

Lecture 02 | Part 1

News

Lab 01 released. Due Sunday @ 11:59 pm.

- HW 01 will be released today. Due Wednesday @ 11:59 pm.
 - ETEX template available (optional).

Last Time

- We saw nearest neighbor predictors.
- ► They can work well.
- But they memorize the training data rather than learning a simpler underlying pattern.

The Rest of DSC 140A

- We'll explore three different paradigms for learning from data.
 - Part 1: Empirical Risk Minimization
 - Part 2: Probabilistic Modeling
 - Part 3: Tree-based Methods

Lecture 02 | Part 2

Empirical Risk Minimization

Prediction

- Prediction is the most common task in ML:
 - **b** given: a **feature vector**, \vec{x}
 - predict: an output target, y.
- Example:
 - given: years of experience and college GPA
 - predict: salary

Prediction Functions

- Informally: we think experience, GPA, etc., are predictive of salary.
- Formally: we think there is a function H that takes in (experience, GPA) and outputs a good prediction of the salary.

 $H(experience, GPA) \rightarrow predicted salary$

Prediction Functions

In general, a prediction function¹ H takes in a feature vector and outputs a predicted label.

 $H(\vec{x}) \to y$

¹Sometimes called a **hypothesis** function.

Example Prediction Function

H(experience, GPA) = \$50,000 + \$10,000 × experience + \$5,000 × GPA

Goal

- There are many possible prediction functions.
- How do we pick a good one?
- One that works well on unseen, future data.
- Problem: we don't know the future.

Data

Assumption: the future will be like the past.

So a prediction function that works well on past data will likely work well on future data.

Idea: can use past data to "measure" how a good prediction function is, select between them.

Example

Fit

- We preferred H₁ over H₂ and H₃ because it "fit" the data better.
- How do we formally **quantify** how well a prediction function fits the data?

Measuring Errors

Idea: measure the difference between the prediction and the correct label.

Loss Functions

- A loss function measures the difference between a prediction $H(\vec{x}^{(i)})$ and the "right answer" y_i .
- There are many different loss functions. For now, we'll consider two.
- Absolute loss: $\ell_{abs}(H(\vec{x}^{(i)}), y_i) = |H(\vec{x}^{(i)}) y_i|$
- Square loss: $\ell_{sq}(H(\vec{x}^{(i)}), y_i) = (H(\vec{x}^{(i)}) y_i)^2$

Quantifying Overall Fit

- A loss function measures the difference between a prediction and the correct label for a single training point.
- A good prediction function should make good predictions on average over the entire training set.
- That is, for a good H, the average loss should be small.

Empirical Risk

The average loss on the training set, also called the empirical risk, is defined to be:

$$R(H) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}), y_i)$$

- ▶ It is a function of *H*, but it also depends on: ▶ The training data, $\mathcal{X} = (\vec{x}^{(1)}, y_1), ..., (\vec{x}^{(n)}, y_n)$
 - The particular choice of loss function ?

Example

Terminology

We might say: "the empirical risk with respect to absolute loss". This means:

$$R(H) = \frac{1}{n} \sum_{i=1}^{n} |H(\vec{x}^{(i)}) - y_i|$$

Or, "the empirical risk with respect to square loss". This means:

$$R(H) = \frac{1}{n} \sum_{i=1}^{n} (H(\vec{x}^{(i)}) - y_i)^2$$

Terminology

We might be quick and say "risk" instead of "empirical risk".

Minimizing Empirical Risk

- Empirical risk measures the "fit" of a prediction function to the training data.
- Idea: find a prediction function H that has the smallest empirical risk.

Exercise

Consider the data shown below, and assume absolute loss.

Sketch a prediction function *H* that minimizes the empirical risk.

Problem

- It is too easy to find a prediction function that has zero empirical risk.
 - Simply memorize the training data.
 - We want to learn a simpler pattern.
- Instead, we will restrict our search for prediction functions to a smaller set of (simple) functions.
- This set is called the hypothesis class.

Exercise

Consider the data shown below, and assume absolute loss.

Empirical Risk Minimization

- The learning strategy we have just derived is called empirical risk minimization (ERM).
- Step 1: choose a hypothesis class
 for example, linear functions
- Step 2: choose a loss function
- Step 3: find H minimizing empirical risk

ERM is a Recipe

- By choosing different hypothesis classes and losses, we derive different learning algorithms.
- Some choices for Step 1 & 2 make Step 3 easier or harder.
- ▶ We'll see different choices in the coming weeks.

Lecture 02 | Part 3

Linear Prediction Functions

A Simple Choice

ERM asks us to choose a hypothesis class.

- Let's start with a simple one: linear functions.
- ► This choice will take us quite far.

Linear Functions

A linear prediction function of one feature has the form:

$$H(x) = W_0 + W_1 x$$

In general, a linear prediction function of d features has the form:

$$H(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$

 \blacktriangleright w_0, w_1, \dots, w_d are the **parameters** or **weights**.

Interpreting Weights

$$H(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$

- w₀ (the bias) determines the prediction when all features are zero.
- w₁ determines how much the prediction changes when x₁ increases by one unit
- Similarly for w_2, \dots, w_d

Interpreting Weights

- When plotted, linear prediction functions are:
 - ▶ straight lines when $\vec{x} \in \mathbb{R}^1$
 - ▶ planes when $\vec{x} \in \mathbb{R}^2$
 - hyperplanes when $\vec{x} \in \mathbb{R}^d$
- w_i is the **slope** of the hyperplane in the x_i direction.

Example

$$w_0 = 1$$
, $w_1 = -3$, $w_2 = 2$
 $H(\vec{x}) = 1 - 3x_1 + 2x_2$

Parameter Vectors

The parameters of a linear function can be packaged into a parameter vector, \vec{w} .

Example: if
$$H(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$
 then $\vec{w} = (w_0, ..., w_3)^T$.

▶ If $\vec{x} \in \mathbb{R}^d$, then $\vec{w} \in \mathbb{R}^{d+1}$.

Parameterization

A linear function $H(\vec{x})$ is **completely specified** by its parameter vector.

Can work either with the function, *H*, or vector, \vec{w} .

Sometimes write $H(\vec{x}; \vec{w})$.

Compact Form

Recall the **dot product** of vectors \vec{a} and \vec{b} :

$$\vec{a} = (a_1, a_2, ..., a_d)^T$$
 $\vec{b} = (b_1, b_2, ..., b_d)^T$
 $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + ... + a_d b_d$

Observe:

$$H(\vec{x}; \vec{w}) = w_0 + w_1 x_1 + \dots + w_d x_d$$

= $\underbrace{(w_0, w_1, \dots, w_d)^T}_{\vec{w}} \cdot \underbrace{(1, x_1, \dots, x_d)^T}_{?}$

Compact Form

The augmented feature vector Aug(x) is the vector obtained by adding a 1 to the front of x:

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} \quad \text{Aug}(\vec{x}) = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix}$$

With augmentation, we can write:

$$H(\vec{x}) = W_0 + W_1 x_1 + W_2 x_2 + ... + W_d x_d$$

= $\vec{w} \cdot \text{Aug}(\vec{x})$

Lecture 02 | Part 4

ERM for Linear Predictors

Empirical Risk Minimization

To create a new ML algorithm:

Step 1: choose a hypothesis class
 We've chosen linear functions

- Step 2: choose a loss function
- Step 3: find *H* minimizing **empirical risk**

Loss Functions

- Next, we need to choose a loss function.
- Choice depends on the problem at hand.
- Let's focus on regression for now.
- ► The **absolute loss** is a natural first choice.

Empirical Risk w.r.t. Absolute Loss

Now that we have assumed H(x) is linear, we can write the empirical risk w.r.t. the absolute loss as:

$$R_{abs}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} |H(\vec{x}^{(i)}) - y_i|$$

= $\frac{1}{n} \sum_{i=1}^{n} |\vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) - y_i|$

A function of \vec{w} , since *H* is totally specified by \vec{w} .

Risk Surface

- Can imagine plotting $R_{abs}(\vec{w})$ for all values of \vec{w} .
- This is called the risk surface.
- A w that makes the surface lowest minimizes the empirical risk.

Risk Surface

Plot of $R_{abs}(\vec{w})$

More Features

- With 2 features, we fit a plane instead of a line.
 With ≥ 3 features, we fit a hyperplane.
- We can no longer easily visualize the risk surface.
- But the idea is the same: find the w that minimizes the empirical risk.

Minimizing Empirical Risk

• How do we find the \vec{w} that minimizes $R_{abs}(\vec{w})$ (the empirical risk with respect to the absolute loss)?

Calculus

- We know how to use calculus to find the minimum of a function:
 - 1. Find the gradient $\frac{d}{d\vec{w}}R_{abs}(\vec{w})$.
 - 2. Set it equal to zero, solve for \vec{w} .
 - 3. This finds places where $R_{abs}(\vec{w})$ is flat; check that it is a minimum (and not a maximum or saddle point).

Problem

• $R_{abs}(\vec{w})$ is **not differentiable**.

- There are places where the gradient (slope) is not defined.
- These appear as "cusps" or "sharp creases" in the risk surface.

 W_1

Another Loss?

- We cannot use the usual calculus approach to minimize $R_{abs}(\vec{w})$.
 - We'll come back to this in a later lecture.

Instead, let's see if the square loss is any better.

Empirical Risk w.r.t. Square Loss

Assuming $H(\vec{x})$ is linear, we can write the empirical risk w.r.t. the square loss as:

$$R_{sq}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (H(\vec{x}^{(i)}) - y_i)^2$$

= $\frac{1}{n} \sum_{i=1}^{n} (\vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) - y_i)^2$

 $ightarrow R_{sq}(\vec{w})$ is called the mean squared error (MSE).

Risk Surface

Good News!

- ► The mean squared error is **differentiable**.
- Now, we'll try to find the w that minimizes R_{sq}(w) with calculus.

Lecture 02 | Part 5

Least Squares

Minimizing the MSE

- **Goal**: minimize $R_{sq}(\vec{w})$ with respect to \vec{w} .
- **Calculus Approach**: Find gradient of $R_{sq}(\vec{w})$; set to zero; solve for \vec{w} .
- We'll rely on results from vector calculus.

Step one: rewrite R_{sq} in vector form.

► We will find:

$$R_{sq}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right)^2$$
$$= \frac{1}{n} \|X\vec{w} - \vec{y}\|^2$$

Recall

► If
$$\vec{u} = (u_1, u_2, ..., u_k)^T$$
, then:
 $\|\vec{u}\|^2 = \vec{u} \cdot \vec{u} = \sum_{i=1}^k u_i^2$

► So, if
$$\vec{a} = (a_1, ..., a_k)^T$$
 and $\vec{b} = (b_1, ..., b_k)^T$:
 $\|\vec{a} - \vec{b}\|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b})$
 $= \sum_{i=1}^k (a_i - b_i)^2$

Define p_i = Aug(x⁽ⁱ⁾) · w, and let p = (p₁,..., p_n)^T.
 p is a vector of the predictions on training set.
 Note: p ∈ ℝⁿ, not ℝ^d!

Then:

$$R_{sq}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left(p_i - y_i \right)^2$$
$$= \frac{1}{n} \|\vec{p} - \vec{y}\|^2$$

Define the (augmented) design matrix, X:

$$X = \begin{pmatrix} \operatorname{Aug}(\vec{x}^{(1)}) & \longrightarrow \\ \operatorname{Aug}(\vec{x}^{(2)}) & \longrightarrow \\ \vdots & & \vdots \\ \operatorname{Aug}(\vec{x}^{(n)}) & \longrightarrow \end{pmatrix} : = \begin{pmatrix} 1 & x_1^{(1)} & x_2^{(1)} & \dots & x_d^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} & \dots & x_d^{(2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_1^{(n)} & x_2^{(n)} & \dots & x_d^{(n)} \end{pmatrix}$$

• **Observe:** $\vec{p} = X\vec{w}$.

Therefore, the MSE can be written:

$$R_{sq}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(\text{Aug}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right)^2$$

= $\frac{1}{n} \sum_{i=1}^{n} \left(p_i - y_i \right)^2$
= $\frac{1}{n} \|\vec{p} - \vec{y}\|^2$
= $\frac{1}{n} \|X\vec{w} - \vec{y}\|^2$

Goal

Find $\vec{w} \in \mathbb{R}^{d+1}$ minimizing:

$$R_{\rm sq}(\vec{w}) = \frac{1}{n} \| X \vec{w} - \vec{y} \|^2$$

Step Two: find gradient, set to zero, solve.

Step Two: Find Gradient

We want to compute:

$$\frac{d}{d\vec{w}} \left[R_{\rm sq}(\vec{w}) \right] = \frac{d}{d\vec{w}} \left[\frac{1}{n} \| X \vec{w} - \vec{y} \|^2 \right]$$

$$\frac{dR_{sq}}{d\vec{w}}$$
 is the gradient of R_{sq} .

It is the vector of partial derivatives:

$$\frac{dR_{sq}}{d\vec{w}} = \left(\frac{\partial R_{sq}}{\partial w_0}, \frac{\partial R_{sq}}{\partial w_1}, \dots, \frac{\partial R_{sq}}{\partial w_d}\right)^T$$

Good to know...

$$(A + B)^{T} = A^{T} + B^{T}$$

$$(AB)^{T} = B^{T}A^{T}$$

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} = \vec{u}^{T}\vec{v} = \vec{v}^{T}\vec{u}$$

$$(\vec{u} + \vec{v}) \cdot (\vec{w} + \vec{z}) = \vec{u} \cdot \vec{w} + \vec{u} \cdot \vec{x} + \vec{v} \cdot \vec{w} + \vec{v} \cdot \vec{z}$$

$$\|\vec{u}\|^{2} = \vec{u} \cdot \vec{u}$$

Step Two: Find Gradient

Expand norm to make gradient easier.

$$\|X\vec{w} - \vec{y}\|^2 =$$

=

=

=

Exercise

Consider:

 $\vec{w}^{\intercal} X^{\intercal} X \vec{w} - 2 \vec{y}^{\intercal} X \vec{w} + \vec{y}^{\intercal} \vec{y}$

What type of object should it be?
 Scalar, vector, or matrix?

2. What type of object is it?

Step Two: Find Gradient

$$\frac{d}{d\vec{w}} \left[R_{\rm sq}(\vec{w}) \right] = \frac{1}{n} \frac{d}{d\vec{w}} \left[\vec{w}^T X^T X \vec{w} - 2 \vec{y}^T X \vec{w} + \vec{y}^T \vec{y} \right]$$
Idea

- While we could compute each of: $\frac{\partial R_{sq}}{\partial w_0}$, $\frac{\partial R_{sq}}{\partial w_1}$,
- there's an easier way using matrix-vector calculus.

Exercise

If you had to guess, which of the following is equal to $\frac{d}{d\vec{w}} \left[\vec{w}^T X^T X \vec{w} \right]$?

Claims

$$\frac{d}{d\vec{w}} \left[\vec{w}^T X^T X \vec{w} \right] = 2X^T X \vec{w}$$

$$\frac{d}{d\vec{w}} \left[\vec{y}^T X \vec{w} \right] = X^T \vec{y}$$

$$\frac{d}{d\vec{w}} \left[\vec{y}^T \vec{y} \right] = 0$$

How?

- General procedure: expand, differentiate, gather
 - 1. Expand $\vec{v}^T \vec{u}$ until coordinates u_1, \dots, u_k are visible.
 - 2. Compute $\partial d / \partial u_1$, $\partial d / \partial u_2$, ..., $\partial d / \partial u_k$.
 - 3. Gather result in vector form.

Step Two: Find Gradient

We claimed

$$\frac{d}{d\vec{w}} \begin{bmatrix} \vec{w}^T X^T X \vec{w} \end{bmatrix} = 2X^T X \vec{w} \qquad \frac{d}{d\vec{w}} \begin{bmatrix} \vec{y}^T X \vec{w} \end{bmatrix} = X^T \vec{y} \qquad \frac{d}{d\vec{w}} \begin{bmatrix} \vec{y}^T \vec{y} \end{bmatrix} = 0$$

So:

$$\frac{d}{d\vec{w}} \left[R_{\rm sq}(\vec{w}) \right] = \frac{1}{n} \frac{d}{d\vec{w}} \left[\vec{w}^T X^T X \vec{w} - 2 \vec{y}^T X \vec{w} + \vec{y}^T \vec{y} \right]$$

=

Solution

► We have found:

$$\frac{d}{d\vec{w}} \left[R_{\rm sq}(\vec{w}) \right] = \frac{1}{n} \left(2X^T X \vec{w} - 2X^T \vec{y} \right)$$

To minimize $R_{sq}(\vec{w})$, set gradient to zero, solve:

$$2X^T X \vec{w} - 2X^T \vec{y} = 0 \implies X^T X \vec{w} = X^T \vec{y}$$

This is a system of equations in matrix form, called the normal equations.

The Normal Equations

The least squares solutions for w are found by solving the normal equations:

$$X^T X \vec{w} = X^T \vec{y}$$

Mathematically, solved by:

$$\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$$

A Direct Solution

 $\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$ is exactly at the bottom of the risk surface.

Linear Least Squares Regression

To train:

- Given a training set $\{(\vec{x}^{(1)}, y_1), ..., (\vec{x}^{(n)}, y_n)\}...$
- 1. Construct $n \times (d + 1)$ augmented **design matrix**, X.
- 2. Solve the **normal equations**: $\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$.

► To predict:

Given a new \vec{x} , compute $H(\vec{x}) = \text{Aug}(\vec{x}) \cdot \vec{w}^*$.

Linear Least Squares Regression

The first algorithm we've derived from the ERM framework:

Step 1: choose a hypothesis class
 We've chosen linear functions

- Step 2: choose a loss function
 We've chosen the square loss
- Step 3: find H minimizing empirical risk
 ▶ We've found a direct solution: w^{*} = (X^TX)⁻¹X^Ty^{*}

Compare to *k***-Nearest Neighbors**

- Then: k-NN did not learn the relative importance of features.
- Now: Linear least squares learns a weight for each feature.

Lecture 02 | Part 6

From Theory to Practice

Implementation

sklearn.linear_model.LinearRegression

But linear least squares is very simple to implement in numpy:

- > # training
- > w = np.linalg.solve(X.T @ X, X.T @ y)
- > # prediction on a new example, x
- > # (you'll need to define augment)
- > augment(x) @ w

Augmentation

One easy way to implement augment:

```
def augment(x):
    return np.array([1, *x])
```

- This code only works for a single example.
- To augment an array of examples, use np.ones and np.column_stack.

Don't Invert!

- Don't actually compute $(X^T X)^{-1}$.
- That is, avoid np.linalg.inv
- Inverting a matrix can be slow and numerically unstable.

Practical Issues

- You'll sometimes run into technical issues when using least squares.
- But we have the theoretical tools to understand and address them.

Issue: "Singular Matrix" Error

- You're training a regression model to predict house prices.
- Two of your features are 1) size in square feet and 2) size in square yards.

np.linalg.solve(X.T @ X, X.T @ y)

Issue: "Singular Matrix" Error

Let's look at the data.

Issue: "Singular Matrix" Error

The data aren't truly 3-dimensional.

There are infinitely many planes with the same empirical risk.

That is, there are infinitely many solutions to the normal equations.

► This is why the matrix is singular.

Multicollinearity

- The situation where one feature is a linear combination of others is called multicollinearity.
- Can happen because the features are redundant, or because of chance.
- One fix: remove one of the redundant features.
 We'll see another fix in lecture on regularization.

Issue: Time

[*]: np.linalg.solve(X.T @ X, X.T @ y)

- Solving a linear system in *d* unknowns takes $\Theta(d^3)$ time.
- Fine for small number of features, but can be slow when using many features.
- Next time: an approach for efficiently minimizing risk when data is very large.