
DSC 140A - Homework 02
Due: Wednesday, April 17

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 PM.

Problem 1.

Let (~x(1), y1), . . . , (~x
(n), yn) be a set of n training examples, where ~x(i) ∈ Rd and yi ∈ R

Recall that the mean squared error of a linear predictor is defined to be

R(~w) =
1

n

n∑
i=1

(Aug(~x(i)) · ~w − yi)
2.

In lecture, we saw two equivalent expressions for the gradient of R(~w):

dR

d~w
=

2

n

n∑
i=1

(Aug(~x(i)) · ~w − yi)Aug(~x(i)),

and, in matrix-vector form:
dR

d~w
=

2

n
XT (X ~w − ~y),

where X is the n × (d + 1) design matrix whose ith row is Aug(~x(i)), and ~y is the n × 1 vector whose ith
entry is yi.

Show that these two expressions are equivalent.

Solution: First, focus on X ~w. Since the rows of X are Aug(~x(i)), we have

X ~w =

Aug(~x(1)) · ~w
...

Aug(~x(n)) · ~w

 .

Therefore:

X ~w − ~y =

Aug(~x(1)) · ~w − y1
...

Aug(~x(n)) · ~w − yn


This means that:

XT (X ~w − ~y) = XT

Aug(~x(1)) · ~w − y1
...

Aug(~x(n)) · ~w − yn



=

(
Aug(~x(1)) · · · Aug(~x(n))

↓
. . . ↓

)Aug(~x(1)) · ~w − y1
...

Aug(~x(n)) · ~w − yn
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Here we use a fact from the first discussion: the product A~u is a vector equal to u1 times the first
column of A, plus u2 times the second column of A, and so on. Therefore:

(
Aug(~x(1)) · · · Aug(~x(n))

↓
. . . ↓

)Aug(~x(1)) · ~w − y1
...

Aug(~x(n)) · ~w − yn

 = ~x(1)(Aug(~x(1)) · ~w − y1) + · · ·+ ~x(n)(Aug(~x(n)) · ~w − yn)

=

n∑
i=1

Aug(~x(i))(Aug(~x(i)) · ~w − yi)

Therefore, 2
nX

T (X ~w − ~y) = 2
n

∑n
i=1 Aug(~x(i))(Aug(~x(i)) · ~w − yi).

Problem 2.

Let f(~z) = ez1 + ez2 + ez3 + (z1 − 1)2 + ‖~z‖2 be a function of ~z = (z1, z2, z3)
T .

Find a minimizer of this function using gradient descent (implemented with code; don’t run GD by hand!).
Report:

• The initial point, ~z(0);

• your choice of step size;

• the stopping criterion you chose and number of iterations taken to reach the criterion;

• the minimizer you found;

• the minimum value of the function.

Include your code.

Solution: First, we do a little calculus to find the gradient of our function. The ‖~z‖2 term might throw
you off, but remember that ‖~z‖2 = z21 + z22 + z23 . So we have:

f(~z) = ez1 + ez2 + ez3 + (z1 − 1)2 + z21 + z22 + z23 .

With this, the partial derivatives are:

∂f

∂z1
= ez1 + 2(z1 − 1) + 2z1

= ez1 + 4z1 − 2

∂f

∂z2
= ez2 + 2z2

∂f

∂z3
= ez3 + 2z3

Next, we code this up into a gradient function that computes the gradient.

def gradient(z):
z_1, z_2, z_3 = z
return np.array([
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np.exp(z_1) + 4*z_1 - 2,
np.exp(z_2) + 2*z_2,
np.exp(z_3) + 2*z_3

])

From here, we use the gradient_descent function from lecture with a starting location of (0, 0, 0), and
a step size of 0.1. As our stopping criterion, we’ll stop when the norm of the gradient is less than 10−6.

def gradient_descent(
gradient, z_0, learning_rate, stop_threshold
):

z = z_0
i = 1
while True:

print(f"Iteration {i}:\t{z = }\t{f(z) = }")
i += 1
z_new = z - learning_rate * gradient(z)
if np.linalg.norm(z_new - z) < stop_threshold:

break
z = z_new

return z_new

z_opt = gradient_descent(gradient, np.array([0, 0, 0]), 0.1, 1e-6)

With this, we find a minimizer of approximately (0.196,−0.352,−0.352)T in 39 iterations. At this point,
the function value is approximately 3.805.

Problem 3.

In a previous homework, you performed least squares regression on the data set shown below:
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This data set can be downloaded again at the following link:

https://f000.backblazeb2.com/file/jeldridge-data/002-regression_outlier/data.csv

As you can see, the data contains outliers which may affect our regression. In the earlier homework, you
should have found that least squares regression is not robust to these outliers.

The Huber loss is a loss function used in regression that is less sensitive to outliers than the square loss. It
can be thought of as a “mix” between the square loss and the absolute loss. For linear prediction functions
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H(~x) = ~w ·Aug(~x), the Huber loss is defined as:

`huber(Aug(x) · ~w, y) =


1
2 (Aug(x) · ~w − y)2, if |Aug(x) · ~w − y| ≤ δ,

δ(Aug(x) · ~w − y)− 1
2δ

2, if Aug(x) · ~w − y > δ,

−δ(Aug(x) · ~w − y)− 1
2δ

2, if Aug(x) · ~w − y < −δ,

A plot of the Huber loss is shown below.

w Aug(x) y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

hu
be

r

Note that, despite being a piecewise function, the Huber loss is differentiable (unlike the absolute loss).
However, there is no closed-form solution for the minimizer of the empirical risk with respect to the Huber
loss, so if we want to train a regression model using this loss we need to use an iterative optimization
algorithm, like gradient descent.

a) Write a function to compute the risk of a linear prediction function w0+w1x with respect to the Huber
loss (with δ = 1) for the data given above. Use your function to compute the risk for ~w = (20,−1).
Report the risk, and include your code.

Solution:

def huber_loss(w, x, y, delta=1):
"""Computes the Huber loss."""
z = w @ x - y
if np.abs(z) <= delta:

return 0.5 * z**2
elif z > delta:

return delta * (z - 0.5 * delta)
else: # np.abs(z) < -delta

return -delta * (z + 0.5 * delta)

def huber_risk(w):
"""Computes the risk w.r.t. the Huber loss on the data set."""
return np.mean([huber_loss(w, X[i], y[i]) for i in range(len(X))])

By running huber_risk([20, -1]), we find that the risk of the linear prediction function 20−x with
respect to the Huber loss is approximately 11.085.

b) The gradient of the Huber loss with respect to ~w is also a piecewise function. Compute this gradient.

Note that since the Huber loss is differentiable, the gradient can be computed by separately computing
the gradient within each piece of the piecewise function. You may use any of the matrix-vector calculus
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rules we’ve seen in class to help you compute the gradient. For example, you may use the fact that
d
d~w ~w ·Aug(~x) = Aug(~x).

Solution: In the first case, where |Aug(x)· ~w−y| ≤ δ, the Huber loss is equal to 1
2 (Aug(x)· ~w−y)2.

Differentiating using the chain rule, we have:

d

d~w

1

2
(Aug(x) · ~w − y)2 = (Aug(x) · ~w − y)

d

d~w
(Aug(x) · ~w − y)

= (Aug(x) · ~w − y)Aug(x)

We recognize this as being the same as the gradient of the square loss (which it should be, since
the Huber loss is equal to the square loss when |Aug(x) · ~w − y| ≤ δ).

For the second case, where Aug(x) · ~w − y > δ, the Huber loss is δ(Aug(x) · ~w − y) − 1
2δ

2.
Differentiating this, we have:

d

d~w
δ(Aug(x) · ~w − y)− 1

2
δ2 = δAug(x)

Finally, for the third case, where Aug(x) · ~w−y < −δ, the Huber loss is −δ(Aug(x) · ~w−y)− 1
2δ

2.
Differentiating this, we have:

d

d~w
− δ(Aug(x) · ~w − y)− 1

2
δ2 = −δAug(x)

So, putting it all together, the gradient of the Huber loss with respect to ~w is:

d

d~w
`huber(Aug(x) · ~w, y) =


(Aug(x) · ~w − y)Aug(x), if |Aug(x) · ~w − y| ≤ δ,

δAug(x), if Aug(x) · ~w − y > δ,

−δAug(x), if Aug(x) · ~w − y < −δ,

c) Write a function that computes the gradient of the empirical risk with respect to the Huber loss
with δ = 1 for a linear prediction function w0 + w1x. Use your function to compute the gradient for
~w = (20,−1). Show your code.

Solution:

def gradient_of_huber_loss(w, x, y, delta=1):
"""Computes the gradient of the Huber loss."""
z = w @ x - y
if np.abs(z) <= delta:

return z * x
elif z > delta:

return delta * x
else: # np.abs(z) < -delta

return -delta * x

def gradient_of_empirical_risk(w):
"""Computes the gradient of the risk w.r.t. the Huber loss on the data set.

Remember, the gradient of the empirical risk is the average of the gradients
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of the individual losses.

"""
return np.mean(

[gradient_of_huber_loss(w, X[i], y[i]) for i in range(len(X))], axis=0

Computing the gradient at ~w = (20,−1) is done by evaluating:

gradient_of_empirical_risk([20, -1])

This gives us the gradient dR
d~w (20,−1) = (0.532, 0.477)T .

d) Implement and run gradient descent to minimize the empirical risk with respect to the Huber loss
(using δ = 1) on the data set above. In addition to your code, include:

• The optimal solution found by gradient descent;

• A plot of the empirical risk of ~w(t) at each iteration. In other words, include a plot whose
horizontal axis is iteration number, t, and whose vertical axis measures the empirical risk of ~w(t).

• A plot of the data and the linear prediction function corresponding to the optimal solution.

Solution:

def gradient_descent(gradient, w_0, learning_rate, stop_threshold):
w = w_0
i = 1
risk_history = []
while True:

current_risk = huber_risk(w)
risk_history.append(current_risk)
print(f"Iteration {i}:\t{w = }\t{current_risk = }")
i += 1
w_new = w - learning_rate * gradient(w)
if np.linalg.norm(w_new - w) < stop_threshold:

break
w = w_new

return w_new, risk_history

We run gradient descent with:

w_gd, gd_risk_history = gradient_descent(
gradient_of_empirical_risk, np.array([20, -1]), 0.1, 1e-6

)

We find a solution of (2.287, 3.887)T with an empirical risk of 5.068 in about 1,400 iterations.

The plot of risk at each iteration is shown below:
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e) Implement and run stochastic gradient descent with a batch size of 8 to minimize the empirical risk
with respect to the Huber loss (using δ = 1) on the data set above.

Include:

• The optimal solution found by SGD;

• A plot of the empirical risk of ~w(t) at each iteration. In other words, include a plot whose
horizontal axis is iteration number, t, and whose vertical axis measures the empirical risk of ~w(t).

Note that you should plot the risk with respect to the whole data set, and not the risk with respect
to the random batch (the latter will be very noisy, and it’s the former that we’re trying to optimize).

Solution: There’s a trick to implementing stochastic gradient descent: we just implement a
stochastic_gradient function that computes the gradient for a random batch, and pass this
function to gradient_descent in place of the usual gradient function.

Here is what that looks like:

def stochastic_gradient(w, batch_size=8):
"""Computes a stochastic gradient from `batch_size` random examples."""
# select a random batch of data points
batch = np.random.choice(len(X), batch_size, replace=True)
X_batch = X[batch]
y_batch = y[batch]

return np.mean(
[

gradient_of_huber_loss(w, X_batch[i], y_batch[i])
for i in range(len(X_batch))

],
axis=0,

)

We run stochastic gradient descent with:

w_sgd, sgd_risk_history = gradient_descent(
stochastic_gradient, np.array([20, -1]), 0.001, 1e-6

)

We find a solution of (2.319, 3.871)T with an empirical risk of 5.069 in 60,000 iterations.
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The plot of risk at each iteration is shown below:
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