
Lecture 02 | Part 1

Introduction

News▶ Lab 01 released. Due Sunday @ 11:59 pm.▶ HW 01 released. Due Wednesday @ 11:59 pm.▶ LATEX template available (optional).▶ Math self-check released.

Last Time▶ We saw nearest neighbor predictors.▶ They can work well.▶ But they memorize the training data rather than
learning a simpler underlying pattern.

The Main Problem▶ Nearest neighbor approaches do not learn which
features are useful and which are not.

Example▶ Suppose all Adelie penguins weigh less than all
Gentoo penguins.▶ I.e., we can predict perfectly based on body
mass alone.

Example: One Noisy Feature▶ Suppose we add a feature that is total noise.▶ Still enough information to perfectly classify.▶ 1-NN: 98% test accuracy.

Example: Two Noisy Features▶ Suppose we add another feature that is total noise.▶ Still enough information to perfectly classify.▶ 1-NN: 95% test accuracy (-3%).

Example: Noisy Features▶ No matter how many noisy features we add, there is
enough information to classify perfectly.▶ But 1-NN performance degrades with # of (noisy) features:

Explanation▶ Euclidean distance treats all features the same.▶ Even those that are pure noise.▶ NN does not learn which features are useful.1▶ Distance becomes less meaningful as noisy
features are added.

1For extensions of kNN which learn a distance metric from data, see:
(Weinberger and Saul, 2009; Goldberger et al., 2005; Shalev-Shwartz et al.,
2004)

The Rest of DSC 140A▶ We’ll explore three different paradigms for
learning from data.▶ Part 1: Empirical Risk Minimization▶ Part 2: Probabilistic Modeling▶ Part 3: Tree-based Methods

Lecture 02 | Part 2

Empirical Risk Minimization

Prediction▶ Prediction is the most common task in ML:▶ given: a feature vector, ⃗𝑥▶ predict: an output target, 𝑦.▶ Example:▶ given: years of experience and college GPA▶ predict: salary

Prediction Functions▶ Informally: we think experience, GPA, etc., are
predictive of salary.▶ Formally: we think there is a function 𝐻 that
takes in (experience, GPA) and outputs a good
prediction of the salary.𝐻(experience,GPA) → predicted salary

Prediction Functions▶ In general, a prediction function2 𝐻 takes in a
feature vector and outputs a predicted label.𝐻(⃗𝑥) → 𝑦

2Sometimes called a hypothesis function.

Example Prediction Function

𝐻(experience,GPA) = $50,000+ $10,000 × experience+ $5,000 × GPA

Goal▶ There are many possible prediction functions.▶ How do we pick a good one?▶ One that works well on unseen, future data.▶ Problem: we don’t know the future.

Data▶ Assumption: the future will be like the past.▶ So a prediction function that works well on past
data will likely work well on future data.▶ Idea: can use past data to “measure” how a good
prediction function is, select between them.

Example▶ 𝐻1(𝑥) = 60,000 + 10,000𝑥▶ 𝐻2(𝑥) = 70,000 + 200𝑥2▶ 𝐻3(𝑥) = 110,000 − 15,000𝑥

Fit▶ We preferred 𝐻1 over 𝐻2 and 𝐻3 because it “fit”
the data better.▶ How do we formally quantify how well a
prediction function fits the data?

Measuring Errors▶ Idea: measure the difference between the
prediction and the correct label.

!! :Wil

Loss Functions▶ A loss function measures the difference between
a prediction 𝐻(⃗𝑥(𝑖)) and the “right answer” 𝑦𝑖.▶ There are many different loss functions. For now,
we’ll consider two.▶ Absolute loss: ℓabs(𝐻(⃗𝑥(𝑖)), 𝑦𝑖) = |𝐻(⃗𝑥(𝑖)) − 𝑦𝑖|▶ Square loss: ℓsq(𝐻(⃗𝑥(𝑖)), 𝑦𝑖) = (𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2

Quantifying Overall Fit▶ A loss function measures the difference between a
prediction and the correct label for a single
training point.▶ A good prediction function should make good
predictions on average over the entire training set.▶ That is, for a good 𝐻, the average loss should be
small.

Empirical Risk▶ The average loss on the training set, also called
the empirical risk, is defined to be:𝑅(𝐻) = 1𝑛 𝑛∑𝑖=1 ℓ(𝐻(⃗𝑥(𝑖)), 𝑦𝑖)▶ It is a function of 𝐻, but it also depends on:▶ The training data, X = (⃗𝑥(1), 𝑦1), … , (⃗𝑥(𝑛), 𝑦𝑛)▶ The particular choice of loss function ℓ

Example

III:"

Terminology▶ We might say: “the empirical risk with respect to
absolute loss”. This means:𝑅(𝐻) = 1𝑛 𝑛∑𝑖=1 |𝐻(⃗𝑥(𝑖)) − 𝑦𝑖|▶ Or, “the empirical risk with respect to square
loss”. This means:𝑅(𝐻) = 1𝑛 𝑛∑𝑖=1 (𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2

Terminology▶ We might be quick and say “risk” instead of
“empirical risk”.

Minimizing Empirical Risk▶ Empirical risk measures the “fit” of a prediction
function to the training data.▶ Idea: find a prediction function 𝐻 that has the
smallest empirical risk.

Exercise
Consider the data shown below, and assume abso-
lute loss.

Sketch a prediction function 𝐻 that minimizes the
empirical risk.

=

Problem▶ It is too easy to find a prediction function that
has zero empirical risk.▶ Simply memorize the training data.▶ We want to learn a simpler pattern.▶ Instead, we will restrict our search for prediction
functions to a smaller set of (simple) functions.▶ This set is called the hypothesis class.

Exercise
Consider the data shown below, and assume abso-
lute loss.

Sketch a linear prediction function 𝐻 that mini-
mizes the empirical risk.

-

Empirical Risk Minimization▶ The learning strategy we have just derived is
called empirical risk minimization (ERM).▶ Step 1: choose a hypothesis class▶ for example, linear functions▶ Step 2: choose a loss function▶ Step 3: find 𝐻 minimizing empirical risk

ERM is a Recipe▶ By choosing different hypothesis classes and
losses, we derive different learning algorithms.▶ Some choices for Step 1 & 2 make Step 3 easier
or harder.▶ We’ll see different choices in the coming weeks.

Lecture 02 | Part 3

Linear Prediction Functions

A Simple Choice▶ ERM asks us to choose a hypothesis class.▶ Let’s start with a simple one: linear functions.▶ This choice will take us quite far.

Linear Functions▶ A linear prediction function of one feature has
the form: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥▶ In general, a linear prediction function of 𝑑
features has the form:𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑▶ 𝑤0, 𝑤1, … , 𝑤𝑑 are the parameters or weights.

Interpreting Weights𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑▶ 𝑤0 (the bias) determines the prediction when all
features are zero.▶ 𝑤1 determines how much the prediction changes
when 𝑥1 increases by one unit▶ Similarly for 𝑤2, … , 𝑤𝑑

W
.

=-$10
,
000

Interpreting Weights▶ When plotted, linear prediction functions are:▶ straight lines when ⃗𝑥 ∈ ℝ1▶ planes when ⃗𝑥 ∈ ℝ2▶ hyperplanes when ⃗𝑥 ∈ ℝ𝑑▶ 𝑤𝑖 is the slope of the hyperplane in the 𝑥𝑖
direction.

Example

𝑤0 = 1, 𝑤1 = −3, 𝑤2 = 2𝐻(⃗𝑥) = 1 − 3𝑥1 + 2𝑥2

Parameter Vectors▶ The parameters of a linear function can be
packaged into a parameter vector, �⃗�.▶ Example: if 𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 then�⃗� = (𝑤0, … , 𝑤3)𝑇.▶ If ⃗𝑥 ∈ ℝ𝑑, then �⃗� ∈ ℝ𝑑+1.

Parameterization▶ A linear function 𝐻(⃗𝑥) is completely specified by
its parameter vector.▶ Can work either with the function, 𝐻, or vector, �⃗�.▶ Sometimes write 𝐻(⃗𝑥; �⃗�).▶ Example: �⃗� = (8, 3, 1, 5, −2, −7)𝑇 specifies𝐻(⃗𝑥; �⃗�) = 8 + 3𝑥1 + 1𝑥2 + 5𝑥3 − 2𝑥4 − 7𝑥5

Compact Form▶ Recall the dot product of vectors �⃗� and �⃗�:�⃗� = (𝑎1, 𝑎2, … , 𝑎𝑑)𝑇 �⃗� = (𝑏1, 𝑏2, … , 𝑏𝑑)𝑇�⃗� ⋅ �⃗� = 𝑎1𝑏1 + 𝑎2𝑏2 + … + 𝑎𝑑𝑏𝑑▶ Observe:𝐻(⃗𝑥; �⃗�) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑= (𝑤0, 𝑤1, … , 𝑤𝑑)𝑇⏟⏟⏟⏟⏟⏟⏟�⃗� ⋅ (1, 𝑥1, … , 𝑥𝑑)𝑇⏟?

:D = 11all 11511 cast

Compact Form▶ The augmented feature vector Aug(⃗𝑥) is the
vector obtained by adding a 1 to the front of ⃗𝑥:

⃗𝑥 = (𝑥1𝑥2⋮𝑥𝑑) Aug(⃗𝑥) = (1𝑥1𝑥2⋮𝑥𝑑
)

▶ With augmentation, we can write:𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + … + 𝑤𝑑𝑥𝑑= �⃗� ⋅ Aug(⃗𝑥)

Lecture 02 | Part 4

ERM for Linear Predictors

Empirical Risk Minimization
To create a new ML algorithm:▶ Step 1: choose a hypothesis class▶ We’ve chosen linear functions▶ Step 2: choose a loss function▶ Step 3: find 𝐻 minimizing empirical risk

Loss Functions▶ Next, we need to choose a loss function.▶ Choice depends on the problem at hand.▶ Let’s focus on regression for now.▶ The absolute loss is a natural first choice.

Empirical Risk w.r.t. Absolute Loss▶ Now that we have assumed 𝐻(⃗𝑥) is linear, we can
write the empirical risk w.r.t. the absolute loss as:𝑅abs(�⃗�) = 1𝑛 𝑛∑𝑖=1 |𝐻(⃗𝑥(𝑖)) − 𝑦𝑖|= 1𝑛 𝑛∑𝑖=1 |�⃗� ⋅ Aug(⃗𝑥(𝑖)) − 𝑦𝑖|▶ A function of �⃗�, since 𝐻 is totally specified by �⃗�.

Example

Example

Example

𝑅abs(�⃗�(1)) ≈ 17,000

Example

𝑅abs(�⃗�(2)) ≈ 90,000

Example

𝑅abs(�⃗�(3)) ≈ 50,000

Risk Surface▶ Can imagine plotting 𝑅abs(�⃗�) for all values of �⃗�.▶ This is called the risk surface.▶ A �⃗� that makes the surface lowest minimizes the
empirical risk.

Risk Surface

Plot of 𝑅abs(�⃗�)
-
· i= (501, 4500)

More Features▶ With 2 features, we fit a plane instead of a line.▶ With ≥ 3 features, we fit a hyperplane.▶ We can no longer easily visualize the risk surface.▶ But the idea is the same: find the �⃗� that
minimizes the empirical risk.

Example

Example

Minimizing Empirical Risk▶ How do we find the �⃗� that minimizes 𝑅abs(�⃗�) (the
empirical risk with respect to the absolute loss)?

L

V

Calculus▶ We know how to use calculus to find the
minimum of a function:
1. Find the gradient 𝑑𝑑�⃗�𝑅abs(�⃗�).
2. Set it equal to zero, solve for �⃗�.
3. This finds places where 𝑅abs(�⃗�) is flat; check that it is
a minimum (and not a maximum or saddle point).

-

V

Problem▶ 𝑅abs(�⃗�) is not differentiable.▶ There are places where the gradient (slope) is
not defined.▶ These appear as “cusps” or “sharp creases” in
the risk surface.

Another Loss?▶ We cannot use the usual calculus approach to
minimize 𝑅abs(�⃗�).▶ We’ll come back to this in a later lecture.▶ Instead, let’s see if the square loss is any better.

Empirical Risk w.r.t. Square Loss▶ Assuming 𝐻(⃗𝑥) is linear, we can write the
empirical risk w.r.t. the square loss as:𝑅sq(�⃗�) = 1𝑛 𝑛∑𝑖=1 (𝐻(⃗𝑥(𝑖)) − 𝑦𝑖)2= 1𝑛 𝑛∑𝑖=1 (�⃗� ⋅ Aug(⃗𝑥(𝑖)) − 𝑦𝑖)2▶ 𝑅sq(�⃗�) is called the mean squared error (MSE).

Risk Surface

Good News!▶ The mean squared error is differentiable.▶ Now, we’ll try to find the �⃗� that minimizes 𝑅sq(�⃗�)
with calculus.

Lecture 02 | Part 5

Least Squares

Minimizing the MSE▶ Goal: minimize 𝑅sq(�⃗�) with respect to �⃗�.▶ Calculus Approach: Find gradient of 𝑅sq(�⃗�); set
to zero; solve for �⃗�.▶ We’ll rely on results from vector calculus.

First Step: Rewrite Risk▶ Step one: rewrite 𝑅sq in vector form.▶ We will find:𝑅sq(�⃗�) = 1𝑛 𝑛∑𝑖=1 (Aug(⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)2= 1𝑛‖𝑋�⃗� − ⃗𝑦‖2

Recall▶ If �⃗� = (𝑢1, 𝑢2, … , 𝑢𝑘)𝑇, then:‖�⃗�‖2 = �⃗� ⋅ �⃗� = 𝑘∑𝑖=1 𝑢2𝑖▶ So, if �⃗� = (𝑎1, … , 𝑎𝑘)𝑇 and �⃗� = (𝑏1, … , 𝑏𝑘)𝑇:‖�⃗� − �⃗�‖2 = (�⃗� − �⃗�) ⋅ (�⃗� − �⃗�)= 𝑘∑𝑖=1 (𝑎𝑖 − 𝑏𝑖)2

First Step: Rewrite Risk▶ Define 𝑝𝑖 = Aug(⃗𝑥(𝑖)) ⋅ �⃗�, and let �⃗� = (𝑝1, … , 𝑝𝑛)𝑇.▶ �⃗� is a vector of the predictions on training set.▶ Note: �⃗� ∈ ℝ𝑛, not ℝ𝑑!▶ Then: 𝑅sq(�⃗�) = 1𝑛 𝑛∑𝑖=1 (Aug(⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)2= 1𝑛 𝑛∑𝑖=1 (𝑝𝑖 − 𝑦𝑖)2= 1𝑛‖�⃗� − ⃗𝑦‖2

First Step: Rewrite Risk▶ Define the (augmented) design matrix, 𝑋:
𝑋 = (Aug(⃗𝑥(1))

Aug(⃗𝑥(2)) ⋮ ⋮
Aug(⃗𝑥(𝑛))) = ⎛⎜⎜⎜⎝

1 𝑥(1)1 𝑥(1)2 … 𝑥(1)𝑑1 𝑥(2)1 𝑥(2)2 … 𝑥(2)𝑑⋮ ⋮ ⋮ ⋮ ⋮1 𝑥(𝑛)1 𝑥(𝑛)2 … 𝑥(𝑛)𝑑
⎞⎟⎟⎟⎠

First Step: Rewrite Risk▶ Observe: �⃗� = 𝑋�⃗�.
(Aug(⃗𝑥(1))
Aug(⃗𝑥(2)) ⋮ ⋮
Aug(⃗𝑥(𝑛)))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝑋

(𝑤0𝑤1⋮𝑤𝑑)⏟⃗𝑤
= (Aug(⃗𝑥(1)) ⋅ �⃗�

Aug(⃗𝑥(2)) ⋅ �⃗�⋮
Aug(⃗𝑥(𝑛)) ⋅ �⃗�)⏟⏟⏟⏟⏟⏟⏟�⃗�

First Step: Rewrite Risk▶ Therefore, the MSE can be written:𝑅sq(�⃗�) = 1𝑛 𝑛∑𝑖=1 (Aug(⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)2= 1𝑛 𝑛∑𝑖=1 (𝑝𝑖 − 𝑦𝑖)2= 1𝑛‖�⃗� − ⃗𝑦‖2= 1𝑛‖𝑋�⃗� − ⃗𝑦‖2

Goal▶ Find �⃗� ∈ ℝ𝑑+1 minimizing:𝑅sq(�⃗�) = 1𝑛‖𝑋�⃗� − ⃗𝑦‖2▶ Step Two: find gradient, set to zero, solve.

Step Two: Find Gradient▶ We want to compute:𝑑𝑑�⃗� [𝑅sq(�⃗�)] = 𝑑𝑑�⃗� [1𝑛‖𝑋�⃗� − ⃗𝑦‖2]▶ 𝑑𝑅sq𝑑�⃗� is the gradient of 𝑅sq.▶ It is the vector of partial derivatives:𝑑𝑅sq𝑑�⃗� = (𝜕𝑅sq𝜕𝑤0 , 𝜕𝑅sq𝜕𝑤1 , … , 𝜕𝑅sq𝜕𝑤𝑑)𝑇
& ax = 2ax

& in Ai
div

= Ai

Good to know...

(𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇�⃗� ⋅ ⃗𝑣 = ⃗𝑣 ⋅ �⃗� = �⃗�𝑇 ⃗𝑣 = ⃗𝑣𝑇�⃗�(�⃗� + ⃗𝑣) ⋅ (�⃗� + ⃗𝑧) = �⃗� ⋅ �⃗� + �⃗� ⋅ ⃗𝑥 + ⃗𝑣 ⋅ �⃗� + ⃗𝑣 ⋅ ⃗𝑧‖�⃗�‖2 = �⃗� ⋅ �⃗�

Step Two: Find Gradient▶ Expand norm to make gradient easier.‖𝑋�⃗� − ⃗𝑦‖2 ====

Exercise
Consider: �⃗�𝑇𝑋𝑇𝑋�⃗� − 2 ⃗𝑦𝑇𝑋�⃗� + ⃗𝑦𝑇 ⃗𝑦
1. What type of object should it be?▶ Scalar, vector, or matrix?

2. What type of object is it?

Step Two: Find Gradient

𝑑𝑑�⃗� [𝑅sq(�⃗�)] = 1𝑛 𝑑𝑑�⃗� [�⃗�𝑇𝑋𝑇𝑋�⃗� − 2 ⃗𝑦𝑇𝑋�⃗� + ⃗𝑦𝑇 ⃗𝑦]= ?

Idea▶ While we could compute each of: 𝜕𝑅sq𝜕𝑤0 , 𝜕𝑅sq𝜕𝑤1 , ….▶ there’s an easier way using matrix-vector
calculus.

Exercise
If you had to guess, which of the following is equal
to 𝑑𝑑�⃗� [�⃗�𝑇𝑋𝑇𝑋�⃗�]?
1. 𝑋
2. �⃗�
3. 2𝑋𝑇𝑋�⃗�
4. 2𝑋�⃗�

Claims▶ 𝑑𝑑�⃗� [�⃗�𝑇𝑋𝑇𝑋�⃗�] = 2𝑋𝑇𝑋�⃗�▶ 𝑑𝑑�⃗� [⃗𝑦𝑇𝑋�⃗�] = 𝑋𝑇 ⃗𝑦▶ 𝑑𝑑�⃗� [⃗𝑦𝑇 ⃗𝑦] = 0

How?▶ General procedure: expand, differentiate, gather
1. Expand ⃗𝑣𝑇�⃗� until coordinates 𝑢1, … , 𝑢𝑘 are visible.
2. Compute 𝜕𝑑/𝜕𝑢1, 𝜕𝑑/𝜕𝑢2, …, 𝜕𝑑/𝜕𝑢𝑘.
3. Gather result in vector form.

Step Two: Find Gradient▶ We claimed𝑑𝑑�⃗� [�⃗�𝑇𝑋𝑇𝑋�⃗�] = 2𝑋𝑇𝑋�⃗� 𝑑𝑑�⃗� [⃗𝑦𝑇𝑋�⃗�] = 𝑋𝑇 ⃗𝑦 𝑑𝑑�⃗� [⃗𝑦𝑇 ⃗𝑦] = 0▶ So: 𝑑𝑑�⃗� [𝑅sq(�⃗�)] = 1𝑛 𝑑𝑑�⃗� [�⃗�𝑇𝑋𝑇𝑋�⃗� − 2 ⃗𝑦𝑇𝑋�⃗� + ⃗𝑦𝑇 ⃗𝑦]=

Solution▶ We have found:𝑑𝑑�⃗� [𝑅sq(�⃗�)] = 1𝑛 (2𝑋𝑇𝑋�⃗� − 2𝑋𝑇 ⃗𝑦)▶ To minimize 𝑅sq(�⃗�), set gradient to zero, solve:2𝑋𝑇𝑋�⃗� − 2𝑋𝑇 ⃗𝑦 = 0 ⟹ 𝑋𝑇𝑋�⃗� = 𝑋𝑇 ⃗𝑦▶ This is a system of equations in matrix form,
called the normal equations.

The Normal Equations▶ The least squares solutions for �⃗� are found by
solving the normal equations:𝑋𝑇𝑋�⃗� = 𝑋𝑇 ⃗𝑦▶ Mathematically, solved by:�⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

A Direct Solution▶ �⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦 is exactly at the bottom of the risk surface.

Linear Least Squares Regression▶ To train:▶ Given a training set {(⃗𝑥(1), 𝑦1), … , (⃗𝑥(𝑛), 𝑦𝑛)}...
1. Construct 𝑛 × (𝑑 + 1) augmented design matrix, 𝑋.
2. Solve the normal equations: �⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦.▶ To predict:▶ Given a new ⃗𝑥, compute 𝐻(⃗𝑥) = Aug(⃗𝑥) ⋅ �⃗�∗.

Linear Least Squares Regression
The first algorithm we’ve derived from the ERM
framework:▶ Step 1: choose a hypothesis class▶ We’ve chosen linear functions▶ Step 2: choose a loss function▶ We’ve chosen the square loss▶ Step 3: find 𝐻 minimizing empirical risk▶ We’ve found a direct solution: �⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

Compare to 𝑘-Nearest Neighbors▶ Then: 𝑘-NN did not learn the relative importance
of features.▶ Now: Linear least squares learns a weight for
each feature.

Lecture 02 | Part 6

From Theory to Practice

Implementation▶ sklearn.linear_model.LinearRegression▶ But linear least squares is very simple to
implement in numpy:

> # training
> w = np.linalg.solve(X.T @ X, X.T @ y)
> # prediction on a new example, x
> # (you'll need to define augment)
> augment(x) @ w

Augmentation▶ One easy way to implement augment:

def augment(x):
return np.array([1, *x])▶ This code only works for a single example.▶ To augment an array of examples, use np.ones

and np.column_stack.

Don’t Invert!▶ Don’t actually compute (𝑋𝑇𝑋)−1.▶ That is, avoid np.linalg.inv▶ Inverting a matrix can be slow and numerically
unstable.

Practical Issues▶ You’ll sometimes run into technical issues when
using least squares.▶ But we have the theoretical tools to understand
and address them.

Issue: “Singular Matrix” Error▶ You’re training a regression model to predict
house prices.▶ Two of your features are 1) size in square feet
and 2) size in square yards.

Issue: “Singular Matrix” Error▶ Let’s look at the data.

Issue: “Singular Matrix” Error▶ The data aren’t truly 3-dimensional.▶ There are infinitely many planes with the same
empirical risk.▶ That is, there are infinitely many solutions to the
normal equations.▶ This is why the matrix is singular.

Multicollinearity▶ The situation where one feature is a linear
combination of others is called multicollinearity.▶ Can happen because the features are redundant,
or because of chance.▶ One fix: remove one of the redundant features.▶ We’ll see another fix in lecture on regularization.

Issue: Time

▶ Solving a linear system in 𝑑 unknowns takes Θ(𝑑3) time.▶ Fine for small number of features, but can be slow when
using many features.▶ Next time: an approach for efficiently minimizing risk when
data is very large.

