can go without knowing the loss.

The Gradient of the MSE

- Recall: the mean squared error is the empirical risk with respect to the square loss:

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2}
$$

- The gradient is:

$$
\frac{d R}{d \vec{w}}(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d \vec{w}}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2}
$$

$$
\frac{d}{d w}(x w)=x
$$

Exercise
Recall that the square loss for a linear predictor is: $\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2}$.

What is the gradient of the square loss with respect to \vec{w} ?

Aug (x 'ci) 0

$$
2\left(A n g(\vec{x}(c)) \cdot \vec{w}-y_{i}\right) \times \frac{d}{d \vec{w}}\left(A y\left({ }^{(0} 0\right) \cdot \vec{w}-y_{i}^{2}\right)
$$

The Gradient of the MSE

$>$ The gradient of the mean squared error is: ${ }^{4}$

$$
\frac{d R}{d \vec{w}}(\vec{w})=\frac{2}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \operatorname{Aug}\left(\vec{x}^{(i)}\right)
$$

- Each training point $\vec{x}^{(i)}$ contributes to the gradient.
${ }^{4}$ We saw before that $\frac{d R}{d \vec{w}}(\vec{w})=2 X^{\top} X \vec{w}-2 X^{\top} \vec{y}$. These two are actually equal.

Exercise

What will be the gradient if every prediction is exactly correct?

$$
\frac{d R}{d \vec{w}}(\vec{w})=\frac{2}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \operatorname{Aug}\left(\vec{x}^{(i)}\right)
$$

Gradient Descent for Least Squares

- We can perform least squares regression by solving the normal equations: $\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}$.
- But we can find the same solution using gradient descent:

$$
\vec{w}^{(t+1)}=\vec{w}^{(t)}-\eta \times \frac{2}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}^{(t)}-y_{i}\right) \operatorname{Aug}\left(\vec{x}^{(i)}\right)
$$

Example

- We will run gradient descent to train a least squares regression model on the following data:

Exercise

The plot below shows a linear prediction function using weight vector $\vec{w}^{(0)}$.

What is the sign of the second entry of $\frac{d R}{d \vec{w}}\left(\vec{w}^{(0)}\right)$?

Iteration \#1

Iteration \#2

Iteration \#3

Iteration \#4

Iteration \#5

Iteration \#6

Iteration \#7

Iteration \#8

Iteration \#9

Iteration \#10

Iteration \#11

Iteration \#12

Iteration \#13

Iteration \#14

Iteration \#15

Iteration \#16

Iteration \#17

Iteration \#18

Iteration \#19

Iteration \#40

Iteration \#100

$$
\text { DSC } 140 A
$$

Gradient Descent for Minimizing Risk

- In ML, we often want to minimize a risk function:

$$
R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} l\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

Observation

- The gradient of the risk function is a sum of gradients:

$$
\frac{d}{d \vec{w}} R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d \vec{w}} p\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- One term for each point in training data.

Problem

- In machine learning, the number of training points n can be very large.
- Computing the gradient can be expensive when n is large.
- Therefore, each step of gradient descent can be expensive.

Idea

- The (full) gradient of the risk uses all of the training data:

$$
\frac{d}{d \vec{w}} R(\vec{w})=\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d \vec{w}} L\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

- It is an average of n gradients.
- Idea: instead of using all n points, randomly choose <<n.

Stochastic Gradient

Choose a random subset (mini-batch) B of the training data.

- Compute a stochastic gradient:

$$
\frac{d}{d \vec{w}} R(\vec{w}) \approx \sum_{i \in B} \frac{d}{d \vec{w}} L\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

Stochastic Gradient

$$
\frac{d}{d \vec{w}} R(\vec{w}) \approx \sum_{i \in B} \frac{d}{d \vec{w}} l\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

\downarrow Good: if $|B| \ll n$, this is much faster to compute.

- Bad: it is a (random) approximation of the full gradient, noisy.

Stochastic Gradient Descent (SGD) for ERM

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta>0$, batch size $m \ll n$.
- Until convergence, repeat:
- Randomly sample a batch B of m training data points.
- Compute stochastic gradient of f at $\vec{x}^{(i)}$:

$$
\vec{g}=\sum_{i \in B} \frac{d}{d \vec{w}} l\left(H\left(\vec{x}^{(i)} ; \vec{w}\right), y_{i}\right)
$$

$>$ Update $\vec{w}^{(i+1)}=\vec{w}^{(i)}-\eta \vec{g}$

Idea

- In practice, a stochastic gradient often works well enough.
- It is better to take many noisy steps quickly than few exact steps slowly.

Batch Size

- Batch size m is a parameter of the algorithm.
- The larger m, the more reliable the stochastic gradient, but the more time it takes to compute.
- Extreme case when $m=1$ will still work.

Usefulness of SGD

- SGD allows learning on massive data sets.
- Useful even when exact solutions available.
- E.g., least squares regression / classification.

Example

- Trained on data set with $d=20,000$ features and $n=60,000$ examples.
- Solving the normal equations, $\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}$:
- about 3 minutes
- MSE: 6.7×10^{-7}
- Using SGD with $m=16$ and $\eta=0.0005$:
- about 30 seconds
- MSE: 1.9×10^{-6}

$$
\text { DSC } 140 \mathrm{~A}
$$

In Practice

- (知 GD is heavily used in machine learning.
- Can be used to solve many optimization problems.
- But it can be tricky to get working.

Learning Rate

- The learning rate has to be chosen carefully.
- If too large, the algorithm may diverge.
- If too small, the algorithm may converge slowly.

Diverging

Diverging

Diverging

Diverging

Diverging

Diverging

- To diagnose, print $R(\vec{w})$ at each iteration.
- If it is increasing consistently, the algorithm is diverging.
- Fix: decrease the learning rate.
- But not by too much! Then it may converge too slowly.

Problem

- When the contours are "long and skinny," you will be forced to pick a very small learning rate.

A Fix

- Scaling (standardizing) the features can help.
- This makes the contours more circular.
- Doesn't change the prediction!

Iteration \#1

Iteration \#2

Iteration \#3

Iteration \#4

Iteration \#5

Iteration \#6

Iteration \#7

Next Time

- How do we minimize the risk with respect to absolute loss?
- When is gradient descent guaranteed to converge?

[^0]: ${ }^{3}$ We've assumed H is a linear prediction function.

