DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 3 | Part 1

Recap

Empirical Risk

Last time, we framed the problem of learning as **minimizing** the **empirical risk**.

$$R(H) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}), y_i)$$

► In the case where H is linear::

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}), y_i)$$

Minimizing Empirical Risk

- Picking different loss functions changes the optimization problem.
- ► If we use **square loss**:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) - y_i)^2$$

- ▶ We can minimize by setting the gradient to zero.
- ► We get: $\vec{w} = (X^T X)^{-1} X^T \vec{y}$.

Minimizing Empirical Risk

- But sometimes we can't use this approach.
 - ► If *R* is not differentiable (absolute loss).
 - If computing $\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$ is too expensive.
 - **...**

Today

- A general, very popular approach to optimization: gradient descent.
- Instead of solving for \vec{w}^* "all at once", we'll iterate towards it.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 3 | Part 2

What is the gradient?

- Consider $f(z) = 3z^2 + 2z + 1$.
 - ▶ What is the **slope** of the curve at z = 1?

- Consider $f(z) = 3z^2 + 2z + 1$.
 - ▶ What is the **slope** of the curve at z = 1?

- ► Consider $f(z) = 3z^2 + 2z + 1$.
 - ▶ What is the **slope** of the curve at z = 1?

► The **derivative** gives the slope anywhere:

$$f(z) = 3z^2 + 2z + 1$$

 $\frac{df}{dz}(z) = 6z + 2$

The slope of the curve at z = 1:

$$\frac{df}{dz}(1) = 6(1) + 2 = 8$$

What type of object?

- ▶ The derivative of $f : \mathbb{R} \to \mathbb{R}$ is a **function**:
 - Input: scalar.
 - Output: scalar.
 - Example: $\frac{df}{dz}(z) = 6z + 2$.
- ► The derivative **evaluated at a point** is a **scalar**:
 - Example: $\frac{df}{dz}(1) = 8$.

Sign of the Derivative

- If the derivative at a point is:
 - Positive: the function is increasing.
 - Negative: the function is decreasing.
 - Zero: the function is flat.

Exercise

What is the height of the dashed line at $z + \delta$?

Derivatives and Change

► The derivative tells us **how much** the function changes with an infinitesimal increase in z.

Increases and Decreases

- ► The sign of the derivative tells us if the function is increasing or decreasing.
 - Positive: *f* is increasing at *z*.
 - ▶ Negative: *f* is decreasing at *z*.

Multivariate Functions

- Now consider $f(\vec{z}) = f(z_1, z_2) = 4z_1^2 + 2z_2 + 2z_1z_2$. What is the **slope** of the surface at $(z_1, z_2) = (3, 1)$?

Multivariate Functions

- Now consider $f(\vec{z}) = f(z_1, z_2) = 4z_1^2 + 2z_2 + 2z_1z_2$. What is the **slope** of the surface at $(z_1, z_2) = (3, 1)$?

Partial Derivatives

- When f is a function of a vector $\vec{z} = (z_1, z_2)^T$, there are **two** slopes to talk about:
- $ightharpoonup \frac{\partial f}{\partial z_1}$: slope in the z_1 direction.
- $ightharpoonup \frac{\partial f}{\partial z_2}$: slope in the z_2 direction.

Example

What is the slope of f at $(z_1, z_2) = (3, 1)$ in:

- ▶ The z_1 direction?
- ► The z_2 direction?

$$f(\vec{z}) = 4z_1^2 + 2z_2 + 2z_1z_2$$

$$\triangleright \frac{\partial f}{\partial z_1}(z_1, z_2) = 82, +222$$

$$\triangleright \frac{\partial f}{\partial z_2}(z_1, z_2) = 2 + 2 = 1$$

$$\triangleright \frac{\partial f}{\partial z_2}(3,1) = 2+2(3) = 8$$

What is the gradient?

We can package the partial derivatives into a single object: the gradient.

$$\frac{df}{d\vec{z}}(\vec{z}) = \begin{pmatrix} \frac{\partial f}{\partial z_1}(\vec{z}) \\ \frac{\partial f}{\partial z_2}(\vec{z}) \end{pmatrix}$$

What is the gradient?

▶ In general, if $f: \mathbb{R}^d \to \mathbb{R}$, then the gradient is:

$$\frac{df}{d\vec{z}}(\vec{z}) = \begin{pmatrix} \frac{\partial f}{\partial z_1}(\vec{z}) \\ \frac{\partial f}{\partial z_2}(\vec{z}) \\ \vdots \\ \frac{\partial f}{\partial z_d}(\vec{z}) \end{pmatrix}$$

What type of object?

- ▶ The gradient of a function $f: \mathbb{R}^d \to \mathbb{R}$ is a function¹:
 - ▶ Input: vector in \mathbb{R}^d .
 - ▶ Output: vector in \mathbb{R}^d .
 - Example: $\frac{df}{d\vec{z}}(\vec{z}) = (8z_1 + 2z_2, 2 + 2z_1)^T$.
- ► The gradient of $f: \mathbb{R}^d \to \mathbb{R}$ evaluated at a point is a vector in \mathbb{R}^d :
 - Example: $\frac{df}{dz}(2,1) = (18,6)^T$.

¹Sometimes it is referred to as a vector field.

Gradient Fields

► The gradient can be viewed as a **vector field**:

Meaning of Gradient Vector

The gradient of a function $f : \mathbb{R}^d \to \mathbb{R}$ at a point \vec{z} is a vector in \mathbb{R}^d .

The *i*th component is the **slope** of f at \vec{z} in the *i*th direction.

Exercise

Which of these could possibly be the gradient at the point (9, -4)?

Gradients and Change

► Recall:
$$f(z + \delta) \approx f(z) + \delta \times \frac{df}{dz}(z)$$
.

► In multiple dimensions:

$$f(\vec{z} + \vec{\delta}) \approx f(\vec{z}) + \left(\delta_1 \times \frac{\partial f}{\partial z_1}(\vec{z})\right) + \left(\delta_2 \times \frac{\partial f}{\partial z_2}(\vec{z})\right) + \dots$$
$$\approx f(\vec{z}) + \vec{\delta} \cdot \frac{df}{d\vec{z}}(\vec{z})$$

Exercise

At a point $\vec{z} = (2,3)^T$, $f(\vec{z})$ is 7 and the gradient $\frac{df}{d\vec{z}}(\vec{z}) = (4,-2)^T$.

What is the approximate a value of f(2.1, 3.1)?

^aQuality of approximation depends on second derivative.

$$4+.4-.2 = 7.2$$

Steepest Ascent

► **Key property**: the gradient vector points in the direction of **steepest ascent**.

Proof

- ► Remember: $f(\vec{z} + \vec{\delta}) \approx f(\vec{z}) + \vec{\delta} \cdot \frac{df}{d\vec{z}}(\vec{z})$.
- ▶ So the total change is $\vec{\delta} \cdot \frac{df}{d\vec{z}}(\vec{z})$.
- Also remember: $\vec{\delta} \cdot \frac{df}{d\vec{z}}(\vec{z}) = ||\vec{\delta}|| ||\frac{df}{d\vec{z}}(\vec{z})|| \cos \theta$.
- ▶ So the increase in f is maximized when $\theta = 0$.
 - ► That is, when $\vec{\delta}$ points in the direction of $\frac{df}{d\vec{z}}(\vec{z})$.

Steepest Descent

► The **negative** gradient points in the direction of **steepest descent**.

Why?

- ► The direction of steepest ascent is the **opposite** of the direction of steepest descent.
- Because, zoomed in, the function looks linear.

▶ The contours are the **level sets** of the function.

Contours and Gradients

► The gradient is **orthogonal** to the contours.

Optimization

To find a **minimum** (or **maximum**), look for where the gradient is $\vec{0}$.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 3 | Part 3

Gradient Descent

► **Goal:** minimize $f(\vec{z}) = e^{z_1^2 + z_2^2} + (z_1 - 2)^2 + (z_2 - 3)^2$.

Try solving
$$\frac{df}{d\vec{z}}(\vec{z}) = 0$$
.

► The gradient is:

$$\frac{df}{d\vec{z}}(\vec{z}) = \begin{pmatrix} 2z_1 e^{z_1^2 + z_2^2} + 2(z_1 - 2) \\ 2z_2 e^{z_1^2 + z_2^2} + 2(z_2 - 3) \end{pmatrix} = 0$$

Can we solve the system?

$$2z_1e^{z_1^2+z_2^2} + 2(z_1 - 2) = 0$$
$$2z_2e^{z_1^2+z_2^2} + 2(z_2 - 3) = 0$$

Try solving
$$\frac{df}{d\vec{z}}(\vec{z}) = 0$$
.

► The gradient is:

$$\frac{df}{d\vec{z}}(\vec{z}) = \begin{pmatrix} 2z_1 e^{z_1^2 + z_2^2} + 2(z_1 - 2) \\ 2z_2 e^{z_1^2 + z_2^2} + 2(z_2 - 3) \end{pmatrix}$$

Can we solve the system? Not in closed form.

$$2z_1e^{z_1^2+z_2^2}+2(z_1-2)=0$$
$$2z_2e^{z_1^2+z_2^2}+2(z_2-3)=0$$

A Problem

- ► The function is differentiable².
- ▶ But we can't set gradient to zero and solve.
- ► How do we find the minimum?

²The gradient exists everywhere.

A Solution

- Idea: iterate towards a minimum, step by step.
- Start at an arbitrary location.
- At every step, move in direction of steepest descent.
 - i.e., the negative gradient.

Exercise

The gradient of a function $f(\vec{z})$ at (1, 1) is $(2, 1)^T$.

If you're trying to minimize $f(\vec{z})$, which place should you go to next?

- ► A) (1, 1
- B) (.8, .9)
- C) (1.2, 1.1

▶ If η is the **learning rate**, then the next step is:

$$\vec{z}^{(t+1)} = \vec{z}^{(t)} - \eta \times \frac{df}{d\vec{z}}(\vec{z}^{(t)})$$

▶ If η is the **learning rate**, then the next step is:

$$\vec{z}^{(t+1)} = \vec{z}^{(t)} - \eta \times \frac{df}{d\vec{z}}(\vec{z}^{(t)})$$

▶ If η is the **learning rate**, then the next step is:

$$\vec{z}^{(t+1)} = \vec{z}^{(t)} - \eta \times \frac{df}{d\vec{z}}(\vec{z}^{(t)})$$

If η is the **learning rate**, then the next step is:

$$\vec{z}^{(t+1)} = \vec{z}^{(t)} - \eta \times \frac{df}{d\vec{z}}(\vec{z}^{(t)})$$

If η is the **learning rate**, then the next step is:

$$\vec{z}^{(t+1)} = \vec{z}^{(t)} - \eta \times \frac{df}{d\vec{z}}(\vec{z}^{(t)})$$

Gradient Descent

To minimize $f(\vec{z})$:

- Pick arbitrary starting point $\vec{z}^{(0)}$, learning rate $\eta > 0$
- Until convergence, repeat:
 - ► Compute gradient: $\frac{df}{d\vec{z}}(\vec{z}^{(t)})$ at $\vec{z}^{(t)}$.
 - **Update:** $\vec{z}^{(t+1)} = \vec{z}^{(t)} \eta \times \frac{df}{d\vec{z}}(\vec{z}^{(t)}).$
- ightharpoonup When converged, return $\vec{z}^{(t)}$.
 - It is (approximately) a local minimum.

Stopping Criterion

- Close to a minimum, gradient is small.
- Idea: stop when $\left\| \frac{df}{d\vec{z}}(\vec{z}^{(t)}) \right\|$ is small.
- Alternative: stop when $\|\vec{z}^{(t+1)} \vec{z}^{(t)}\|$ is small.

```
def gradient_descent(
    gradient, z_0, learning_rate, stop_threshold
):
    z = z_0
    while True:
    z new = z - learning rate * gradient(z)
```

break

z = z new

return z new

if np.linalg.norm(z new - z) < stop threshold:</pre>

Picking Parameters

- The learning rate and stopping threshold are parameters.
- They need to be chosen carefully for each problem.
- If not, the algorithm may not converge.

$$\frac{d}{d\bar{z}}f(\bar{z}) = \begin{pmatrix} 4z_1^3 + z_2 \\ 6z_2 + z_1 \end{pmatrix} \qquad \vec{z}^{(i)} = \vec{z}^{(i)} + \vec{z}^{(i)} = \begin{pmatrix} .5 \\ .3 \end{pmatrix}$$
Exercise

Let $f(z_1, z_2) = z_1^4 + 3z_2^2 + z_1z_2$.

Starting at $\vec{z}^{(0)}$ = (1, 1), what is the next point after one step of gradient descent with learning rate η = 0.1?

$$\frac{df}{d\bar{z}}(\bar{z}^{(\omega)}) = \begin{pmatrix} 4+1\\6+1 \end{pmatrix} = \begin{pmatrix} 5\\4 \end{pmatrix} \qquad -\eta \cdot \frac{df}{d\bar{z}}(\bar{z}^{(\omega)}) = -0.1 \times \begin{pmatrix} 5\\4 \end{pmatrix}$$

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 3 | Part 4

Gradient Descent for ERM

Gradient Descent for ERM

► In ERM, our goal is to minimize **empirical risk**:³

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w}, y_i)$$

Often, we can minimize using gradient descent.

³We've assumed *H* is a linear prediction function.

The Gradient of the Risk

► The gradient of the empirical risk is:

$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{d}{d\vec{w}} \left(\frac{1}{n} \sum_{i=1}^{n} \ell(\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w}, y_i) \right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \frac{d\ell}{d\vec{w}} (\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w}, y_i)$$

- Gradient of risk is average gradient of loss.
- As far as we can go without knowing the loss.

The Gradient of the MSE

Recall: the mean squared error is the empirical risk with respect to the square loss:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$$

The gradient is:

$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{d}{d\vec{w}} (\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$$

$$\frac{d}{dw}(xw) = x$$

Exercise

Recall that the square loss for a linear predictor is: $(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i)^2$.

What is the gradient of the square loss with respect to \vec{w} ?

The Gradient of the MSE

► The gradient of the mean squared error is:4

$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} (\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i) \text{Aug}(\vec{x}^{(i)})$$

Each training point $\vec{x}^{(i)}$ contributes to the gradient.

⁴We saw before that $\frac{dR}{d\vec{w}}(\vec{w}) = 2X^T X \vec{w} - 2X^T \vec{y}$. These two are actually equal.

Exercise

What will be the gradient if every prediction is exactly correct?

$$\frac{dR}{d\vec{w}}(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} (\operatorname{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i) \operatorname{Aug}(\vec{x}^{(i)})$$

Gradient Descent for Least Squares

- We can perform least squares regression by solving the normal equations: $\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$.
- But we can find the same solution using gradient descent:

$$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \eta \times \frac{2}{n} \sum_{i=1}^{n} (\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w}^{(t)} - y_i) \text{Aug}(\vec{x}^{(i)})$$

Example

We will run gradient descent to train a least squares regression model on the following data:

Exercise

The plot below shows a linear prediction function using weight vector $\vec{w}^{(0)}$.

What is the sign of the **second** entry of $\frac{dR}{d\vec{w}}(\vec{w}^{(0)})$?

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 3 | Part 5

Stochastic Gradient Descent

Gradient Descent for Minimizing Risk

► In ML, we often want to minimize a risk function:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Observation

The gradient of the risk function is a sum of gradients:

$$\frac{d}{d\vec{w}}R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{d}{d\vec{w}} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

One term for each point in training data.

Problem

- In machine learning, the number of training points *n* can be **very large**.
- Computing the gradient can be expensive when n is large.
- Therefore, each step of gradient descent can be expensive.

Idea

► The (full) gradient of the risk uses all of the training data:

$$\frac{d}{d\vec{w}}R(\vec{w}) = \frac{1}{n}\sum_{i=1}^{n}\frac{d}{d\vec{w}}L(H(\vec{x}^{(i)};\vec{w}),y_i)$$

- It is an average of *n* gradients.
- ▶ **Idea:** instead of using all n points, randomly choose $\ll n$.

Stochastic Gradient

- Choose a random subset (mini-batch) B of the training data.
- Compute a stochastic gradient:

$$\frac{d}{d\vec{w}}R(\vec{w}) \approx \sum_{i \in B} \frac{d}{d\vec{w}} L(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Stochastic Gradient

$$\frac{d}{d\vec{w}}R(\vec{w}) \approx \sum_{i \in \mathbb{R}} \frac{d}{d\vec{w}} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

- ▶ **Good:** if $|B| \ll n$, this is much faster to compute.
- Bad: it is a (random) approximation of the full gradient, noisy.

Stochastic Gradient Descent (SGD) for ERM

Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta > 0$, batch size $m \ll n$.

- Until convergence, repeat:
 - Randomly sample a batch *B* of *m* training data points.
 - ► Compute stochastic gradient of f at $\vec{x}^{(i)}$:

$$\vec{g} = \sum_{i \in \mathbb{R}} \frac{d}{d\vec{w}} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Update w

(i+1) = w

(i) − ηg

Idea

- In practice, a stochastic gradient often works well enough.
- It is better to take many noisy steps quickly than few exact steps slowly.

Batch Size

- Batch size m is a parameter of the algorithm.
- ► The larger *m*, the more reliable the stochastic gradient, but the more time it takes to compute.
- Extreme case when m = 1 will still work.

Usefulness of SGD

- SGD allows learning on massive data sets.
- Useful even when exact solutions available.
 - E.g., least squares regression / classification.

Example

- Trained on data set with d = 20,000 features and n = 60,000 examples.
- Solving the normal equations, $\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$:
 - about 3 minutes
 - ► MSE: 6.7×10^{-7}

- ▶ Using SGD with m = 16 and $\eta = 0.0005$:
 - about 30 seconds
 - ► MSE: 1.9 × 10⁻⁶

DSC 140A Probabilistic Modeling & Machine Knarning

Lecture 3 | Part 6

From Theory to Practice

In Practice

- Can be used to solve many optimization problems.
- But it can be tricky to get working.

Learning Rate

- The learning rate has to be chosen carefully.
- If too large, the algorithm may diverge.
- If too small, the algorithm may converge slowly.

- ► To diagnose, print $R(\vec{w})$ at each iteration.
- If it is increasing consistently, the algorithm is diverging.
- Fix: decrease the learning rate.
 - But not by too much! Then it may converge too slowly.

Problem

When the contours are "long and skinny," you will be forced to pick a very small learning rate.

A Fix

- Scaling (standardizing) the features can help.
- ► This makes the contours more circular.

Doesn't change the prediction!

Next Time

- ► How do we minimize the risk with respect to absolute loss?
- When is gradient descent guaranteed to converge?