$$
D S C 140 A
$$

News

- Lab 01 released. Due Sunday @ 11:59 pm.
- HW 01 will be released today. Due Wednesday @ 11:59 pm.
- WTEX template available (optional).

Last Time

- We saw nearest neighbor predictors.
- They can work well.
- But they memorize the training data rather than learning a simpler underlying pattern.

The Rest of DSC 140A

- We'll explore three different paradigms for learning from data.
- Part 1: Empirical Risk Minimization
- Part 2: Probabilistic Modeling
- Part 3: Tree-based Methods

$$
\text { DSC } 140 \mathrm{~A}
$$

Prediction

- Prediction is the most common task in ML:
- given: a feature vector, \vec{x}
- predict: an output target, y.
- Example:
- given: years of experience and college GPA
- predict: salary

Prediction Functions

> Informally: we think experience, GPA, etc., are predictive of salary.

- Formally: we think there is a function H that takes in (experience, GPA) and outputs a good prediction of the salary.

$$
H(\text { experience, GPA) } \rightarrow \text { predicted salary }
$$

Prediction Functions

- In general, a prediction function ${ }^{1} \mathrm{H}$ takes in a feature vector and outputs a predicted label.

$$
H(\vec{x}) \rightarrow y
$$

Example Prediction Function

$H($ experience, GPA $)=\$ 50,000$

+ \$10,000 × experience
$+\$ 5,000 \times$ GPA

Goal

- There are many possible prediction functions.
- How do we pick a good one?
- One that works well on unseen, future data.
- Problem: we don't know the future.

Data

- Assumption: the future will be like the past.
- So a prediction function that works well on past data will likely work well on future data.
- Idea: can use past data to "measure" how a good prediction function is, select between them.

Example

- $H_{1}(x)=60,000+10,000 x$
$-H_{2}(x)=70,000+200 x^{2}$
- $H_{3}(x)=110,000-15,000 x$

Fit

- We preferred H_{1} over H_{2} and H_{3} because it "fit" the data better.
- How do we formally quantify how well a prediction function fits the data?

Measuring Errors

- Idea: measure the difference between the prediction and the correct label.

Measuring Errors

- Idea: measure the difference between the prediction and the correct label.

Loss Functions

- A loss function measures the difference between a prediction $H\left(\vec{x}^{(i)}\right)$ and the "right answer" y_{i}.
- There are many different loss functions. For now, we'll consider two.
- Absolute loss: $\ell_{\text {abs }}\left(H\left(\vec{x}^{(i)}\right), y_{i}\right)=\left|H\left(\vec{x}^{(i)}\right)-y_{i}\right|$
- Square loss: $\ell_{\text {sq }}\left(H\left(\vec{x}^{(i)}\right), y_{i}\right)=\left(H\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2}$

Quantifying Overall Fit

- A loss function measures the difference between a prediction and the correct label for a single training point.
- A good prediction function should make good predictions on average over the entire training set.
- That is, for a good H, the average loss should be small.

Empirical Risk

- The average loss on the training set, also called the empirical risk, is defined to be:

$$
R(H)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(H\left(\vec{x}^{(i)}\right), y_{i}\right)
$$

- It is a function of H, but it also depends on:
- The training data, $\mathcal{X}=\left(\vec{x}^{(1)}, y_{1}\right), \ldots,\left(\vec{x}^{(n)}, y_{n}\right)$
- The particular choice of loss function ℓ

Example

Example

Terminology

- We might say: "the empirical risk with respect to absolute loss". This means:

$$
R(H)=\frac{1}{n} \sum_{i=1}^{n}\left|H\left(\vec{x}^{(i)}\right)-y_{i}\right|
$$

- Or, "the empirical risk with respect to square loss". This means:

$$
R(H)=\frac{1}{n} \sum_{i=1}^{n}\left(H\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2}
$$

Terminology

- We might be quick and say "risk" instead of "empirical risk".

Minimizing Empirical Risk

- Empirical risk measures the "fit" of a prediction function to the training data.
- Idea: find a prediction function H that has the smallest empirical risk.

Exercise

Consider the data shown below, and assume absolute loss.

Sketch a prediction function H that minimizes the empirical risk.

Exercise

Consider the data shown below, and assume absolute loss.

Sketch a prediction function H that minimizes the empirical risk.

Exercise

Consider the data shown below, and assume absolute loss.

Sketch a prediction function H that minimizes the empirical risk.

Problem

- It is too easy to find a prediction function that has zero empirical risk.
- Simply memorize the training data.
- We want to learn a simpler pattern.
- Instead, we will restrict our search for prediction functions to a smaller set of (simple) functions.
- This set is called the hypothesis class.

Exercise

Consider the data shown below, and assume absolute loss.

Sketch a linear prediction function H that minimizes the empirical risk.

Empirical Risk Minimization

- The learning strategy we have just derived is called empirical risk minimization (ERM).
- Step 1: choose a hypothesis class
- for example, linear functions
> Step 2: choose a loss function
- Step 3: find H minimizing empirical risk

ERM is a Recipe

- By choosing different hypothesis classes and losses, we derive different learning algorithms.
- Some choices for Step $1 \& 2$ make Step 3 easier or harder.
- We'll see different choices in the coming weeks.

$$
\text { DSC } 140 A
$$

A Simple Choice

- ERM asks us to choose a hypothesis class.
- Let's start with a simple one: linear functions.
- This choice will take us quite far.

Linear Functions

- A linear prediction function of one feature has the form:

$$
H(x)=w_{0}+w_{1} x
$$

- In general, a linear prediction function of d features has the form:

$$
H(\vec{x})=w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{d} x_{d}
$$

$w_{0}, w_{1}, \ldots, w_{d}$ are the parameters or weights.

Interpreting Weights

$$
H(\vec{x})=w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{d} x_{d}
$$

- w_{0} (the bias) determines the prediction when all features are zero.
w_{1} determines how much the prediction changes when x_{1} increases by one unit
- Similarly for w_{2}, \ldots, w_{d}

Interpreting Weights

- When plotted, linear prediction functions are:
- straight lines when $\vec{x} \in \mathbb{R}^{1}$
- planes when $\vec{x} \in \mathbb{R}^{2}$
- hyperplanes when $\vec{x} \in \mathbb{R}^{d}$
- w_{i} is the slope of the hyperplane in the x_{i} direction.

Example

$$
\begin{gathered}
w_{0}=1, \quad w_{1}=-3, \quad w_{2}=2 \\
H(\vec{x})=1-3 x_{1}+2 x_{2}
\end{gathered}
$$

Parameter Vectors

- The parameters of a linear function can be packaged into a parameter vector, \vec{w}.
\Rightarrow Example: if $H(\vec{x})=w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}$ then $\vec{w}=\left(w_{0}, \ldots, w_{3}\right)^{T}$.
- If $\vec{x} \in \mathbb{R}^{d}$, then $\vec{w} \in \mathbb{R}^{d+1}$.

Parameterization

- A linear function $H(\vec{x})$ is completely specified by its parameter vector.
- Can work either with the function, H, or vector, \vec{w}.
- Sometimes write $H(\vec{x} ; \vec{w})$.
- Example: $\vec{w}=(8,3,1,5,-2,-7)^{\top}$ specifies

$$
H(\vec{x} ; \vec{w})=8+3 x_{1}+1 x_{2}+5 x_{3}-2 x_{4}-7 x_{5}
$$

Compact Form

- Recall the dot product of vectors \vec{a} and \vec{b} :

$$
\begin{gathered}
\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{d}\right)^{T} \quad \vec{b}=\left(b_{1}, b_{2}, \ldots, b_{d}\right)^{T} \\
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{d} b_{d}
\end{gathered}
$$

Observe:

$$
\begin{aligned}
H(\vec{x} ; \vec{w}) & =w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d} \\
& =\underbrace{\left(w_{0}, w_{1}, \ldots, w_{d}\right)^{T}}_{\vec{w}} \cdot \underbrace{\left(1, x_{1}, \ldots, x_{d}\right)^{T}}_{?}
\end{aligned}
$$

Compact Form

- The augmented feature vector $\operatorname{Aug}(\vec{x})$ is the vector obtained by adding a 1 to the front of \vec{x} :

$$
\vec{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right) \quad \operatorname{Aug}(\vec{x})=\left(\begin{array}{c}
1 \\
x_{1} \\
x_{2} \\
\vdots \\
\dot{x}_{d}
\end{array}\right)
$$

- With augmentation, we can write:

$$
\begin{aligned}
H(\vec{x}) & =w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{d} x_{d} \\
& =\vec{w} \cdot \operatorname{Aug}(\vec{x})
\end{aligned}
$$

$$
\text { DSC } 140 A
$$

Empirical Risk Minimization

To create a new ML algorithm:

- Step 1: choose a hypothesis class
- We've chosen linear functions
- Step 2: choose a loss function
- Step 3: find H minimizing empirical risk

Loss Functions

- Next, we need to choose a loss function.
- Choice depends on the problem at hand.
- Let's focus on regression for now.
- The absolute loss is a natural first choice.

Empirical Risk w.r.t. Absolute Loss

- Now that we have assumed $H(\vec{x})$ is linear, we can write the empirical risk w.r.t. the absolute loss as:

$$
\begin{aligned}
R_{\mathrm{abs}}(\vec{W}) & =\frac{1}{n} \sum_{i=1}^{n}\left|H\left(\vec{x}^{(i)}\right)-y_{i}\right| \\
& =\frac{1}{n} \sum_{i=1}^{n}\left|\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)-y_{i}\right|
\end{aligned}
$$

- A function of \vec{w}, since H is totally specified by \vec{w}.

Example

Example

Example

Example

Example

Risk Surface

- Can imagine plotting $R_{\mathrm{abs}}(\vec{w})$ for all values of \vec{w}.
- This is called the risk surface.
- $A \vec{w}$ that makes the surface lowest minimizes the empirical risk.

Risk Surface

Plot of $R_{\mathrm{abs}}(\vec{w})$

More Features

- With 2 features, we fit a plane instead of a line.
- With ≥ 3 features, we fit a hyperplane.
- We can no longer easily visualize the risk surface.
- But the idea is the same: find the \vec{w} that minimizes the empirical risk.

Example

Example

Minimizing Empirical Risk

- How do we find the \vec{w} that minimizes $R_{\mathrm{abs}}(\vec{w})$ (the empirical risk with respect to the absolute loss)?

Calculus

- We know how to use calculus to find the minimum of a function:

1. Find the gradient $\frac{d}{d \vec{w}} R_{\mathrm{abs}}(\vec{w})$.
2. Set it equal to zero, solve for \vec{w}.
3. This finds places where $R_{\text {abs }}(\vec{w})$ is flat; check that it is a minimum (and not a maximum or saddle point).

Problem

$-R_{\mathrm{abs}}(\vec{w})$ is not differentiable.

- There are places where the gradient (slope) is not defined.
- These appear as "cusps" or "sharp creases" in the risk surface.

Another Loss?

- We cannot use the usual calculus approach to minimize $R_{\mathrm{abs}}(\vec{w})$.
- We'll come back to this in a later lecture.
- Instead, let's see if the square loss is any better.

Empirical Risk w.r.t. Square Loss

- Assuming $H(\vec{x})$ is linear, we can write the empirical risk w.r.t. the square loss as:

$$
\begin{aligned}
R_{\mathrm{sq}}(\vec{w}) & =\frac{1}{n} \sum_{i=1}^{n}\left(H\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2}
\end{aligned}
$$

$R_{\mathrm{sq}}(\vec{w})$ is called the mean squared error (MSE).

Risk Surface

2000300040005000600070008000900010000
w_{1}

Good News!

The mean squared error is differentiable.

- Now, we'll try to find the \vec{w} that minimizes $R_{\mathrm{sq}}(\vec{w})$ with calculus.

$$
\text { DSC } 140 A
$$

Minimizing the MSE

- Goal: minimize $R_{\text {sq }}(\vec{w})$ with respect to \vec{w}.
- Calculus Approach: Find gradient of $R_{\text {sq }}(\vec{w})$; set to zero; solve for \vec{w}.
- We'll rely on results from vector calculus.

First Step: Rewrite Risk

- Step one: rewrite R_{sq} in vector form.
- We will find:

$$
\begin{aligned}
R_{\mathrm{sq}}(\vec{w}) & =\frac{1}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2} \\
& =\frac{1}{n}\|X \vec{w}-\vec{y}\|^{2}
\end{aligned}
$$

Recall

- If $\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{k}\right)^{T}$, then:

$$
\|\vec{u}\|^{2}=\vec{u} \cdot \vec{u}=\sum_{i=1}^{k} u_{i}^{2}
$$

So, if $\vec{a}=\left(a_{1}, \ldots, a_{k}\right)^{T}$ and $\vec{b}=\left(b_{1}, \ldots, b_{k}\right)^{T}$:

$$
\begin{aligned}
\|\vec{a}-\vec{b}\|^{2} & =(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b}) \\
& =\sum_{i=1}^{k}\left(a_{i}-b_{i}\right)^{2}
\end{aligned}
$$

First Step: Rewrite Risk

- Define $p_{i}=\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}$, and let $\vec{p}=\left(p_{1}, \ldots, p_{n}\right)^{T}$.
$\downarrow \vec{p}$ is a vector of the predictions on training set.
- Note: $\vec{p} \in \mathbb{R}^{n}$, not \mathbb{R}^{d} !
- Then:

$$
\begin{aligned}
R_{\mathrm{sq}}(\vec{w}) & \left.=\frac{1}{n} \sum_{i=1}^{n} \widehat{\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}}-y_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(p_{i}-y_{i}\right)^{2} \\
& =\frac{1}{n}\|\vec{p}-\vec{y}\|^{2}
\end{aligned}
$$

First Step: Rewrite Risk

- Define the (augmented) design matrix, X :

$$
x=\left(\begin{array}{l}
\operatorname{Aug}\left(\vec{x}^{(1)}\right) \longrightarrow \\
\operatorname{Aug}\left(\left(^{(2)}\right)\right. \\
\vdots \\
\operatorname{Aug}\left(\vec{x}^{(n)}\right) \longrightarrow
\end{array}\right)=\left(\begin{array}{ccccc}
1 & x_{1}^{(1)} & x_{2}^{(1)} & \ldots & x_{d}^{(1)} \\
1 & x_{1}^{(2)} & x_{2}^{(2)} & \ldots & x_{d}^{(2)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{1}^{(n)} & x_{2}^{(n)} & \ldots & x_{d}^{(n)}
\end{array}\right)
$$

First Step: Rewrite Risk

- Observe: $\vec{p}=X \vec{w}$.

First Step: Rewrite Risk

- Therefore, the MSE can be written:

$$
\begin{aligned}
R_{\mathrm{sq}}(\vec{w}) & =\frac{1}{n} \sum_{i=1}^{n}\left(\operatorname{Aug}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(p_{i}-y_{i}\right)^{2} \\
& =\frac{1}{n}\|\vec{p}-\vec{y}\|^{2} \\
& =\frac{1}{n}\|X \vec{w}-\vec{y}\|^{2}
\end{aligned}
$$

Goal

- Find $\vec{W} \in \mathbb{R}^{d+1}$ minimizing:

$$
R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|X \vec{w}-\vec{y}\|^{2}
$$

- Step Two: find gradient, set to zero, solve.

Step Two: Find Gradient

- We want to compute:

$$
\frac{d}{d \vec{w}}\left[R_{\mathrm{sq}}(\vec{w})\right]=\frac{d}{d \vec{w}}\left[\frac{1}{n}\|X \vec{w}-\vec{y}\|^{2}\right]
$$

$\frac{d R_{\mathrm{sq}}}{d \vec{w}}$ is the gradient of R_{sq}.
\Rightarrow It is the vector of partial derivatives:

$$
\frac{d R_{\mathrm{sq}}}{d \vec{w}}=\left(\frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}, \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}, \ldots, \frac{\partial R_{\mathrm{sq}}}{\partial w_{d}}\right)^{\top}
$$

Good to know...

$$
\begin{aligned}
& (A+B)^{T}=A^{T}+B^{\top} \\
& (A B)^{T}=B^{\top} A^{T} \\
& \vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}=\vec{u}^{T} \vec{v}=\vec{v}^{T} \vec{u} \\
& (\vec{u}+\vec{v}) \cdot(\vec{w}+\vec{z})=\vec{u} \cdot \vec{w}+\vec{u} \cdot \vec{x}+\vec{v} \cdot \vec{w}+\vec{v} \cdot \vec{z} \\
& \|\vec{u}\|^{2}=\vec{u} \cdot \vec{u}
\end{aligned}
$$

Step Two: Find Gradient
Expand norm to make gradient easier.

$$
\begin{aligned}
\|x \vec{w}-\vec{y}\|^{2}= & (x \vec{w}-\vec{y}) \cdot(x \vec{w}-\vec{y}) \\
= & (x \vec{w}-\vec{y})^{\top}(x \vec{w}-\vec{y}) \\
= & \left(\vec{w}^{+} x^{\top}-\vec{y}^{\top}\right)(x \vec{w}-\vec{y}) \\
= & \vec{w}^{+} x^{+} \times \vec{w}-\vec{w}^{\top} X^{\top} \vec{y} \\
& -\vec{y}^{\top} X \vec{w} \\
& +\vec{y}^{\top} \vec{y}
\end{aligned}
$$

Exercise

Consider:

$$
\vec{w}^{\top} X^{\top} X \vec{w}-2 \vec{y}^{\top} X \vec{w}+\vec{y}^{\top} \vec{y}
$$

1. What type of object should it be?

- Scalar, vector, or matrix?

2. What type of object is it?

Step Two: Find Gradient

$$
\begin{aligned}
\frac{d}{d \vec{w}}\left[R_{\mathrm{sq}}(\vec{w})\right] & =\frac{1}{n} \frac{d}{d \vec{w}}\left[\vec{w}^{\top} X^{\top} X \vec{w}-2 \vec{y}^{\top} X \vec{w}+\vec{y}^{\top} \vec{y}\right] \\
& =?
\end{aligned}
$$

Idea

- While we could compute each of: $\frac{\partial R_{s q}}{\partial w_{0}}, \frac{\partial R_{s q}}{\partial w_{1}}, \ldots$.
- there's an easier way using matrix-vector calculus.

$$
\frac{d}{d x} a x^{2}=2 a x
$$

Exercise
If you had to guess, which of the following is equal to $\frac{d}{d \vec{w}}\left[\vec{w}^{\top} X^{\top} X \vec{w}\right]$?

$$
x^{2} w^{2}=2 x^{2} w
$$

Claims

$$
\begin{aligned}
& \frac{d}{d \overrightarrow{\vec{k}}}\left[\vec{w}^{\top} X^{\top} X \vec{w}\right]=2 X^{\top} X \vec{w} \\
& \frac{d}{d \vec{w}}\left[\dot{y}^{\top} X \vec{w}\right]=x^{\top} \vec{y} \\
& \frac{d}{d \vec{w}}\left[\dot{y}^{\top} \vec{y}\right]=0
\end{aligned}
$$

How?

- General procedure: expand, differentiate, gather

1. Expand $\vec{v}^{\top} \vec{u}$ until coordinates u_{1}, \ldots, u_{k} are visible.
2. Compute $\partial d / \partial u_{1}, \partial d / \partial u_{2}, \ldots, \partial d / \partial u_{k}$.
3. Gather result in vector form.

Step Two: Find Gradient

- We claimed
$\frac{d}{d \vec{w}}\left[\vec{w}^{\top} X^{\top} X \vec{w}\right]=2 x^{\top} X \vec{w} \quad \frac{d}{d \vec{w}}\left[\vec{y}^{\top} X \vec{w}\right]=X^{\top} \vec{y} \quad \frac{d}{d \overrightarrow{\vec{w}}}\left[\dot{y}^{\top} \vec{y}\right]=0$
- So:

$$
\begin{aligned}
\frac{d}{d \vec{w}}\left[R_{s q}(\vec{w})\right] & =\frac{1}{n} \frac{d}{d \vec{w}}\left[\vec{w}^{\top} X^{\top} X \vec{w}-2 \vec{y}^{\top} X \vec{w}+\vec{y}^{\top} \vec{y}\right] \\
& =2 x^{\top} X \vec{w}-2 x^{\top} \vec{y}+0
\end{aligned}
$$

Solution

- We have found:

$$
\frac{d}{d \vec{w}}\left[R_{\mathrm{sq}}(\vec{w})\right]=\frac{1}{n}\left(2 X^{\top} X \vec{w}-2 X^{\top} \vec{y}\right)
$$

- To minimize $R_{\text {sq }}(\vec{w})$, set gradient to zero, solve:

$$
2 x^{\top} X \vec{w}-2 x^{\top} \vec{y}=0 \Longrightarrow X^{\top} X \vec{w}=X^{\top} \vec{y}
$$

- This is a system of equations in matrix form, called the normal equations.

The Normal Equations

- The least squares solutions for \vec{w} are found by solving the normal equations:

$$
X^{\top} X \vec{w}=X^{\top} \vec{y}
$$

- Mathematically, solved by:

$$
\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}
$$

A Direct Solution

$\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}$ is exactly at the bottom of the risk surface.

Linear Least Squares Regression

- To train:
- Given a training set $\left\{\left(\vec{x}^{(1)}, y_{1}\right), \ldots,\left(\vec{x}^{(n)}, y_{n}\right)\right\} \ldots$

1. Construct $n \times(d+1)$ augmented design matrix, X.
2. Solve the normal equations: $\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}$.

- To predict:
- Given a new \vec{x}, compute $H(\vec{x})=\operatorname{Aug}(\vec{x}) \cdot \vec{w}^{*}$.

Linear Least Squares Regression

The first algorithm we've derived from the ERM framework:

- Step 1: choose a hypothesis class
- We've chosen linear functions
- Step 2: choose a loss function
- We've chosen the square loss
- Step 3: find H minimizing empirical risk
- We've found a direct solution: $\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}$

Compare to k-Nearest Neighbors

- Then: k-NN did not learn the relative importance of features.
- Now: Linear least squares learns a weight for each feature.

$$
\text { DSC } 140 \mathrm{~A}
$$

Implementation

> sklearn.linear_model.LinearRegression
\Rightarrow But linear least squares is very simple to implement in numpy:

```
> # training
> w = np.linalg.solve(X.T a X, X.T a y)
> # prediction on a new example, x
> # (you'll need to define augment)
> augment(x) a w
```


Augmentation

- One easy way to implement augment:

```
def augment(x):
    return np.array([1, *x])
```

- This code only works for a single example.
- To augment an array of examples, use np.ones and np.column_stack.

Don't Invert!

- Don't actually compute $\left(X^{\top} X\right)^{-1}$.
- That is, avoid np.linalg.inv
- Inverting a matrix can be slow and numerically unstable.

Practical Issues

- You'll sometimes run into technical issues when using least squares.
- But we have the theoretical tools to understand and address them.

Issue: "Singular Matrix" Error

- You're training a regression model to predict house prices.
- Two of your features are 1) size in square feet and 2) size in square yards.
np. linalg. solve(X.T @ X, X.T @ y)

```
LinAlgError Traceback (most recent call last)
Cell In[69], line 1
Cell In[69], line 1
File /nix/store/jmldnh8fda65lps694qff2yn9c4fnawp-python3-3.11.8-env/lib/python3.11/site-
b)
    4 0 7 \text { signature = 'DD->D' if isComplexType(t) else 'dd->d}
    408 extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
    409 r = gufunc(a, b, signature=signature, extobj=extobj)
    4 1 1 \text { return wrap(r.astype(result_t, copy=False))}
File /nix/store/jmldnh8fda65lps694qff2yn9c4fnawp-python3-3.11.8-env/lib/python3.11/site-
inalgerror_singular(err, flag)
    1 1 1 \text { def _raise_linalgerror singular(err, flag)}
->> 112 raise LinAlgError("Singular mat'rix")
LinAlgError: Singular matrix
```


Issue: "Singular Matrix" Error

- Let's look at the data.

Issue: "Singular Matrix" Error

- The data aren't truly 3-dimensional.
- There are infinitely many planes with the same empirical risk.
- That is, there are infinitely many solutions to the normal equations.
- This is why the matrix is singular.

Multicollinearity

- The situation where one feature is a linear combination of others is called multicollinearity.
- Can happen because the features are redundant, or because of chance.
- One fix: remove one of the redundant features.
- We'll see another fix in lecture on regularization.

Issue: Time

```
[*]: np.linalg.solve(X.T @ X, X.T @ y)
```

- Solving a linear system in d unknowns takes $\Theta\left(d^{3}\right)$ time.
- Fine for small number of features, but can be slow when using many features.
- Next time: an approach for efficiently minimizing risk when data is very large.

