DSC 140A - Homework 02
Due: Wednesday, January 22

Instructions: Write your solutions to the following problems either by typing them or handwriting
them on another piece of paper or on an iPad/tablet. Show your work or provide justification
unless otherwise noted; submissions that don’t show work might lose credit. If you write code to
solve a problem, include the code by copy/pasting or as a screenshot. You may use numpy, pandas,
matplotlib (or another plotting library), and any standard library module, but no other third-party
libraries unless specified. Submit homeworks via Gradescope by 11:59 PM.

A KTEX template is provided at http://dsc140a.com, next to where you found this homework.
Using it is totally optional, but encouraged if you plan to go to grad school. See this video|for a quick
introduction to IATEX.

Problem 1.
Let (™M, y1),..., (2, y,) be a set of n training examples, where #(9) € R? and y; € R

Recall that the mean squared error of a linear predictor is defined to be
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In lecture, we saw two equivalent expressions for the gradient of R(w):
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where X is the n x (d + 1) design matriz whose ith row is Aug(Z#*), and 7 is the n x 1 vector whose ith
entry is y;.

Show that these two expressions are equivalent.

Problem 2.
Let f(2) = e* +e*2 +e* + (21 — 1)% + ||Z]|? be a function of 7= (21, 22, 23)T.

Find a minimizer of this function using gradient descent (implemented with code; don’t run GD by hand!).
Report:

o The initial point, Z(?);

e your choice of step size;

¢ the stopping criterion you chose and number of iterations taken to reach the criterion;
e the minimizer you found;

¢ the minimum value of the function.

Include your code.


http://dsc140a.com
https://www.youtube.com/watch?v=Dq9ldNPXrM0&feature=youtu.be

Problem 3.

In a previous homework, you performed least squares regression on the data set shown below:
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This data set can be downloaded again at the following link:
https://£000.backblazeb2.com/file/jeldridge-data/002-regression_outlier/data.csv

As you can see, the data contains outliers which may affect our regression. In the earlier homework, you
should have found that least squares regression is not robust to these outliers.

The Huber loss is a loss function used in regression that is less sensitive to outliers than the square loss. It
can be thought of as a “mix” between the square loss and the absolute loss. For linear prediction functions
H(Z) = & - Aug(Z), the Huber loss is defined as:
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A plot of the Huber loss is shown below.

4.0 4

W+ Aug(X) -y

Note that, despite being a piecewise function, the Huber loss is differentiable (unlike the absolute loss).
However, there is no closed-form solution for the minimizer of the empirical risk with respect to the Huber
loss, so if we want to train a regression model using this loss we need to use an iterative optimization
algorithm, like gradient descent.

a) Write a function to compute the risk of a linear prediction function wg+w;a with respect to the Huber
loss (with 6 = 1) for the data given above. Use your function to compute the risk for @ = (20, —1).
Report the risk, and include your code.

By running huber_risk([20, -1]), we find that the risk of the linear prediction function 20 — x with
respect to the Huber loss is approximately 11.085.


https://f000.backblazeb2.com/file/jeldridge-data/002-regression_outlier/data.csv

b)

d)

The gradient of the Huber loss with respect to w is also a piecewise function. Compute this gradient.

Note that since the Huber loss is differentiable, the gradient can be computed by separately computing
the gradient within each piece of the piecewise function. You may use any of the matrix-vector calculus
rules we’ve seen in class to help you compute the gradient. For example, you may use the fact that
i - Aug(%) = Aug().

Write a function that computes the gradient of the empirical risk with respect to the Huber loss
with § = 1 for a linear prediction function wg + wiz. Use your function to compute the gradient for
w = (20,—1). Show your code.

Implement and run gradient descent to minimize the empirical risk with respect to the Huber loss
(using 0 = 1) on the data set above. In addition to your code, include:
e The optimal solution found by gradient descent;

e A plot of the empirical risk of @W(®) at each iteration. In other words, include a plot whose
horizontal axis is iteration number, ¢, and whose vertical axis measures the empirical risk of @(®).

e A plot of the data and the linear prediction function corresponding to the optimal solution.
Implement and run stochastic gradient descent with a batch size of 8 to minimize the empirical risk
with respect to the Huber loss (using 6 = 1) on the data set above.

Include:
e The optimal solution found by SGD;

« A plot of the empirical risk of W® at each iteration. In other words, include a plot whose
horizontal axis is iteration number, ¢, and whose vertical axis measures the empirical risk of @(").

Note that you should plot the risk with respect to the whole data set, and not the risk with respect
to the random batch (the latter will be very noisy, and it’s the former that we’re trying to optimize).



