DSC 140A - Homework 03
Due: Wednesday, January 29

Instructions: Write your solutions to the following problems either by typing them or handwriting
them on another piece of paper or on an iPad/tablet. Show your work or provide justification
unless otherwise noted; submissions that don’t show work might lose credit. If you write code to
solve a problem, include the code by copy/pasting or as a screenshot. You may use numpy, pandas,
matplotlib (or another plotting library), and any standard library module, but no other third-party
libraries unless specified. Submit homeworks via Gradescope by 11:59 PM.

A KTEX template is provided at http://dsc140a.com, next to where you found this homework.
Using it is totally optional, but encouraged if you plan to go to grad school. See this video|for a quick
introduction to IATEX.

Problem 1.

Suppose that f : R — R is convex and g : R — R is convex and non-decreasing. That is, if a > b, then
g(a) = g(b).
Show that the composition of these functions, h(Z) = g(f(Z)), is also convex.

Hint: you’ll want to go back to the definition to show this is true. A similar problem was solved in discussion.

Solution:

We need to show that, for any a, beR: and t € [0, 1], the following holds:

-

h(td + (1 — £)b) < th(@) + (1 — t)h(b).

Starting with the left-hand side and using the definition of h, we have:

-, -,

h(td + (1 —t)b) = g(f(ta+ (1 — t)b))

-, -,

Because f is convex, we know that f(tad+ (1 —t)b) < tf(ad)+ (1 —t)f(b). Combining this with the fact
that ¢ is non-decreasing, we have:

-,

< g(tf(@)+ (1 —1)f(b))

Now we use the fact that g is convex to write:

-,

<tg(f(@)+ (1 —t)g(f(b))

Which we recognize as the right-hand side of the inequality we want to show:

= th(@) + (1 — t)h(b).

Problem 2.
The hinge loss is defined to be

Lhinge(wv fv y) = max{O, 1- yu7 : Aug(f)}


http://dsc140a.com
https://www.youtube.com/watch?v=Dq9ldNPXrM0&feature=youtu.be

Consider the below quantity, which is called the regularized empirical risk:
R(w) = ¢y Linge (0, 27, yi) + || ]|
et

Here, C' is a positive constant, n is the number of data points, Z(*) is the ith data point, y; is the label of
the ith data point, and w is a vector of weights.

Show that R(w) is a convex function of .

(We will discuss regularization and the hinge loss in future lectures; for this problem it’s not necessary to
know anything about them apart from the definitions given above.)

Hint: you will probably not want to use the formal definition of convexity here. Instead, you’ll want to show
that R is composed of simpler functions which themselves are convex.

Solution: We will break the function into pieces and show that each piece is convex, and so the sum
of the pieces is also convex.

First, ||a]|? is a convex function of w. This can be shown in several ways; the simplest might be the
second derivative test. Remember that ||@||? = & - @ = w} + w3 + ... + w3. The first derivative 8/0w;
is 2w;, and the second derivative 0/0w;0w; is 2 if i = j and 0 otherwise. Therefore, the Hessian matrix
is:

02 - 0
=21,

where I is the identity matrix. This matrix is positive semi-definite, so ||@]|? is convex.

To show that C/n > | Lyinge (W, 0N ;) is convex, we will show that the hinge loss is convex and then
use the fact that the sum of convex functions is convex.

The hinge loss can be written as the maximum of two functions:
Lhinge(u_j7 fv y) = max{O, 1- y’LB : AUg(f)}

From lecture, we know that the maximum of two convex functions is convex, so we only need to show
that each of the two functions is convex. The first function, 0, is a constant function and is therefore
convex. The second function, 1 — y & - Aug(Z), is also convex. We can most easily show this using the
result from Discussion, which says that functions of the form a& - w — b are convex functions of .

To show that 1 — y @ - Aug(Z) is of this form, we set « = —y and b = —1. Therefore, the function is
convex, the hinge loss is convex, and the sum of hinge losses is convex.

Lastly, since C/n > 0, the first term is convex, and so the whole thing is convex.

Problem 3.

Consider a linear prediction function H used for binary classification, and assume that when the output of
H is positive we predict for class +1, and when it’s negative we predict for class -1. This means that the
decision boundary is where H(Z) = 0.

In lecture, we saw that a linear prediction function has the form:

H(Z) = wo +wizy + ...+ wazy
= - Aug(Z)



where @ = (wo, w1, ...,wq)’. In this problem, it will also be useful to define the vector @’ = (w1, ...,wq)"
which is the same as W except that it does not include wy. Note that Z - W' = wiz1 + ... wgzry. With this

definition, we can write H(Z) in a slightly different way:

)

Remember this formula, as it will be useful several times below!

Over the course of this problem, we’ll answer the question: how is the magnitude of H(Z) related to the
distance between ¥ and the decision boundary?

Note: for this problem it may be useful to review the properties of the dot product and vector algebra. In
particular, remember that ||u| denotes the norm (length) of a vector, and that @ - @ = |Ju|?®. By dividing
a vector by its norm, as in @/||@||, we obtain a wunit vector with unit length — a unit vector is useful for
specifying a direction. To find the component of a vector « that points in the same direction as another
vector U, we write 4 - U//||9]|. Also remember that @ - = ¥ - 4, and that @ - (0+ @) =@ - ¥+ @ - .

a) Show that for any point Z on the decision boundary, @' - 2 = —wy.

Hint: use that fact that H(Z) = 0.

Solution: For any point Z, we have:
H(?) =4 Z+ wo

Since 7' is on the decision boundary, though, H(Z) = 0, so the above is equal to zero, and
w7 = —wop.

b) Argue that @’ is orthogonal to the decision boundary.

Hint: take two arbitrary points Z(!) and #(?) that are assumed to be on the decision boundary. Then,
since we know that the boundary is linear (it is a line, plane, etc.), the difference of these vectors,
§=7M — 7@ ig parallel to the boundary. To show that @’ is orthogonal to the boundary, it suffices
to show that @ - § = 0. Make sure you somehow use the fact that £ and Z(® are on the decision

boundary.
Solution:
@ -8 = - (2D — #?)

—a -7V g .72
Because #(1) and #(?) are on the boundary, we know from the previous part that @’ - (1) = —wy
and @ - 7 = —wy. Therefore:

= —wo — (—wo)

=0

¢) Now that we know that «w’ is orthogonal to the decision boundary, we can draw a better picture of
the situation:



d)

The blue line is the decision boundary — it is where H = 0. We have drawn an arbitary point &, along
with several distances:

o d: the (signed) distance from the decision boundary to &

e b: the distance from the the origin to the decision boundary

e dy: the length of the component of Z that is orthogonal to the decision boundary.
We’re most interested in knowing d. First, though, we need to find b.

Consider the vector b’ /||w'||; this is a vector from the origin to the decision boundary that is orthog-
onal to the boundary and with length b.

Wo

Since this vector is on the decision boundary, H (bw'/||@’||) = 0. Using this fact, show that b = T
w

Hint: first show that H (bw'/||w’||) = b||w'|| + wo, then set this to zero and solve for b.

Solution: First, we compute:

1) = (7o)

[l

b,
= f/ - w + wo
[
||
= = T Wo
[l

= b||16’|| + wo

Since Z'is on the decision boundary, H(Z) = 0, and so b||&'||+wo = 0, meaning that b = —wg /|||

Recall that dy is the component of ¥ that is orthogonal to the decision boundary; this is simply

Z - /||w']]. From the picture, dy = d + b. We know dy and b, and can therefore solve for d.

Use this to show that |d| = |H(Z)|/|&']|.



Solution:
d=dy—b
.’f-’d;l wo
— = + "
[’ [l
. T -+ wy
([« |
_ H(@)
([

We have shown that the distance between Z and the decision boundary is proportional to the output of the
prediction function, H(Z). This gives us a very useful interpretation of |H(Z)|! For example, this means if
H(ZW) > H(#®) > 0, then ") is further from the decision boundary than ().

Problem 4.

The file below contains data suitable for a binary classification problem. https://£000.backblazeb2.com/
file/jeldridge-data/003-two_clusters/data.csv

The file contains three columns: z1, x2, and y. The first two columns are the features, and the third column
is the label.

a) Write a function to compute the empirical risk for the perceptron loss, Riron(), with respect to the
data and the parameters .

Use your function to compute the empirical risk for the vector (1,1,1)7, and report the result. Include
your code.

Solution:

import numpy as np
import matplotlib.pyplot as plt

data = np.loadtxt("data.csv", delimiter=",")
X = datal:, :-1]

np.column_stack((np.ones(X.shape[0]), X))
y = datal:, -1]

<
]

def perceptron_loss(w, x, y):
return np.maximum(0, -y * x @ w)

def perceptron_risk(w):
return np.mean([perceptron_loss(w, x, y) for (x, y) in zip(X, y)1)

Using the above function, we can compute the empirical risk for the vector (1,1,1)7 as follows:

print(empirical_risk(np.array([1, 1, 11)))

We get a value of approximately 1.1249.

b) Write a function to compute the subgradient of the empirical risk for the perceptron loss, and use


https://f000.backblazeb2.com/file/jeldridge-data/003-two_clusters/data.csv
https://f000.backblazeb2.com/file/jeldridge-data/003-two_clusters/data.csv

your code to compute the subgradient at the point (1,1,1)7. Report the result.

Solution:

def subgradient_of_loss(w, x, y):
h=x0w
if y * h <= 0:
return -y * X
else:
return np.zeros_like(w)

def subgradient_of_risk(w):
return np.mean([subgradient_of_loss(w, x, y) for (x, y) in zip(X, y)], axis=0)

Using this function to compute the subgradient at the point (1,1, 1), we get the result [0.24,0.304, 0.5809].

¢) Run subgradient descent to train a perceptron on the data. Use the initial vector (1,1,1)7. Report
the learned parameter vector.

Solution: We can use the usual code for gradient descent, but with the subgradient of the
empirical risk for the perceptron loss. The code is as follows:

def gradient_descent(gradient, z_0, learning rate, stop_threshold):

z =12z_0
while True:

z_new = z - learning rate * gradient(z)

if np.linalg.norm(z_new - z) < stop_threshold:

break

zZ = z_new

return z_new

w_opt = gradient_descent(subgradient_of_risk, np.array([1, 1, 1]), 0.1, le-6)

We converge to a parameter vector of approximately w* = [—0.211,0.02089, —0.0089]. However,
note that when the data are linearly separable there are infinitely many parameter vectors that
achieve zero empirical risk. That is, the weight vector above is not unique, and you might have
found a different one.

d) Plot the data and the decision boundary of the perceptron you learned above. Each point should be
colored according to its label.

Hint: There are two ways to plot the decision boundary. One way is to use the fact that Aug(Z)-@ =0
for points on the decision boundary to solve for zo in terms of z1, giving you the equation of a line.
Another approach is to use plt.contour to plot the contours of the prediction function, H(Z); in
particular, we plot the contour where H (&) = 0. The second approach is more general and can be
used for any prediction function, but you’ll want to read the docs to understand how to use it.

Solution:



15

10 +

This figure was generated using the following code:

plt.figure()

# plot the data; we can use c=y to color points by their class
plt.scatter(X[:, 11, X[:, 21, c=y)

# plot the decision boundary

X1 = np.linspace(-10, 30, 100)

X2 = np.linspace(-10, 15, 100)

X1, X2 = np.meshgrid(X1, X2)

H = w_opt[0] + w_opt[1] * X1 + w_opt[2] * X2
plt.contour (X1, X2, H, levels=[0], colors="k")




